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Abstract

Bacterial small regulatory RNAs (sRNAs) are key regulators of gene expression in many processes
related to adaptive responses. A multitude of sRNAs have been identified in many bacterial species;
however, their function has yet to be elucidated. A key step to understand sRNAs function is to identify the
mRNAs these sRNAs bind to. There are several computational methods for sRNA target prediction, and
the most accurate one is CopraRNA which is based on comparative-genomics. However, species-specific
sRNAs are quite common and CopraRNA cannot be used for these sRNAs. The most commonly used
transcriptome-wide sRNA target prediction method and second-most-accurate method is IntaRNA.
However, IntaRNA can take hours to run on a bacterial transcriptome. Here we present sRNARFTarget,
a machine-learning-based method for transcriptome-wide sRNA target prediction applicable to any
sRNA. We comparatively assessed the performance of sRNARFTarget, CopraRNA and IntaRNA in three
bacterial species. Our results show that sRNARFTarget outperforms IntaRNA in terms of accuracy,
ranking of true interacting pairs, and running time. However, CopraRNA substantially outperforms the
other two programs in terms of accuracy. Thus, we suggest using CopraRNA when homolog sequences
of the sRNA are available, and sRNARFTarget for transcriptome-wide prediction or for species-specific
sRNAs. sRNARFTarget is available at https://github.com/BioinformaticsLabAtMUN/sRNARFTarget.

1 Introduction

sRNAs are bacterial small regulatory RNAs, usually
less than 200 nucleotides in length, involved in several
biological functions such as virulence, metabolism,
and environmental stress response [16]. It is gener-
ally accepted that most bacteria have hundreds of
sRNAs that regulate mRNA expression [20]. Many
sRNAs exert their functions when they interact with
mRNAs, and these interacting mRNAs are called the
targets of the sRNAs. To understand the function
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and the regulatory networks of sRNAs, we first need
to identify their targets.

There are several bioinformatics methods for sRNA
target prediction such as CopraRNA [53], SPOT
[22], TargetRNA2 [21], sTarPicker [56], and IntaRNA
[43, 31]. CopraRNA, the most accurate method,
requires sequence conservation of both sRNA and
mRNA in at least four bacterial species, and must
be run one sRNA at a time. The sequence conser-
vation requirement makes CopraRNA unsuitable for
species-specific sRNAs. Out of the programs that
are not comparative genomic-based, IntaRNA and
sTarPicker have been shown to achieve the best re-
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sults in terms of the area under the ROC curve (AU-
ROC) [36, 56]. IntaRNA is also the underlying al-
gorithm of CopraRNA [53]. However, performing
a transcriptome-wide sRNA target prediction on a
bacterial transcriptome using IntaRNA might take
several hours depending on the number of sRNAs
and mRNAs investigated. Here we present sRNARF-
Target, the first ML-based method that predicts the
probability of interaction between an sRNA-mRNA
pair. sRNARFTarget is generated using a random
forest [7] trained on the trinucleotide frequency dif-
ference of sRNA-mRNA pairs. As sRNARFTarget
bases its predictions on sequence alone, it can be ap-
plied to any sRNA-mRNA pair (i.e., does not require
sequence conservation of either sRNA or mRNA).
To train sRNARFTarget we collected known sRNA-
mRNA interactions including those identified using
RNA sequencing (RNA-seq) [49] approaches such as
MAPS [23], GRIL-seq [19], CLASH [51] and RIL-seq
[32]. To the best of our knowledge, this generated the
largest data set of known sRNA-mRNA interactions
from multiple bacteria available so far.

We comparatively assessed the performance of
sRNARFTarget, CopraRNA and IntaRNA in terms
of AUROC, ranking of confirmed interacting pairs,
and running time using data from three bacterial
species (Escherichia coli, Pasteurella multocida and
Synechocystis sp PCC 6803). Our results show that
CopraRNA is the most accurate and sRNARFTar-
get is the fastest of the three programs. Specifically,
sRNARFTarget is on average 100 times faster than
IntaRNA with the same or higher accuracy.

2 MATERIALS AND METH-
ODS

2.1 Data collection

By searching in NCBI Pubmed, we identified studies
listing confirmed sRNA-mRNA interactions includ-
ing those identified by RNA-seq based methods (Ta-
ble 2.1). We collected all sRNA-mRNA pairs listed
in these studies and gathered roughly 2,400 sRNA-
mRNA pairs from multiple bacteria.

The sRNA-mRNA pairs listed in the literature

Bacterium Data source
Escherichia coli [24, 33, 34, 36, 48, 51]
Pseudomonas aeruginosa [10, 19, 40]
Burkholderia cepacia [40]
Pasteurella multocida [17]
Salmonella [13, 44]
Mycobacterium tuberculosis [30]
Synechocystis [14, 15]
Multiple bacteria [6, 50]

are in a variety of formats providing either sRNA
- mRNA names, sRNA - mRNA sequences, or sRNA
- mRNA genomic locations. We used the sequences
directly if they were provided (e.g., sTarBase3.0 [50]).
For other datasets, we created a file containing Entrez
genome accession number, sRNA name and target
mRNA name per sRNA-mRNA pair (Supplementary
Tables 2 and 3).

Our first data preprocessing step was to remove
any duplicate pairs. We then divided the collected
data into training data and validation data. 102, 22,
and 20 sRNA-mRNA pairs from Escherichia coli [36],
Pasteurella multocida [17] and Synechocystis [15] [14]
respectively, were held-out for benchmarking. The re-
maining data was used for training the models (Table
1, and Supplementary Tables 1-3).

Data
No. of
species

No. of
sRNAs

No. of
pairs

Training 37 176 745
Benchmarking 3 25 144

Table 1: Training and benchmarking data character-
istics

To get the complete sRNA and mRNA se-
quences, we wrote two Nextflow (version 0.32.0) [9]
pipelines. The first pipeline finds whether the sR-
NAs and mRNAs names exist in the NCBI Gene
database using the esearch function of Entrez di-
rect [46] and generates a table containing sRNA-
mRNA pairs found in the NCBI Gene database.
Then our second pipeline gets the sRNA/mRNA
sequences using esearch from Entrez direct, and
bedtools (version 2.27.1) [41]. All Nextflow
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pipelines used are available at https://github.com/
BioinformaticsLabAtMUN/sRNARFTarget.

2.2 Machine learning model genera-
tion

We generated models for sRNA target prediction
using three ML methods, namely, Random Forest
(RF) [7], K-nearest neighbours (KNN) [35] and gra-
dient boosting (GB) [12] using scikit-learn [38] func-
tions to implement these classifiers.

2.2.1 Training Data.

We used k -mer frequency difference, and secondary
structure distances as features to train the machine
learning models. To calculate k -mer frequency differ-
ence, one first has to separately compute k -mer fre-
quency for both sequences (sRNA and mRNA), and
then calculate for every k -mer i, fi,mRNA − fi,sRNA

where fi,s is the frequency of k -mer i in sequence
s. To obtain k -mer frequency and then k -mer fre-
quency difference we ran another Nextflow pipeline
using scikit-bio (version 0.5.5) [4] in Python (version
3.7.4). We used k equal to 3 and 4, which corre-
sponds to 64 and 256 k -mers, respectively. We ob-
tained predicted secondary structures of sRNAs and
mRNAs using CentroidFold (version 0.0.16) [18] with
default values. Then we calculated seven distances
between sRNA and mRNA secondary structures us-
ing RNAdistance (version 2.4.13) [27] program with
default values indicating with the -D parameter the
distance to calculate (F, H, W, C, h, w, or c).

After processing, our training data contained 745
interacting sRNA-mRNA pairs collected from the lit-
erature (Supplementary Table 2). We created neg-
ative instances by randomly swapping the sRNAs
in the sRNA-mRNA pairs. Basically, negative in-
stances are sRNA-mRNA pairs where there is no ex-
perimental evidence for interaction. The use of non-
annotated sRNA-mRNA pairs as negative instances
gives a conservative estimate of the performance of
the models (some predictions considered false posi-
tives might in fact be true positives). In total, we
had 1490 sRNA-mRNA pairs (745 positives and 745
negatives) for training the ML models.

In sum, we have a balanced training data with
1,490 instances for a binary classification task, and
explore four feature sets with a) 64 (trinucleotide fre-
quency difference), b) 71 (trinucleotide frequency dif-
ference plus seven distances), c) 256 (tetra-nucleotide
frequency difference), and d) 261 (tetra-nucleotide
frequency difference plus seven distances) attributes.

2.2.2 Model Training.

We used grid-search cross-validation (CV) of scikit-
learn to get the best parameters per ML method. Ta-
ble 2 shows the parameter ranges used in grid-search
CV. We did 10-fold stratified CV to ensure balanced
class distribution in each fold and used the area under
the ROC curve (AUROC) to evaluate model perfor-
mance. Additionally, we used R importance function
[2] based on mean decrease in accuracy to get the
feature importance, and filtered out any feature with
a mean decrease in accuracy ≤ 0.

Method Parameter Values

RF
n estimators [500, 600, 800, 1000]
max features [‘sqrt’, ‘log2’]
max depth range(1, 11)

GB
n estimators [400, 500, 700, 1000]
max features [“log2”,“sqrt”]
max depth range(1, 11)

KNN
n neighbors range(1, 50)
weights [‘distance’, ‘uniform’]

Table 2: Parameter per ML method used for grid-
search CV.

2.2.3 Model Selection.

We calculated sRNA-mRNA secondary structure dis-
tances to explore whether these features will increase
AUROC and added them as features together with
the trinucleotide frequency difference or the tetra-
nucleotide frequency difference. Thus, we trained
models using either trinucleotide frequency difference
(64 features), tetra-nucleotide frequency difference
(256 features), trinucleotide frequency difference plus
seven distances, or tetra-nucleotide frequency differ-
ence plus seven distances. For each of the four sets
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of features, we found the optimal parameter setting
per classifier using grid search CV and compared the
models’ performance in terms of 10-fold CV AUROC.
We selected the model with the highest AUROC, and
saved this model to be used by the Nextflow pipeline
implementing sRNARFTarget.

2.3 sRNARFTarget Nextflow pipeline

We wrote a Nextflow pipeline that uses our best
model for sRNA target prediction. The pipeline takes
sRNA and mRNA FASTA files as input, creates all
possible sRNA-mRNA pairs, obtains the k-mer fre-
quency for both sRNA and mRNA, and calculates the
k-mer frequency difference by subtracting sRNA fre-
quency from mRNA frequency using pandas (version
0.25.1) [37, 52] subtract function. Then the saved
best model is loaded and predictions for all pairs
are generated. The final result of the pipeline is a
CSV file containing predicted probabilities of sRNA-
mRNA interaction sorted in descending order with
the sRNA-mRNA ID (see Supplementary Figure 1
for workflow of sRNARFTarget program). Addition-
ally, a file containing the features for all sRNA and
mRNA pairs is also created. This file is used by the
interpretability programs.

2.4 sRNARFTarget Interpretability

We wrote two Python scripts using SHAP (version
0.35.0) [29] and pyCeterisParibus (version 0.5.2) [5]
packages to facilitate the interpretation of predictions
generated by sRNARFTarget (Supplementary Figure
2). Both scripts use the feature file generated by
sRNARFTarget to get the features for the pair of in-
terest. sRNARFTarget SHAP uses TreeExplainer of
SHAP to create an explainer. Then it calculates the
SHAP values for a given observation and generates
SHAP’s decision, waterfall and force plots for inter-
pretation. sRNARFTarget CP creates the explainer
using training data and calculates ceteris paribus pro-
files for a chosen feature for given sRNA-mRNA pair.
It then generates a plot of the calculated profiles for
the selected feature.

2.5 Benchmarking

Previous comparative assessments of sRNA tar-
get prediction programs [56, 36, 22] reported
four programs (CopraRNA, IntaRNA, SPOT and
sTarPicker) as the most accurate programs, with Co-
praRNA been the most accurate program. SPOT
is reported to be comparable to CopraRNA; how-
ever, we were unable to run SPOT locally and run-
ning SPOT through Amazon Web Services (AWS)
requires payment [3]. Additionally, sTarPicker pro-
gram is no longer available. Therefore, we included
CopraRNA and IntaRNA in our benchmark.

The data used for independent benchmarking have
22 sRNAs and 102 confirmed interacting sRNA-
mRNA pairs for E. coli [36], one sRNA and 22 con-
firmed sRNA-mRNA pairs for P. multocida [17], and
two sRNAs and 20 pairs for Synechocystis bacteria
[15, 14]. These data were not used for training. We
extracted the sequences for 22 sRNAs of E. coli us-
ing our Nextflow pipeline as described above. For all
other sRNAs, we fetched the sequence directly from
the NCBI nucleotide database based on the locations
provided in the corresponding manuscript. The lo-
cation of isar1 sRNA was taken as reported in [15].
The location of psrR1 sRNA (1671919-1672052) was
confirmed by oral communication with the author of
[14]. Finally, gcvB sRNA location was obtained from
[17]. As we wanted to perform transcriptome-wide
prediction of sRNA targets, we collected genomic lo-
cation for all the mRNAs belonging to each bacterium
directly from NCBI. We then obtained the sequences
for these mRNAs using our Nextflow pipeline. In
the case of CopraRNA, if predictions for a given
E. coli sRNA were already available in CopraRNA
web server, we used the available predictions. Oth-
erwise, to find homologs for E. coli sRNAs, we used
GLASSgo - sRNA Homolog Finder [28]. Addition-
ally, we used the homologs provided in [15] and [14]
for isar1 and psrR1 sRNAs of Synechocystis. For
gcvB sRNA of P. multocida, we retrieved homolog
sRNAs from NCBI.

We downloaded IntaRNA (version 3.1.0.2) source
code from [1], installed it locally, and executed it
with default values from the command line. To
obtain a total execution time for IntaRNA, we
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created a Nextflow pipeline to run IntaRNA’s two
steps: 1) getting the interaction energy and 2)
calculating the p-values for the interaction energy.
We ran sRNARFTarget and IntaRNA from the
Linux command line (system specifications are:
one processor, processor speed 2.2 GHz, 4 cores
and 16 GB RAM). CopraRNA (version 2.1.2) was
run from its web server (http://rna.informatik.
uni-freiburg.de/CopraRNA/Input.jsp, version
4.8.2).

After running the programs, we standardized their
results by assigning corresponding classes to all pre-
dictions (1 to confirmed interacting sRNA-mRNA
pairs and 0 to all other sRNA-mRNA pairs) and
using predicted interaction probability for all pro-
grams. CopraRNA and IntaRNA output p-values
where lower p-values indicate higher predicted likeli-
hood of interaction. Thus, we subtracted CopraRNA
and IntaRNA p-values from 1 to obtain predicted in-
teraction probability. Additionally, for all three pro-
grams we rounded the predicted interaction proba-
bility to 5 decimals. To eliminate the duplicate en-
tries from CopraRNA result, we wrote an R (version
3.5.1) script to get the most significant p-value (low-
est p-value) for each sRNA-mRNA pair, and remove
all other entries. As CopraRNA did not produce a
prediction for all possible sRNA-mRNA pairs. We
wrote an R script to get the common pairs predicted
by the three programs so that all three programs were
evaluated on the same mRNA-sRNA pairs (Table 3).

Accession sRNAs mRNAs P N
NC 000913.3 22 4240 101 92348
NC 000911.1 2 3179 20 6324
NC 002663.1 1 1804 22 1781

Table 3: Final benchmarking dataset used for all
three programs. The table lists the genome accession
used, the number of sRNAs, the number of mRNAs,
the number of confirmed interacting pairs (P), and
the number of pairs considered non-interacting (N)
per bacterial species (from top to bottom: E. coli,
Synechocystis and P. multocida).

3 RESULTS AND DISCUS-
SION

3.1 Selection of sRNARFTarget ML
model

We adopted the idea of using sequence-derived fea-
tures such as k-mer frequency from previous stud-
ies [55, 25, 39, 8]. As sRNAs bind mRNAs through
base pairing [47], we hypothesized that k-mer fre-
quency difference might capture base pairing poten-
tial between mRNA and sRNA for the classifiers to
use. Thus, we created feature sets using trinucleotide
and tetra-nucleotide frequency difference. We started
with trinucleotide composition, and as the perfor-
mance decreased with tetra-nucleotide composition,
we decided not to go beyond tetra-nucleotide compo-
sition.

Table 4 shows the performance in terms of AU-
ROC of the best model per classifier when trained
using trinucleotide frequency difference and tetra-
nucleotide frequency difference. AUROC achieved
with trinucleotide frequency difference was higher
than the AUROC achieved with tetra-nucleotide fre-
quency difference. With trinucleotide frequency dif-
ference, the model with the best performance in
terms of AUROC was the RF one with 0.67, followed
by GB with 0.66, and then KNN with 0.63.

AUROC
(mean ± standard deviation)

Models
Tri nt.
difference

Tetra nt.
difference

RF 0.67 ± 0.03 0.31 ± 0
GB 0.66 ± 0.03 0.32 ± 0
KNN 0.63 ± 0.03 0.45 ± 0.01

Table 4: 10-fold CV AUROC for the best model per
classifier trained on sequence-derived features (trinu-
cleotide frequency difference and tetra-nucleotide fre-
quency difference) of 1490 sRNA-mRNA pairs.

RNA secondary structures are associated with
the regulation of mRNA [11]. Previous studies
[45, 8] used secondary structure information for pre-
diction of sRNA-mRNA interaction and non-coding
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RNAs. As the secondary structure of both sRNA and
mRNA affects their binding [54], we decided to as-
sess whether including secondary structure distances
as features together with the tri(tetra)-nucleotide
frequency difference improved performance in terms
of AUROC. However, including predicted secondary
structure distances to the feature set did not increase
the models’ performance. When including secondary
structure distances as features in addition to trinu-
cleotide frequency difference, the AUROC was un-
changed for RF (AUROC 0.67), dropped by more
than half for KNN (AUROC 0.27) and went slightly
up for gradient boosting (AUROC 0.67). Similarly,
adding secondary structure distance features with
tetra-nucleotide frequency difference features had lit-
tle to no effect on model performance (Supplemen-
tary Table 4). As adding distance features did not
substantially improve models’ performance but dra-
matically increased the time required to extract the
features from seconds to hours (due to the prediction
of RNA secondary structure using CentroidFold), we
decided against using the distance features in our fi-
nal model.

RF and GB models were comparable in terms of
AUROC; however, the RF model was much faster
to train than GB. Thus, we decided to train our
final model on the 1490 sRNA-mRNA pairs using
RF and included this model in the sRNARFTarget
pipeline. The parameters to create this model are
500 trees (n estimators), log2 of features for split
(max features), and a maximum depth of the trees
of 9 (max depth). From now on, we will refer to
this final RF model as sRNARFTarget. Supplemen-
tary Figure 3 shows the 10-fold CV ROC curve of
sRNARFTarget and Supplementary Figure 4 shows
its top 30 most important features.

3.2 Interpreting sRNARFTarget pre-
dictions

To facilitate the interpretation of sRNARFTarget
predictions, we have implemented two pipelines
(sRNARFTarget SHAP and sRNARFTarget CP) to
apply interpretability programs to sRNARFTarget
predictions. To illustrate the functionality of these
pipelines, we discuss interpretability plots generated

for isaR1-petF confirmed interacting pair of Syne-
chocystis. SHAP’s decision plot shows how the model
reached its decision (Supplementary Figure 5). The
waterfall plot suggests that the value of feature GGC
lowers the probability of interaction for this pair,
and that this feature has the highest relevance for
this observation (Supplementary Figure 6). Force
plot shows that features ACC and AAT are pushing
sRNARFTarget to output higher interaction proba-
bility for this pair (Supplementary Figure 7). To gain
insight on how a different value for the feature GGC
impacts the output of sRNARFTarget for this pair,
we looked at the ceteris paribus plot for feature GGC
for isaR1-petF pair from Synechocystis (Supplemen-
tary Figure 8). It shows sRNARFTarget’s predic-
tion for different values of GGC when all other fea-
ture values remain constant. These plots can help
pinpoint the sequence segments (trinucleotides) that
contribute more to a specific sRNA-mRNA interac-
tion.

3.3 Benchmark on independent data
set

First, we assessed the performance of sRNARFTar-
get, CopraRNA and IntaRNA in terms of AUROC on
data from three bacterial species: E. coli (gammapro-
teobacteria), Synechocystis (cyanobacteria) and, P.
multocida (gammaproteobacteria). These data were
not used for training. The E. coli 102 confirmed
sRNA-mRNA pairs were the same used in the assess-
ment performed by Pain et al [36]. We performed
transcriptome-wide predictions; i.e., the methods
have to infer interaction probability for all possi-
ble sRNA-mRNA pairs. Note that this is a con-
servative assessment as there might be true sRNA-
mRNA interacting pairs that have not been con-
firmed yet and are considered false positives in the
evaluation. Figs. 1, 2 and 3 show the ROC curve
for E. coli, Synechocystis and P. multocida, respec-
tively. Table 5 shows the AUROC for the three
programs per bacterium. Across the three bacterial
species, CopraRNA has the highest AUROC followed
by sRNARFTarget and then IntaRNA. All programs
show a decrease in AUROC on P. multocida data. As
the data used is highly unbalanced (Table 3), we also
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obtained the Precision-Recall curves (PRC) (Supple-
mentary Figures 9-11). As it can be seen from the
PRC curves and the AUPRC shown in Supplemen-
tary Table 5, there is still room for improving the
precision of computational transcriptome-wide sRNA
target prediction. This result is similar to that ob-
tained by Pain et al [36].
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Figure 1: ROC curve for the three programs on Es-
cherichia coli data. The plot shows the sensitivity
(also called recall or true positive rate) as a function
of the false positive rate (FPR). The dash line indi-
cates random classifier performance.

Next, we looked at the rank distribution of con-
firmed interacting pairs per bacterium. Ideally, ac-
tual interacting pairs should have lower rank than
non-interacting pairs, as a lower rank indicates that
the program predicts with higher confidence that a
given sRNA-mRNA pair is an actual interacting pair.
To visualize program performance in terms of rank-
ing of confirmed interacting pairs, we generated vio-
lin plots showing the rank distribution of confirmed
interacting sRNA-mRNA pairs. The shape surround-
ing the box plots indicates the data density for dif-
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Figure 2: ROC curve for the three programs on Syne-
chocystis data. The plot shows the sensitivity (also
called recall or true positive rate) as a function of
the false positive rate (FPR). The dash line indicates
random classifier performance.

ferent rank values. The horizontal bar inside the
box shows the median rank of the confirmed inter-
acting pairs. Fig. 4 shows the violin box plot for E.
coli. CopraRNA has a lower median rank followed
by sRNARFTarget and then IntaRNA. The shape of
CopraRNA suggests that most of the confirmed in-
teracting pairs are ranked before all other pairs. The
shape of the plot for sRNARFTarget suggests that
it has more confirmed interacting pairs with lower
ranks than IntaRNA. We compared the rank distri-
butions using the Mann-Whitney test (Fig. 4). The
p-values obtained indicate that CopraRNA’s median
rank of interacting pairs is significantly lower than
sRNARFTarget’s median rank, and that sRNARF-
Target’s median rank is significantly lower than In-
taRNA’s median rank.

Figs. 5 and 6 show the violin plots for Synechocys-
tis and P. multocida, respectively. For these two bac-
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Bacterium CopraRNA sRNARFTarget IntaRNA
E. coli 0.88 0.65 0.62
Synechocystis 0.95 0.63 0.48
P. multocida 0.65 0.44 0.40
Average ± sd 0.83 ± 0.16 0.57 ± 0.12 0.50 ± 0.11

Table 5: AUROC obtained on each bacterial species included in the benchmark for all three programs
assessed.
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Figure 3: ROC curve for the three programs on Pas-
teurella multocida data. The plot shows the sensi-
tivity (also called recall or true positive rate) as a
function of the false positive rate (FPR). The dash
line indicates random classifier performance.

terial species as well, the median rank of confirmed
interacting pairs is the lowest in CopraRNA’s pre-
dictions, followed by sRNARFTarget and then In-
taRNA. All three programs found it more difficult to
distinguish true interacting pairs in P. multocida and
ranked confirmed interacting pairs with higher ranks
(Fig. 6) than for the other two bacteria. Neverthe-
less CopraRNA still ranks confirmed interacting pairs
significantly lower than sRNARFTarget (p-value =

Figure 4: Rank (lower = better) distribution of 102
Escherichia coli confirmed interacting pairs. The vi-
olin plot for each program shows the data density
for different rank values and the horizontal line in-
side each box indicates the median rank of confirmed
interacting pairs.

2.15e-05), and sRNARFTarget ranks true interacting
pairs lower than IntaRNA (p-value = 0.056).

Lastly, we plotted the percentage of confirmed in-
teracting sRNA-mRNA pairs predicted among a cer-
tain percentage of top predicted interacting pairs.
To create these plots, we took the top 10% pre-
dictions for each program, counted the number of
confirmed interacting pairs among these predictions,
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Figure 5: Rank (lower = better) distribution of 22
Synechocystis confirmed interacting pairs. The vio-
lin plot for each program shows the data density for
different rank values and the horizontal line inside
each box indicates the median rank of confirmed in-
teracting pairs.

and calculated the percentage of true positives (re-
call) among the top 10% predictions. Then itera-
tively increased the percentage of top predictions by
10% and repeated the process described above un-
til all predictions (100%) were taken into account.
We plotted the percentage of predictions on the x-
axis and the percentage of confirmed interacting pairs
(recall) on the y-axis. Fig. 7 shows this plot for E.
coli. In the top 10% predictions, CopraRNA pre-
dicted 74% of confirmed interacting pairs, sRNARF-
Target predicted 21% of these pairs, and IntaRNA
predicted 14%. Among the top 50% predicted inter-
acting pairs on Synechocystis, CopraRNA predicted
100% of the confirmed interacting pairs, sRNARF-
Target predicted 70% of these pairs and IntaRNA
predicted 55% (Fig. 8). In the top 20% predictions
for P. multocida, CopraRNA predicted 18% of con-
firmed interacting pairs, sRNARFTarget was able to

Figure 6: Rank (lower = better) distribution of
20 Pasteurella multocida confirmed interacting pairs.
The violin plot for each program shows the data den-
sity for different rank values and the horizontal line
inside each box indicates the median rank of con-
firmed interacting pairs.

predict 10% of these pairs, and IntaRNA did not pre-
dict any confirmed interacting pair (Fig. 9). Thus,
sRNARFTarget recovers more verified sRNA-mRNA
interacting pairs than IntaRNA.

3.4 sRNARFTarget’s performance on
IntaRNA 2.0’s testing data [31]

We took the confirmed interacting sRNA-mRNA
pairs provided by [31]. Out of 160 confirmed inter-
acting pairs, we excluded those pairs present in our
training data and used the remaining 119 interact-
ing pairs (88 pairs of E. coli (NC 000913) together
with 31 pairs of Salmonella (NC 003197)) to com-
pare the performance of sRNARFTarget with that or
IntaRNA. We ran sRNARFTarget and IntaRNA for
17 sRNAs and 4240 mRNAs of E. coli and, 7 sRNAs
and 4450 mRNAs of Salmonella. The final number of
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Figure 7: Percentage of Escherichia coli confirmed
interacting sRNA-mRNA pairs (recall) as a function
of percentage top predicted interacting pairs.
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Figure 8: Percentage of Synechocystis confirmed in-
teracting sRNA-mRNA pairs (recall) as a function of
percentage top predicted interacting pairs.

pairs was 102,385 (71,427 pairs of E. coli and 30,958
pairs of Salmonella) for both programs.

Figure 10 shows the ROC curve of sRNARFTar-
get and IntaRNA. AUROC of sRNARFTarget is
0.61, and IntaRNA is 0.59. sRNARFTarget’s per-
formance is comparable to that of IntaRNA in terms
of AUROC. We plotted the ROC curves separately
for E. coli and Salmonella for both programs to
check the behaviour of the two bacteria indepen-
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Figure 9: Percentage of Pasteurella multocida con-
firmed interacting sRNA-mRNA pairs (recall) as
a function of percentage top predicted interacting
pairs.

dently. The performance for E. coli is comparable
for both programs (AUROC 0.61 for sRNARFTarget
and 0.62 for IntaRNA) (Supplementary Figure 12).
For Salmonella, sRNARFTarget achieved an AUROC
of 0.58 and IntaRNA achieved an AUROC of 0.51
(Supplementary Figure 13).

Figure 11 shows the violin box plot for E. coli along
with Salmonella for sRNARFTarget and IntaRNA.
sRNARFTarget has a lower median rank compared
to IntaRNA. P-value (Mann-Whitney test) indicates
that the median rank of confirmed interacting pairs
in sRNARFTarget is significantly lower than the me-
dian rank of IntaRNA.

3.5 Programs execution time

In terms of execution time, sRNARFTarget is faster
than CopraRNA and IntaRNA (Tables 6 and 7). Ta-
ble 7 shows the time taken by the CopraRNA web
server for job completion on selected sRNAs (Co-
praRNA is run for one sRNA at a time). These
times were calculated by taking the difference be-
tween the job submission time and the job comple-
tion time (timestamp of job completion email). These
times are not directly comparable to those shown in
Table 6 as CopraRNA was run from the web server,

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.05.433963doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.433963
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E. coli & Salmonella

FPR

S
en

si
tiv

ity

sRNARFTarget
IntaRNA

Figure 10: ROC curve for sRNARFTarget and In-
taRNA on E. coli and Salmonella data. The plot
shows the sensitivity (also called recall or true pos-
itive rate) as a function of the false positive rate
(FPR). The dash line indicates random classifier per-
formance.

and sRNARFTarget and IntaRNA were run from the
Linux command line. sRNARFTarget execution time
includes feature extraction (i.e., calculation of the
trinucleotide frequency difference). To obtain inter-
acting predictions for 1804 sRNA-mRNA pairs of P.
multocida, sRNARFTarget took 31.4 seconds while
IntaRNA took 6,196 seconds. To obtain interacting
predictions for 93,280 sRNA-mRNA pairs (22 sRNAs
and 4240 mRNAs) of E. coli, sRNARFTarget took
0.683% of the time taken by IntaRNA, which repre-
sents a 146-fold reduction in execution time (from
more than 38 hours to 15 minutes). On average,
sRNARFTarget is 100 times faster than IntaRNA
with same or higher AUROC.

Figure 11: Rank (lower = better) distribution of 119
E. coli and Salmonella confirmed interacting pairs.
The violin plot for each program shows the data den-
sity for different rank values and the horizontal line
inside each box indicates the median rank of con-
firmed interacting pairs.

4 CONCLUSION

In this study, we present a transcriptome-wide sRNA
target prediction program, sRNARFTarget. We
collected experimentally verified sRNA-mRNA pairs
from the literature to create a training data set con-
sisting of 745 confirmed interacting sRNA-mRNA
pairs. As a comparison, RNAInter [26] contains 408
sRNA-mRNA interactions. We selected a Random
Forest model as the final model for sRNARFTarget
using the trinucleotide frequency difference between
sRNA-mRNA as features.

In our benchmark, we compared sRNARFTarget
with CopraRNA and IntaRNA. Our results show that
the comparative genomics-based approach used by
CopraRNA is the best performing approach in terms
of AUROC. However, unlike CopraRNA, sRNARF-
Target does not require an sRNA or mRNA sequence
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Bacterium
No. of
sRNAs/
mRNAs

Execution time
(HH:MM:SS)

sRNARFTarget IntaRNA
P. multocida 1/1804 0:00:31 1:43:16
Synechocystis 2/3179 0:01:18 2:33:02
Salmonella 7/4450 0:05:47 6:18:16
E. coli 22/4240 0:15:56 38:52:43
Average 8/3418 0:05:53 12:21:49

Table 6: Execution time for sRNARFTarget and IntaRNA on benchmarking data. Both programs were run
on an Intel Core i7 (2.2 GHz) with 4 cores and 16 GB of RAM computer.

CopraRNA web server

Bacteria sRNA
No. of
homologs

Execution time
(HH:MM:SS)

E. coli arcZ 8 08:00:00
P. multocida gcvB 4 08:19:00
Synechocystis isrR1 19 17:49:00

Table 7: CopraRNA web server job execution time on selected sRNA for each bacterium on the benchmark
data.

to be conserved among other bacteria and can gener-
ate predictions for any number of sRNA and mRNA
sequences. We also show that sRNARFTarget (the
first ML-based approach used for this task) is 100
times faster (Table 6) than the best non-comparative
genomics program available, IntaRNA, with better
accuracy (Table 5). Another advantage of sRNATar-
get is its simplicity of use, as sRNARFTarget does
not require any parameter setting; while IntaRNA
has about a dozen parameters that need to be set [42].

As CopraRNA is the most accurate of the three
programs, we suggest using CopraRNA when the ho-
mologs of the sRNA-mRNA sequences are available
in at least four bacterial species. For transcriptome-
wide prediction or when homolog sequences are not
available, we recommend using sRNARFTarget.
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