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Abstract  
Biomarkers are of central importance for assessing the health 
state and to guide medical interventions and their efficacy, but 
they are lacking for most diseases. Mass spectrometry (MS)-
based proteomics is a powerful technology for biomarker 
discovery, but requires sophisticated bioinformatics to identify 
robust patterns. Machine learning (ML) has become 
indispensable for this purpose, however, it is sometimes 
applied in an opaque manner, generally requires expert 
knowledge and complex and expensive software. To enable 
easy access to ML for biomarker discovery without any 
programming or bioinformatic skills, we developed 
‘OmicLearn’ (https://OmicLearn.com), an open-source web-
based ML tool using the latest advances in the Python ML 
ecosystem. We host a web server for the exploration of the 
researcher’s results that can readily be cloned for internal use. 
Output tables from proteomics experiments are easily 
uploaded to the central or a local webserver. OmicLearn 
enables rapid exploration of the suitability of various ML 
algorithms for the experimental datasets. It fosters open 
science via transparent assessment of state-of-the-art 
algorithms in a standardized format for proteomics and other 
omics sciences. 

 

Introduction 
Machine learning (ML) is one of the most exciting opportunities 
for transforming scientific discovery today. While ML and its first 
algorithms were conceptualized decades ago, increasing 
computational power and larger datasets have now clearly 
demonstrated the superiority of ML approaches over classical 

statistical approaches in many applications. Concurrently, 
advances in omics technologies have enabled the generation of 
large and complex biological datasets from the analysis of 
hundreds to thousands of samples (Cominetti et al., 2016; 
Demichev et al., 2020a; Geyer et al., 2016a, 2021; Niu et al., 
2020), which now allows ML to extract meaningful biological 
information from the data. This also applies to mass 
spectrometry (MS)-based proteomics, which has become the 
method of choice for the quantitative investigation of the 
entirety of proteins and their modifications in a biological 
system (Bache et al., 2018; Geyer et al., 2016b, 2017; Meier et 
al., 2018). Continuous technological advances are transforming 
MS-based proteomics from a basic research tool to a powerful 
clinical technology. As technological challenges in robustness, 
throughput, and reproducibility are being solved, MS-based 
proteomics is becoming increasingly popular for the analysis of 
clinical samples and an ideal tool for biomarker discovery. The 
development of automated sample preparation pipelines and 
increasingly robust liquid chromatography (LC) and MS systems 
enable the analysis of large studies encompassing hundreds or 
thousands of samples (Bache et al., 2018; Geyer et al., 2016b, 
2017; Meier et al., 2018). 

Large datasets are challenging to analyze in conventional ways 
but are well suited to ML algorithms, which can identify 
promising protein signatures and predict physiological states 
based on proteome data and additional clinical metadata. 
Recently, we applied ML in studies comprising hundreds of 
cerebrospinal fluid (CSF) or urine samples to predict the 
manifestation of neurodegenerative diseases (Bader et al., 
2020; Virreira Winter et al., 2021). In these projects, established 
biomarkers associated with the investigated diseases ranked 
among the top candidates such as tau, SOD1 and PARK7 in 
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Alzheimer's Disease (AD), and VGF and ENPEP in Parkinson’s 
Disease (PD), and potential novel ones were uncovered. 

For experimental researchers, the widespread application of ML 
to proteomics and other omics datasets, however, is often 
hampered by lacking access to the existing, best-suited ML 
technology. Popular packages such as scikit-learn or XGBoost 
allow predictive data analysis in principle, but researchers still 
require programming knowledge to write their own ML 
pipelines (Chen and Guestrin, 2016; Pedregosa et al., 2011). 
Additionally, the currently available packages in Python or R are 
not always easy-to-follow by non-specialists since they typically 
have no graphical interface. A noteworthy exemption is the 
Galaxy project, a server-based scientific workflow system that 
aims to make computational biology more accessible (Afgan et 
al., 2018). However, with more than five-hundred workflows 
readily available, it can be cumbersome to navigate without 
having domain knowledge.  

Hence, access to powerful ML is restricted to experienced data 
scientists. Furthermore, to reproduce published results, the 
same software environment needs to be set up and configured 
with the matching package versions and random seeds. 
Especially in ML, selecting the appropriate methods is far from 
obvious to the non-specialist. Moreover, many parameters can 
be altered to tune the algorithms, which might change from 
version to version, resulting in reproducibility issues. While 
several packages exist that perform automatic optimization of 
parameters, manual verification and benchmarking of 
algorithms is limited. Additionally, omics sciences and ML 
require special domain knowledge as metrics can be deceiving 
and algorithms might need special preselection or 
preprocessing steps. For instance, in some studies, the receiver 
operating characteristics (ROC) curve might be useful to confirm 
the performance, while precision-recall (PR) curves are 
mandatory in imbalanced datasets (Davis and Goadrich, 2006). 
Thus, transparent and open-source software would be 
favorable, particularly in the interest of open and reproducible 
science (McDermott et al., 2019). 

To address all these issues and to help current initiatives on 
biomarker discovery, we here introduce OmicLearn, a ready-to-
use ML web application specifically developed for omics 
datasets. We describe OmicLearn´s architecture and show its 
benefits by applying it to a recently published proteomics study, 
investigating alterations in the CSF of AD patients (Bader et al., 
2020). OmicLearn incorporates community efforts by building 
on scientific Python libraries and is available as open-source. It 

can be accessed via the hosted webserver or downloaded for 
local deployment.  

 

Results 
Overview of the OmicLearn architecture 

Technological progress in MS-based proteomics now enables 
the large-scale measurement of human liquid biopsy samples 
such as plasma, urine or CSF. For optimal analysis of such 
datasets, statistical analysis methods that are capable of 
learning from extensive datasets such as ML algorithms are 
needed. ML is especially promising as it allows us to identify 
previously unseen dependencies and can be used to predict 
outcomes. To supply a ready-to-use ML interface that can be 
applied by experimental researchers without prior knowledge in 
ML, we developed OmicLearn. It is a Python-based, open-source 
and interactive browser application that allows the usage and 
parameter-tuning of multiple ML algorithms. The results are 
visualized by exportable graphics and charts, allowing the direct 
performance evaluation of the predictions. The goal of 
OmicLearn is to explore and benchmark how a variety of ML 
classifiers would perform on the data. It is not intended to 
export ML models to be deployed in decision making, which 
requires many additional scientific, statistical and regulatory 
considerations. That said, OmicLearn can be applied to any type 
of omics dataset in a tabular format and allows the export of 
parameters and results in a publication-ready format. 

OmicLearn consists of a central web interface, an analysis core 
and visualization (Fig 1). Within the analysis core, data 
processing builds on open-source data manipulation tools such 
as Pandas (McKinney, 2010) and NumPy (Harris et al., 2020), 
which are specifically designed for multi-dimensional matrices 
and arrays. To implement state-of-the-art ML and preprocessing 
methods, we built OmicLearn on scikit-learn and advanced 
machine learning algorithms such as XGBoost (eXtreme 
Gradient Boosting). Scikit-learn is a widely used library for 
classification, regression, and clustering problems, which 
incorporates common preprocessing, feature selection and 
cross-validation techniques needed in ML (Chen and Guestrin, 
2016; Pedregosa et al., 2011). XGBoost comes with additional 
algorithms, improved performance, and optimized memory 
usage.  

The interactive web-interface and visualization components are 
built on the recently developed open-source framework 
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Streamlit (https://www.streamlit.io). Dropdown menus allow 
the straightforward definition of dataset-specific variables and 
the selection of various parameters for different ML algorithms. 
A core feature that facilitates usage especially for novice user is 
the automated interface update based on previously made 
selections, preventing invalid choices. Results are visualized 
with the graphic Python library Plotly 
(https://plotly.com/python) to generate high-quality interactive 
graphs, which can be exported as *.pdf, *.png or *.svg. For 
guidance, we implemented a Wiki documentation 
(https://github.com/OmicEra/OmicLearn/wiki) that provides 
background knowledge about OmicLearn, its ML algorithms, 
and the available methods. Additionally, the Wiki supplies 

information on clinical MS-based proteomics, an installation 
guide and a user manual for the tool.  

The OmicLearn code is released as open-source under the 
Apache License (2.0). The tool itself is available on GitHub 
https://github.com/OmicEra/OmicLearn, which includes the 
documentation, the complete source code and the example 
dataset described below. OmicLearn can be installed and run 
locally to enable use in restricted or sensitive environments. To 
facilitate installation or usage in a cloud environment, we 
included a Dockerfile for containerization. Alternatively, a 
running instance of the online app can be accessed via the 
website https://OmicLearn.com.

 

 

Figure 1. The OmicLearn architecture.  

Left side: OmicLearn is integrated in an interactive web-based tool that is built on the Streamlit package. The application is containerized via Docker, 
so that it can be easily deployed in a scalable cloud environment. Tabular experimental data files can be uploaded to OmicLearn as *.csv or *.xlsx 
(Excel format). Internally, OmicLearn uses the NumPy and Pandas packages to import and handle data. Right side: OmicLearn has access to the 
large Machine Learning libraries of scikit-learn as well as additional algorithms such as XGBoost. The pipeline is set up to perform classification 
tasks on omics datasets with multiple cross-validations of results. Various performance metrics are displayed, leveraging the Plotly library. The 
OmicLearn repository is hosted on GitHub and is open-source.
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How to use OmicLearn? 
Datasets can be uploaded via drag and drop or browsing a local 
drive. Internally, OmicLearn is built on the widely used Pandas 
and NumPy packages to import and store data. Datasets should 
be supplied in a .csv or .xlsx format, which are the typical output 
tables of packages such as MaxQuant or DIA-NN (Cox and Mann, 
2008; Demichev et al., 2020b). The datasets need to meet 
distinct criteria with regards to the structure of the data matrix. 
Each row should correspond to a sample and each column to a 
feature to be used for classification and every column must have 
a header. Features can be supplied as two types: main and 
additional. Main features typically comprise the abundance 
information of every analyte (e.g. protein or metabolite 
intensities), while additional features are associated with clinical 
information such as age, sex or disease status of the samples or 
subjects. These additional features have to be supplied starting 
with an underscore '_' (e.g. '_age') for OmicLearn to distinguish 
them from main features. For quickly testing out the features of 
OmicLearn without uploading a custom file, we provide a 
tutorial sample file as well as a sample data set from a recently 
published study on biomarker discovery in AD using 
cerebrospinal fluid (CSF) (Bader et al., 2020). 

Once a file is uploaded, OmicLearn ́s ML interface appears, 
consisting of two separate selection menus for ML options and 
for dataset-specific feature definitions (Fig 2A). The core steps 
of the pipeline can be found in the left sidebar, where the user 
can specify individual parameters for random state, 
preprocessing, feature selection, classification and cross-
validation. As an example, OmicLearn offers the choice between 
several algorithms for classification, including AdaBoost, Logistic 
Regression, Random Forest, XGBoost, Decision Tree, KNN 
Classification and linear Support Vector Classification (briefly 
described with additional links in the OmicLearn Wiki). Within 
the interactive interface, several hyperparameters can be 
defined according to the chosen model or algorithm. 
Furthermore, a random state slider allows the specification of a 
seed state to make random operations such as train-test splits 
deterministic to ensure reproducibility of the predictions.  

The underlined headlines of the ML options such as ‘Feature 
selection’ are linked to the Wiki. Here, we supply a stepwise 
manual to apply OmicLearn and more information for all 
sections and methods. Moreover, the user will find references 
for supporting information for the ML algorithms, metrics and 
scores. 

Subsets of uploaded datasets can be created based on an 
additional feature column, e.g., when having a multicenter 
study and only wanting to train on the data of a specific study 
center.  

Within the ‘Classification target’ section, the user can specify 
the column that contains the classification target. Here, they can 
define two classes that are based on unique values within this 
column that the classifier will be trained to distinguish. In a 
typical setup, this could be the disease state to classify patient 
and control samples. If there are more than two unique values, 
each class can be defined to consist of multiple values, or values 
can be excluded when training the classification algorithm. 

OmicLearn also allows to include additional feature columns in 
the classification, which can be selected under the ‘Additional 
features’ section. If the column contains non-numerical data 
such as ‘condition_a’, ‘condition_b’ and ‘condition_c’ for a 
category, OmicLearn will convert the values to numerical data 
such as 0, 1 and 2. In this section, users might upload their *.csv 
file (comma “,” separated), where each row corresponds to a 
feature to be excluded. Furthermore, it is possible to manually 
select the main features via ‘Manually select features’. Lastly, 
the option ‘Cohort comparison’ allows using one of the 
additional feature columns to split the dataset into different 
cohorts to train on one cohort and test on the other. Once all 
parameters are set, clicking on the ‘Run analysis’ button will 
initiate the selection of the best features and calculation of the 
predictive model. 

 

Interpretation of results 
OmicLearn reports various metrics, ranging from reports on 
important features to the evaluation of the applied ML models. 
These results are displayed in several tables and graphs. A bar 
plot ranks the features with the highest contribution to the 
prediction model (20 in our tutorial dataset; Fig 2C) from all of 
the cross-validation (CV) runs. For instance, in our sample 
dataset analysis, the known biomarker tau (P10636) displayed 
the highest feature importance value, as described in the 
original study. This information is also available as tables in *.csv 
format. To comfortably retrieve more knowledge about these 
features, we directly linked their IDs or names to a National 
Center for Biotechnology Information (NCBI) search.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2021.03.05.434053doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434053


Research Article                                    Machine learning platform for biomarkers 

 

 

Figure 2. Functional flow of OmicLearn and example performance metrics.  

A. The OmicLearn´s landing page is comprised out of two functional elements. The left side allows setting the parameters for the ML pipeline such 
as selecting the ML classifier and setting algorithmic parameters. The right side allows manipulating the dataset and exploration of results. The 
process is interactive and follows a linear flow, e.g. whenever an option is selected only choices that will match the previously selected parameters 
will be shown.  

B. Cross-validation (CV) strategy: Data is repeatedly split into train and validation sets, so that means and standard deviations can be estimated.  

C. Feature importance: This plot shows the Feature importance (weights) from the ML classifier, averaged over all classification runs. The annotation 
on the y-axis is interactive and will directly link to NCBI.  

D. Interactive Receiver Operating Characteristics (ROC) curve: The ROC curve shows individual CV splits as well as an average ROC curve with a 
confidence interval.  

E. Interactive Precision-Recall (PR) curve: The PR curve shows individual CV splits as well as an average PR curve with a confidence interval.

 

In order to evaluate the performance of an ML model, a study 
needs to be split into train, validation, and holdout (test) set. 
Optimization is performed using the training and validation set, 
and the model that is ultimately used is being evaluated using 
the unseen holdout set. As already mentioned, OmicLearn is 
intended to be an exploratory tool to assess the performance of 
algorithms when applied to specific datasets at hand, rather 
than a classification model for production. Therefore, no 
holdout set is used and the performance metrics have to be 
interpreted accordingly. This also prevents repeated analysis of 
the same dataset and choosing the same holdout set from 

leading to a selection bias and consequent over-interpretation 
of the model.  

The strategy of splitting data is crucial to overcome the common 
ML problems of over- or underfitting. Overfitting occurs when 
applying a model with high complexity that learns on unrelated 
noise. Over-fitted models will be capable of describing the 
sample with high accuracy but will not generalize well when 
validating on another dataset. In our context, this is frequently 
observed when study-specific biases are present that are not 
found in future observations. Underfitting happens when the 
model is not sufficiently complex, and is therefore not capable 
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of learning the subtleties of the sample characteristics, resulting 
in sub-optimal performance. Even though the throughput of 
omics sciences is rapidly increasing, the number of analyzed 
samples is generally small compared to the number of features 
that can be measured. To illustrate, a sample cohort may be in 
the range of hundreds but we are measuring thousands of 
proteins, making ML particularly prone to overfitting. In order 
to use the existing data most efficiently, we use CV, in which 
data is repeatedly split into train and validation sets 
(RepeatedStratifiedKFold method). For this purpose, we 
integrated a stratified splitting technique, meaning that the 
original class ratio will be preserved for the splits. OmicLearn 
offers additional split methods such as StratifiedKFold and 
StratifiedShuffleSplit, which can be selected in the ML options 
(Fig 2B). These measures prevent models scoring well, that have 
‘learned’ to simply predict the majority class (i.e. always 
predicting that a rare condition is absent).  

The number of features that are being used for the model can 
be either selected by the user or automatically selected with 
feature selection algorithms built into OmicLearn. The feature 
importance scores obtained from the classifier after all CV runs 
are displayed in a horizontal interactive bar chart and an 
exportable table (Fig 2C). The feature importance is additionally 
provided in tabular format and contains the standard 
deviations. The feature selection is applied for each split during 
the CV process so that no information leakage occurs. 

We further implemented Receiver Operating Characteristics 
(ROC) for a graphical representation of model performance (Fig 
2D). They display the true positive rate (sensitivity) against the 
false positive rate (1 - specificity) in an easily interpretable form. 
In the supplied plot, the mean ROC curve (black) is displayed 
together with the standard deviation (grey background) of the 
different curves from the various train and validation set splits. 
The Area Under the Curve - Receiver Operating Characteristics 
(AUC-ROC) is a numerical value to assess the prediction; it would 
be 1.0 in the case of a perfect discrimination. In addition, we use 
Precision-Recall (PR) curves displaying the sensitivity (recall) 
against the positive predictive value (Fig 2E). PR curves are 
valuable for performance assessments, especially in when 
dealing with imbalanced datasets, where one class is more 
frequent than the other (Saito and Rehmsmeier, 2015). To 
further evaluate the quality of the predictions, we supply a 2x2 
‘confusion matrix’ to compare predicted and actual classes. In 
the sample dataset, it displays the number of correctly 

predicted positive and negative AD patients as well as the 
number of false-positive and false-negative predictions. 

The overview of all results is available in one comprehensive 
table in the ‘Results’ section. We further provide a publication-
ready summary text for describing packages, libraries, methods, 
and parameters. Finally, since researchers might perform 
multiple runs in OmicLearn to explore different learning 
conditions, previous results are listed in the ‘Session History’ 
section. In this way, users can easily compare current with 
previous results. Additionally, a download option for the session 
history as *.csv exists. The graphics generated by OmicLearn can 
be saved in a publication-ready format such as *.pdf, *.svg, and 
*.png, and all tables are available as .csv files.  

 

Application examples 
The underlying type of a ML classifier can have a drastic effect 
on the model performance depending for a given dataset it is 
applied to. Therefore, models should be selected to fit the 
nature of the problem. In the analysis of our sample AD dataset 
with OmicLearn, we quickly evaluated seven ML algorithms. 
Each model showed different performance on predicting 
Alzheimer’s disease status. To illustrate such effects, we use 
several OmicLearn´s metrics in a ‘Run results for classifier’ table 
and graphs to show the influence of classifiers (Fig 3A). The AUC-
ROCs ranged from 0.63 to 0.93. This result cannot be due to 
differences other than the model as we had defined the same 
data subsets and other selections such as additional features 
and chose the same options for preprocessing, missing value 
imputation, feature selection and cross-validation (Fig 2A). 
Further investigating the individual model performance 
highlights interesting characteristics. While the majority of the 
models achieve an AUC-ROC of larger than 0.8, there are some 
outliers with much lower performance such as KNeighbors with 
0.63 ± 0.12 and the decision tree model with 0.73 ± 0.09. 
Interestingly, a rather simple model (LogisticRegression) 
obtained an average AUC-ROC of 0.84 ± 0.09, which is higher 
than the more sophisticated support vector model (LinearSVC) 
with a mean score of 0.81 ± 0.09. 

One of the best models for this application is the XGBoost 
classifier, which achieves an AUC-ROC of 0.93 ± 0.06. Note that 
the minimum AUC-ROC for a single CV split was 0.77, while the 
maximum was 1. This emphasizes that repeated validation is 
necessary to avoid misinterpreting performance on favorable or 
unfavorable splits. 
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A confusion matrix facilitates understanding performance 
metrics by showing actual numbers for each class (Fig 3B). To 
display the individual cross-validation splits, OmicLearn 
provides an interactive confusion matrix with a slider for picking 
a split. We found even perfect splits (e.g. split 1) that classified 
all Alzheimer’s patients (10/10) and non-Alzheimer’s patients 
(18/18) correctly. In contrast to that there are splits that are 
much worse (e.g., split 7), which only classifies (6/10) and 
(16/18) correctly, highlighting the variance in prediction 
accuracy. 

 

Discussion 
Recent technological advances are dramatically improving 
robustness, throughput and reproducibility of omics 
technologies such as genomics, proteomics and metabolomics. 
This has sparked an increasing interest in using these 
technologies for biomarker discovery with large cohorts of 
clinical samples. More generally, the analysis and interpretation 
of large biological datasets obtained from omics technologies 
are complex and require automated computational workflows. 
In addition to the statistical tests that are typically applied, ML 
is an increasingly powerful tool to extract meaningful 
information and to obtain a deeper understanding of the 
underlying biology. The application of ML algorithms to large 
omics datasets, however, remains a challenge in many ways. 
Individual ML pipelines need to be established, specialized 
knowledge of data scientists or bioinformaticians is required 
and the applied workflows often lack transparency and 
reproducibility. While the number of studies applying ML to 
omics datasets is rapidly increasing, issues associated with 
transparency of analyses, validation of existing results and 
reproducibility are increasingly recognized and a matter of 
concern in the field.  

To make ML algorithms easily accessible and understandable for 
experimental researchers, we developed OmicLearn, a browser-
based app that allows applying modern ML algorithms to any 
omics dataset uploaded in a tabular format. Although 
developed with clinical proteomics in mind, it is in no way 
limited to this application. OmicLearn offers several ways to 
explore the effect of a variety of parameter settings on ML 
performance and comes with a detailed Wiki containing 
background information and a user manual. Within OmicLearn, 
multiple methods are available for preprocessing, feature 
selection algorithms, classification and cross-validation steps 

together with hyperparameter tuning options. Furthermore, 
OmicLearn enables researchers to export all settings and results 
as publication-ready figures with an accompanying methods 
summary. This enables researchers to apply the identical 
pipeline to multiple omics datasets or reproduce existing results 
and simplifies the application and usage of ML algorithms to any 
tabular data without requiring any prior ML knowledge. With its 
user-friendly interface, OmicLearn enables researchers to 
upload a dataset with features, such as protein levels and any 
associated clinical information such as disease status, to train 
and test a model and provide new valuable insights into the 
dataset. OmicLearn aggregates the methods and algorithms 
from Python ML library scikit-learn together with XGBoost. 
Furthermore, it combines several best practices for 
preprocessing and feature selection steps to apply them to the 
files uploaded by users, such as MS-based proteomics datasets. 
To demonstrate its usability, we have applied various ML 
algorithms to a recently published study that investigated 
changes in the CSF proteome of AD patients. While we 
showcased our app on proteomics data, it can be applied to 
tabular data obtained using other omics technologies such as 
genomics or metabolomics. A principal challenge that remains 
for all ML approaches is explainability. In a biomarker discovery 
context, features that give highly accurate models could 
originate from inherent study biases so that scrutinizing results 
with respect to the underlying biology is imperative. The 
interactive nature of OmicLearn should aid in this process.  

A key finding is that ML requires repeated cross-validation of 
results as biased splitting of data can result in drastic 
performance variation, which can be larger than the 
performance difference of different classifiers. While some 
models will have better performance, the baseline classification 
accuracy of all classifiers should be in the same range and the 
user should be able to achieve competitive results with 
OmicLearn. This also suggests that it is beneficial to stringently 
benchmark a study with a relatively standard model and having 
a good understanding of the baseline performance instead of 
purposely building a model for a particular study. In this way, 
OmicLearn also helps to democratize ML in the field as results 
will be more comparable and differences in model performance 
easier to understand. 

In summary, OmicLearn is an easy-to-use powerful tool for 
exploratory data analysis. It gives a rapid overview of how well 
the supplied data perform in a classification task and can be 
applied to fine-tune and optimize ML models. However, on its 
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own, it does not provide biomarker panels or models ready to 
be used in diagnostics. Potential improvements of OmicLearn 
include the diversification of ML classification algorithms and 
the inclusion of other sophisticated optimization and 
preprocessing methods such as standardization, imputation of 
missing values and data encoding. We have found OmicLearn to 

be an indispensable tool in analyzing clinical proteomics 
datasets and hope that it will provide similar benefits for a large 
community of researchers in the field of biomarker discovery.  

 

 

 

Figure 3. Application examples of OmicLearn. 

A. ROC curves generated from the AD dataset for multiple ML models. The achieved AUC-ROC ranged from 0.63 to 0.93. The different ML algorithms 
are indicated with their AUC-ROC value.  

B. Examples of two different splits of the AD dataset for one ML model. Split 1 resulted in perfect accuracy and exhibited no false classification. 
Split 7 of the same cross-validation run had several false classifications and hence lower performance, highlighting the importance of cross-
validation. 
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