
Multi-Modality Machine Learning 
Predicting Parkinson’s Disease 
Integrating clinico-demographic, genetic, and transcriptomic data 
within an automated machine learning open science framework to 
predict Parkinson’s disease and identify potential novel therapeutic 
targets for drug development. 
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SUMMARY 

Background 
Personalized medicine promises individualized disease prediction and treatment. The 
convergence of machine learning (ML) and available multi-modal data is key moving forward. 
We build upon previous work to deliver multi-modal predictions of Parkinson's Disease (PD).  

Methods 
We performed automated ML on multi-modal data from the Parkinson’s Progression Marker 
Initiative (PPMI). After selecting the best performing algorithm, all PPMI data was used to tune 
the selected model. The model was validated in the Parkinson’s Disease Biomarker Program 
(PDBP) dataset. Finally, networks were built to identify gene communities specific to PD. 

Findings 
Our initial model showed an area under the curve (AUC) of 89.72% for the diagnosis of PD. The 
tuned model was then tested for validation on external data (PDBP, AUC 85.03%). Optimizing 
thresholds for classification, increased the diagnosis prediction accuracy (balanced accuracy) 
and other metrics. Combining data modalities outperforms the single biomarker paradigm. 
UPSIT was the largest contributing predictor for the classification of PD. The transcriptomic data 
was used to construct a network of disease-relevant transcripts.  

Interpretation 
We have built a model using an automated ML pipeline to make improved multi-omic predictions 
of PD. The model developed improves disease risk prediction, a critical step for better 
assessment of PD risk. We constructed gene expression networks for the next generation of 
genomics-derived interventions. Our automated ML approach allows complex predictive models 
to be reproducible and accessible to the community.  

Funding 
National Institute on Aging, National Institute of Neurological Disorders and Stroke, the Michael 
J. Fox Foundation, and the Global Parkinson’s Genetics Program. 
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RESEARCH IN CONTEXT 

Evidence before this study 
Prior research into predictors of Parkinson’s disease (PD) has either used basic statistical 
methods to make predictions across data modalities, or they have focused on a single data type 
or biomarker model. We have done this using an open-source automated machine learning 
(ML) framework on extensive multi-modal data, which we believe yields robust and reproducible 
results. We consider this the first true multi-modality ML study of PD risk classification. 

Added value of this study 
We used a variety of linear, non-linear, kernel, neural networks, and ensemble ML algorithms to 
generate an accurate classification of both cases and controls in independent datasets using 
data that is not involved in PD diagnosis itself at study recruitment. The model built in this paper 
significantly improves upon our previous models that used the entire training dataset in previous 
work1. Building on this earlier work, we showed that the PD diagnosis can be refined using 
improved algorithmic classification tools that may yield potential biological insights. We have 
taken careful consideration to develop and validate this model using public controlled-access 
datasets and an open-source ML framework to allow for reproducible and transparent results.  

Implications of all available evidence 
Training, validating, and tuning a diagnostic algorithm for PD will allow us to augment clinical 
diagnoses or risk assessments with less need for complex and expensive exams. Going 
forward, these models can be built on remote or asynchronously collected data which may be 
important in a growing telemedicine paradigm. More refined diagnostics will also increase 
clinical trial efficiency by potentially refining phenotyping and predicting onset, allowing 
providers to identify potential cases earlier. Early detection could lead to improved treatment 
response and higher efficacy. Finally, as part of our workflow, we built new networks 
representing communities of genes correlated in PD cases in a hypothesis-free manner, 
showing how new and existing genes may be connected and highlighting therapeutic 
opportunities. 

INTRODUCTION 
For progressive neurodegenerative diseases, early and accurate diagnosis is key to effectively 
developing and using new interventions. This early detection paradigm aims to identify, analyze, 
and prevent or manage the disease before the patient recognizes signs and symptoms while the 
disease process is most amenable to intervention. Here we describe work that facilitates 
accurate and early diagnosis using cost-effective methods in a data-driven manner 1. 
 
Biomedical researchers are currently at the convergence of scientific advances that will facilitate 
progress in early detection and remote identification of potentially high-risk individuals: first, the 
availability of substantial clinical, demographic, and genetic/genomic datasets. Second, 
advances in the automation of machine learning (ML) pipelines and artificial intelligence, to 
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maximize the value of this massive amount of readily available data 2. Previous biomarker 
studies, particularly in neurodegenerative diseases, have focused on widely known statistical 
approaches and linear models, using a single metric or handful of metrics for predictions. We 
aim to contribute to the field with non-linear and ML-based approaches and leverage rapidly 
growing publicly available data to build these models. We also extend these models, providing 
not just disease prediction but also biological insight. 
 
We have used publicly available multi-modal Parkinson’s disease (PD) data to build an accurate 
peri-diagnostic model to predict disease risk. We also used the features nominated by our 
workflow to build novel, unbiased networks of genes related to the onset of PD that highlight 
biological pathways of interest and therapeutic targets. This work leveraged clinico-demographic 
and multi-omic data produced and curated to build models that can impact both trial recruitment 
and drug development. The models we have developed here improved performance over 
previous related efforts, with performance metrics at current cross-validation in withheld 
samples being equivalent, or in some cases, better than the training phase of earlier work1. The 
data came from the Accelerating Medicines Program - Parkinson’s Disease (AMP PD) program 
[https://amp-pd.org/] and the code used to carry out analyses comes from open-source 
automated ML software, all of which have been made publicly available to support 
reproducibility, transparency, and open science 3,4.  

METHODS 

Online Appendix 
Full methods and links to code can be found in the Online Appendix. A brief overview of the 
process can be found below. All of the data and code used for this project is also available at 
publication via a linked Terra workspace for full reproducibility [link pending publication]. 
GenoML is an open-source Python package automating machine learning workflows for 
genomics5. Source code and documentation is available at [https://genoml.com/] and on GitHub 
[https://github.com/GenoML/genoml2 ] . AMP PD data and quality control notebooks are 
access-controlled [https://amp-pd.org/]. Additionally, we have developed an interactive website 
[https://share.streamlit.io/anant-dadu/shapleypdpredictiongenetics/main ] where researchers can 
investigate components of the predictive model. 
 
Procedures and statistical analysis overview 
Figure 1  summarizes the workflow and data used in this project. Our workflow began with data 
munging that includes feature selection, adjustment, and normalization. Then we moved on to 
algorithm competition and feature selection based on a 70:30 (training:testing) split in the PPMI 
dataset. We then compared how each algorithm performed on identical training and testing 
data. Once the best performing algorithm had been selected, a thorough hyperparameter tuning 
of the algorithm with 5 fold cross-validation (also in the entire PPMI) was performed. Model was 
exported to enable external validation and transfer learning in the readers’ own data. This 
hyperparameter tuning and cross-validation phase was carried out to both improve performance 
but also reduce bias 6. We validated the models built by taking the trained and tuned models 
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from PPMI and fit them to the external validation dataset, PDBP. Cohort summaries can be 
found below in Table 1 with additional information in the  Online Appendix. 
 

Table 1: Descriptive statistics of studies included from AMP PD. 
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Study Status 

Age at 
baseline 
mean (SD) 

UPSIT score 
mean (SD) 

Male 
(%) 

Positive 
family 
history of PD 
(%) 

Inferred 
Ashkenazi 
ancestry (%) 

PPMI Case 61.75 (9.69) 23.48 (8.35) 65.57 25.53 6.09 

 Control 60.61 (10.43) 34.18 (4.71) 63.74 5.85 11.11 

PDBP Case 64.59 (8.99) 19.65 (8.01) 64.18 24.88 3.61 

 Control 62.87 (10.96) 32.52 (5.98) 45.25 8.14 4.07 
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Figure 1: Workflow and Data Summary. Scientific notation in the workflow diagram denotes 
minimum p-values from reference GWAS or differential expression studies as a pre-screen for 
feature inclusion. 

 

 
 

Role of the funding source 
The study's funders had no role in the study design, data collection, data analysis, data 
interpretation, or writing of the report. All authors and the public can access all data and 
statistical programming code used in this project for the analyses and results generation. MAN 
takes final responsibility for the decision to submit the paper for publication. 

RESULTS 
 
We have shown that integrating multiple modalities improved model performance in predicting 
PD diagnosis in a mixed population of cases and controls. Additional interpretation for ML 
metrics and models is included in the Online Appendix. Our multi-modality model showed a 
higher area under the curve (AUC; 89.72%) than just the clinico-demographic data available 
prior to neurological assessment (87.52%), the genetics-only model from genome sequencing 

6 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 7, 2021. ; https://doi.org/10.1101/2021.03.05.434104doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434104


data and polygenic risk score (PRS; 70.66%), or the transcriptomics-only model from 
genome-wide whole blood RNA sequencing (RNAseq) data (79.73%) in withheld PPMI samples 
(see Table 2  and Figure 2  for summaries).This model's performance improved in both PPMI 
and PDBP after tuning, described below and in Table 3. Similar results can be seen when this 
model is validated in the PDBP data set (AUC from the combined modality model at 83.84% 
before tuning) detailed in Table 4 and  Figure 3 . Additionally, the multi-modal model also had 
the lowest false positive and false negative rates compared to other models, only focusing on a 
single modality, in both the withheld test set in PPMI and in the PDBP validation set. Thus, 
moving from single to multiple data modalities yielded better results in not only AUC but across 
all performance metrics. A strength of using multi-modal approaches is that some modalities 
may better predict case or control status than others (Table 2). Here, we leveraged data 
diversity to increase overall sensitivity and specificity. Our final multi-modal model had higher 
accuracy and balanced accuracy at 85.56% and 82.41%, respectively, sensitivity at 89.31%, 
and specificity at 75.51%, when compared to models built only on a single data modality. 
Notably, this improved balanced accuracy is of particular importance in binary classifiers where 
one of the predicted classes is much rarer than the other, like PD, which is relatively infrequent 
in the general population. Special attention was given to validate the model, interpreting and 
visualizing the top features aiding in the prediction of classification, and further investigation into 
optimizing the model, developing hypothesis-free transcriptomic communities, and exploring 
potential drug-gene interactions. 
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Figure 2: Receiver operating characteristic curves and case probability density plots in withheld 
training samples at default thresholds comparing performance metrics in different data 
modalities from the PPMI dataset. P-values mentioned indicate the threshold of significance 
used per data type, except for the inclusion of all clinico-demographic features. 

 
 

Table 2: Performance metric summaries comparing training in withheld samples in PPMI.  
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Data Modality Stage Algorithm AUC 
(%) 

Accuracy 
(%) 

Balanced 
accuracy 

(%) 

Log 
Loss Sensitivity Specificity PPV NPV 

Genetics (P<1E-5) Training in 
PPMI (70:30) 

MLPClassifier 70.66 70.00 60.64 0.83 0.83 0.38 0.77 0.48 

Clinico-demographic Training in 
PPMI (70:30) LogisticRegression 87.52 79.44 75.27 0.39 0.85 0.65 0.86 0.64 

Transcriptomics 
(P<1E-2) 

Training in 
PPMI (70:30) SVC 79.73 73.89 54.60 0.48 0.97 0.12 0.75 0.60 

Combined Training in 
PPMI (70:30) AdaBoostClassifier 89.72 85.56 82.41 0.63 0.89 0.76 0.91 0.73 
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Table 3: Performance metric summaries comparing tuning in PPMI for different subsets 
of data modalities. 
 
 

 

Table 4: Performance metric summaries comparing combined tuned and untuned model 
performance on the PDBP validation dataset. 
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Data Modality Stage Algorithm 
AUC at 
training 

(%) 

Mean, AUC 
during CV 

for 
baseline 

model (%) 

Standard 
deviation, 

AUC during 
CV for 

baseline 
model (%) 

Min, AUC 
during CV 

for 
baseline 

model (%) 

Max, 
AUC 

during 
CV for 

baseline 
model 

(%) 

Mean, 
AUC 

during 
CV for 
tuned 
model 

(%) 

Standard 
deviation, 

AUC during 
CV for tuned 

model (%) 

Min, 
AUC 

during 
CV for 
tuned 
model 

(%) 

Max, 
AUC 

during 
CV for 
tuned 
model 

(%) 

Genetics 
(P<1E-5) 

Tuning in 
PPMI MLPClassifier 70.66 69.44 4.46 62.45 75.73 70.93 5.39 61.29 76.71 

Clinico-demogra
phic 

Tuning in 
PPMI 

LogisticRegress
ion 87.52 88.51 2.17 86.19 91.98 88.55 2.20 86.33 92.15 

Transcriptomics 
(P<1E-2) 

Tuning in 
PPMI SVC 79.73 78.05 4.27 71.49 82.62 79.01 4.71 70.88 84.01 

Combined 
Tuning in 

PPMI 
AdaBoostClassi

fier 89.72 86.99 2.30 84.27 90.70 90.17 1.64 88.06 92.73 

Data Modality Stage Algorithm AUC 
(%) 

Accuracy 
(%) 

Balanced 
Accuracy 

(%) 

Log 
Loss Sensitivity Specificity PPV NPV 

Combined Untuned in PPMI 
as reference 

AdaBoostCla
ssifier 89.72 85.56 82.41 0.63 0.89 0.76 0.91 0.73 

Combined; 
Untuned 

Validation in 
PDBP 

AdaBoostCla
ssifier 

83.84 75.81 69.31 0.64 0.93 0.46 0.75 0.78 

Combined; 
Tuned 

Validation in 
PDBP 

AdaBoostCla
ssifier 85.03 75.00 68.09 0.67 0.93 0.43 0.74 0.78 
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Figure 3: Receiver operating characteristic and case probability density plots in the external 
dataset (PDBP) at validation for the trained and then tuned models at default thresholds. 
Probabilities are predicted case status (r1), so controls (a status of 0) skews towards more 
samples on the left, and positive PD cases (a status of 1) skews more samples on the right. 

 
 
 
One benefit of the ML approach we have used is its ability to tune model parameters. The best 
performing tuned model that included all data showed an AUC distribution of 88.06% to 92.70% 
at 5-fold cross-validation with a mean of 90.20% and a standard deviation of 2.3% in PPMI (see 
Table 3 ). When validated in the PDBP data, we saw an AUC of 85.03%, sensitivity at 93.12%, 
and specificity at 43.07% for the tuned multi-modal model.  
 
These models then improved further when  post-hoc optimization of case probability thresholds 
was carried out. We considered the optimized version of the tuned model (including all data 
modalities) as our gold standard. When applied to withheld PPMI samples, the training phase 
model increased its balanced accuracy quantified performance to 83.95%. This optimization 
also led to improved balanced accuracy of 77.97% when fitting the tuned model referenced 
above to the PDBP validation data. See Table 5 for details on other related metrics and a 
summary of optimized versus default thresholds. In general, our threshold optimization allowed 
general increases in classifier performance at a minimal computational cost. 
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Table 5: Optimizing the AUC threshold in withheld training samples and in the validation 
data. 
 

 
Our model build included 71 SNPs and 596 protein-coding transcripts in addition to expected 
features like the demographics, family history, olfactory function, and previous genome-wide 
significant polygenic risk estimates in the form of PRS7. The Shapley Additive exPlanation 
(SHAP) plots in Figure 4 show the relative importance of the features in the model 
approximated using withheld training data. When investigating the SHAP values for both the 
training and testing samples, the UPSIT score, as well as PRS, contributed most to the 
predictive power of the model, but the accuracy of these are supplemented by many smaller 
effect transcripts and risk SNPs. It also indicates that the lower UPSIT score (designated by the 
blue color on the left-hand side) value corresponds to a higher probability of PD, as most of the 
blue-colored points lie on the right side of the baseline risk estimate. Looking closer at these 
features, we can also observe that the directionality of different genetic features is not uniform. 
This signifies that over-expression of some genes corresponds to healthy controls while for 
some features it is in the opposite direction. We have also created a website that allows readers 
to further explore feature contributions to model accuracy in various scenarios 
[https://share.streamlit.io/anant-dadu/shapleypdpredictiongenetics/main ]. The addition of SNPs 
outside the PRS could suggest potential compensatory or risk modification effects interacting 
with the PRS. For more information on pairwise interactions between the PRS and individual 
SNPs, please see the Online Appendix . 
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Dataset Model Optimization 
Case 

Probability 
Threshold 

(%) 

Accuracy 
(%) 

Balanced 
accuracy 

(%) 
Log 
loss Sensitivity Specificity PPV NPV 

PPMI, 
withheld 
samples 

Training 
phase 

optimized 
51 85 83.95 0.05 0.86 0.82 0.93 0.69 

PPMI, 
withheld 
samples 

Training 
phase default 

50 85.56 82.41 0.05 0.89 0.76 0.91 0.73 

PDBP, 
external 
test 
samples 

Tuned 
model optimized 

51 78.58 77.97 0.07 0.80 0.76 0.85 0.68 

PDBP, 
external 
test 
samples 

Tuned 
model 

default 

50 75 68.09 0.09 0.93 0.43 0.74 0.78 
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Figure 4: Feature importance plots for top 5% of features in withheld training data. 
 

 
 
Gene expression network communities were constructed using RNAseq data extracted from 
positive PD cases. These genes were nominated by the feature selection process. These 
communities of genes represent part of a potentially novel PD-specific network derived from 
whole blood RNAseq. Consider the network itself to be conceptually similar to a pathway, 
composed of genes whose expression was strongly correlated in the case-only transcriptomics 
dataset, and the communities being subgroups of closely related genes within the larger set. We 
identified 13 network communities consisting of 300 genes with an Erdos-Renyi modularity 
score of 0.794 (a modularity score closer to 1 indicates better model fit). A link to the full 
community annotations and a graphical summary can be found in the Online Appendix. 
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For genes in our network communities, we evaluated the potential over representation of known 
drug target genes across the identified communities. When comparing the genes defined as 
part of the network communities (N = 300) to those selected for inclusion as features in the 
case:control model build (N = 598), we noted enrichments of genes connected to fostamatinib 
(FDR adjusted p-value 2.21e-4, for genes MYLK, EPHA8 , HCK, DYRK1B, and BUB1B-PAK6) 
and copper (FDR adjusted p-value 0.0286, for genes HSP90AA, CBX5 and  HSPD1) from the 
DrugBank annotations. The same query in the GLAD4U database resulted in a significant over 
representation of l-lysine annotated genes (FDR adjusted p-value 0.0057, for genes DDX50, 
UBA2, ESCO1, CDC34, ANKIB1, PCMT1, DNAJA1, PRMT3, ASPSCR1, BRDT, LOXL4, CBX5, 
HAT1, MARCH1, HSP90AA1, KPNB1, KMT5B, PSIP1, XPOT, SLC7A9, ZNF131, DDX18, 
RBBP5, and MSL1). All other variations of our drug target enrichment analyses yielded no 
significant drugs overrepresented after multiple test correction, although the top ranked result 
was consistently gamma hydroxybutyric acid (unadjusted p-values 0.0056-0.0001 for genes 
SLC16A7, SLC16A3, and GABBR1).  

DISCUSSION 
In an era where genetics and genomics combined with clinico-demographic data are 
increasingly available to researchers, we can now build multi-modal models at a scale that use 
multiple data modalities for increased performance.  
 
This study illustrates that integrating diverse data modalities into modeling efforts can improve 
the quality of predictions. This paper is a proof of concept for future directions in this area of 
predictive modeling in large healthcare data and indicative of its relevance to other areas such 
as clinical trial enrollment and stratification. In our modeling process, we have succeeded in 
building robust model(s) of peri-diagnostic PD while also generating de novo network 
communities of genes correlated in PD cases, providing further data for potential therapeutic 
development. A strength of using this multi-modal approach is that the different modalities 
compensate for one another, with some modalities better at predicting case status while others 
are better at classifying controls. All of this was accomplished in a completely transparent and 
open science framework, from the underlying data to code and resulting models. 
 
While we do not suggest this as a replacement for current diagnostic screening methods, it can 
be a potential adjunct screening that could aid in identifying high-risk individuals, especially on a 
large biobank or study recruitment scale. Additional studies will need to be conducted to 
ascertain the model's ability to distinguish very early PD cases from other diseases within high 
risk cohort studies. The estimated prevalence of PD in an aging population is about 2% 8. At this 
prevalence for our optimized PPMI model described in Table 5, the positive predictive value 
(PPV) and negative predictive values (NPV) were calculated to be 8.75% and 99.66%, 
respectively. The false discovery rate (FDR) and false omission rates (FOR) at this prevalence 
are 91.26% and 0.34%, respectively. The low FOR indicates that for every 1000 individuals who 
are classified as healthy controls, there are likely 3 to 4 missed positive PD cases. Using this 
optimized combined model and accounting for the estimated prevalence of PD, about ten times 
the number of individuals would be flagged as high risk or a potential PD case for every real 
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case, indicating that this model is best suited to identifying large groups of individuals to monitor 
within a health registry or biobank to prioritize for further testing.  
 
The strength of our work is its high balanced accuracy in delineating cases and controls. Its 
other strength is its applicability and utility across datasets (further details on this in the Online 
Appendix  for transfer learning). This model has the potential to be used in large healthcare 
system settings to identify at-risk individuals for potential monitoring as well as nominating future 
candidates for various preventative interventions or clinical trial enrollments. Our diagnostic 
model includes both time-varying (age, UPSIT, and RNAseq data) and time static (biological 
sex, family history, and genetics) features that likely peak accuracy at the time of diagnosis due 
to model training on the PPMI dataset, which includes only newly diagnosed imaging-confirmed 
and unmedicated cases. Additionally, the ability to refine the phenotype of the participant group 
based on a combination of clinician and algorithmic insight will benefit trial recruitment and could 
only increase the efficacy of a trial. Finally, since our model is diagnostic in nature and designed 
to target PD early in the disease course, it may be beneficial in helping get treatments or 
interventions to patients before irreparable damage has been done as large pools of at risk 
individuals can be flagged for follow-up and closer monitoring for potential symptom onset 9. 
 
We have created an interactive web-based application for others to investigate the driving 
factors in our best model that incorporates all data modalities; it also gives users the flexibility to 
explore variations like transcriptomics-only models or a new model with none of the 
clinico-demographic features present (see Online Appendix for details). For the combined 
model that we have focused on describing in this report; decision plots are provided, these are 
useful as the web application is capable of letting users explore how and why individuals that 
were difficult to classify were labeled as cases or controls. The web application (as well as 
Figure 4 ) shows that the UPSIT score, in general, was the strongest factor in deciding if an 
individual was classified to be a positive PD case or healthy control by the model. As an 
example, a decision plot shows that a sample that was clinically diagnosed to be a PD case, we 
see that most of the features seemed to indicate that the individual was about to be classified as 
a PD case by the model, but ultimately an unexpectedly high UPSIT score misclassified the 
individual as a healthy control (decision plots work to visualize the path a model takes before 
arriving at a classification; see the additional figure in the Online Appendix for a graphical 
representation of misclassification). In general, UPSIT itself accounts for roughly half of the 
decision making process in our model, and in some instances, is a blessing and a curse with 
regard to model performance. 
 
Genes and variants affecting the model’s performance shown in Figure 4 may have some 
impact on PD biology. Many of the top features we nominated that are shown in Figure 4 are 
transcriptomic in nature; this enrichment of transcriptomic data in the top of the feature 
importance plots may be due to the PRS accounting for a substantial part of the strongest 
purely genetic aspects of PD risk. Some interesting biologically plausible connections can be 
drawn from these highly ranked features. For example, the most impactful feature from the 
transcriptomics data, the expression of gene HS3ST3A1, has been implicated in α-Synuclein 
aggregation in PD cellular models, as well as having been recently part of a novel GWAS 
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finding associated with white matter hyperintensity burden in elderly populations (along with 
some aspects of cognitive decline) 10,11. Another top ranking transcriptomic feature, OTOL1, has 
been suggested before as a putative genetic modifier of familial PD age at onset 12. CHFR has 
been associated in previous studies with rotenone related PD risk 13. CASP7 is potentially 
biologically interesting due to its expression being implicated in apoptosis and neuroprotection 
as well as rare missense mutations in the gene being associated with late onset familial 
Alzheimer’s 14,15. The genetic variant, rs4238361 is a potential PD risk modifying variant whose 
nearest coding gene is VPS13C, a gene  that harbors both rare and common PD variants of 
interest 16,17. The gene PHF14 has been suggested to be downregulated in neurodegenerative 
diseases, this potential effect mirrors that suggested in Figure 4 18. Recent single-cell 
sequencing work has provided evidence for a connection between SQLE and dopamine stress 
responses in neurons relating to PD risk 19. Additionally, MMP9 overexpression has been 
suggested to be associated with neuronal cell death in neurodegeneration 20. 
 
Another strength of this work is that feature selection from model building easily segues into 
network community analyses to build relatively low bias networks, compared to those with 
potential bias taken from literature and text mining 21,22. Here we can push therapeutic and 
biomarker research by identifying communities of connected genes in the blood transcriptome of 
PD patients. Nodes in these networks suggest shared effects in genetically targeted drugs, 
informing development cycles and benefitting developers as drugs connected to genetic or 
genomic data often have a higher level of success in trials compared to those without similar 
evidence 23,24.  
 
Modeling exercises like these not only have the potential to build useful classifiers, they may 
also identify drug targets. This can happen at the feature selection, and network build phases. In 
our network community build based on case-only expression data, only two quantitative trait loci 
in blood from Mendelian randomization in the previously published PD GWAS were included. 
These two genes are ZBTB4 and FCF1.  What may be more interesting is the enriched drug 
targets within the nominated genes from our analyses of the transcriptomic data. This result is 
not truly surprising as our network communities are based on genes highly correlated in cases 
only, and aimed to build clusters of genes connected by similar expression patterns among 
cases. More interestingly are the findings from the network communities recognizing the 
overrepresentation of genes targeted by known drugs. For instance, in this study, we uncovered 
an interaction between gamma hydroxybutyric acid and SLC16A7, SLC16A3, and GABBR1 
genes. The SLC16A7 and SLC16A3 genes are a part of a family of drug transporter genes 
known as monocarboxylate transporters25. Drug transporters have a role in almost every part of 
the therapeutic process, from absorption, distribution, and elimination of drug molecules. The 
GABBR1 gene encodes a receptor for gamma-aminobutyric acid (GABA) expressed throughout 
the brain; defects in this gene underlie several neurobehavioral diseases25,26. Gamma 
hydroxybutyric acid acts as an agonist, activativating GABA-B receptors to exert its sedative 
effects. Identification of drug metabolism and receptor gene/drug interactions may lead to and 
drug discovery, thereby helping us optimize drug therapy.  
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Our main weakness in this research is the lack of diversity in available sample series. Current 
research suggests that genetic predictive models have mixed results when being applied across 
genetic ancestry groups27. With subsequent iterations of this work being facilitated by the Global 
Parkinson’s Genetics Program (GP2) program over the next five years28,29, we hope to expand 
this modeling effort into a diverse set of genetic ancestry groups and generally in larger sample 
series. We also acknowledge that no optimal dataset to validate the findings from PPMI exists 
because of the inherent study design of PPMI focusing on unmedicated recently diagnosed PD 
cases. Clearly, the ongoing extension of the PPMI study will facilitate further work. 
 
Overall, we believe this work represents a significant conceptual and scientific advance past 
previous efforts. This classifier has improved performance, is more broadly applicable, and is 
highly reproducible. Further, the transparency of this approach and the contributions of data 
types move the field away from black-box predictors of disease. A further strength of this work is 
the use of open-source automated ML software thoughtfully designed for scientists and 
scientific data, developing models and validating them on public controlled-access datasets, 
visualizing the top contributing features, and providing all the code and software publicly.  
 
This work has helped to push past the previous paradigm of focusing on a single biomarker or 
class of biomarker in biomedical research to maximize data value for clinical and computational 
scientists by leveraging ML algorithms that explore complex relationships between features. We 
have provided a model(s) to improve risk prediction in PD to help with interventional and 
prospective studies as well as healthcare resource prioritization. We have also integrated 
additional analyses and data resources that may aid in developing and/or refining future 
interventions. 
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Online repository of code and models for transfer learning  

Online Repository 
The link to the GitHub repository (https://github.com/GenoML/GenoML_multimodal_PD/ ) 
includes the following:  

● Figures referenced in the manuscript 
● Code used for manuscript  
● Tables referenced in the manuscript 
● Additional supplementary figures and tables  
● Links and references to the main software used (GenoML) 
● Trained and tuned models and their associated performance metrics for each model 

referenced in the manuscript for the community to be able to deploy and use  
● An example of how to run these trained and tuned models for transfer learning  
● Link to the interactive web application for the community to investigate further  

 

Network Communities 
The network community code can be found on the  Online Repository here . Annotated 
community members plus additional sparse annotations from Nalls et al. 2019 can be found 
here . Page ranks and similar annotations for genes comprising the network communities can be 
found here .  

Online Methods  

Study design and participants 
Clinical, demographic plus genome-wide DNA and RNA sequencing data were taken at 
baseline visits from the Parkinson’s Progression Marker Initiative (PPMI) and the Parkinson’s 
Disease Biomarkers Program (PDBP) in cases with PD and controls unaffected by neurologic 
diseases. Since our model is retrospective, we aimed only to analyze refined Parkinson’s 
disease diagnosis, by excluding any samples with conflicting diagnostic data within a decade of 
post-enrollment follow-up. We excluded any case whose medical history included an additional 
neurological disease diagnosis or retraction of their PD diagnosis during follow-up. We also 
excluded controls developing PD or another neurodegenerative disease(s) after enrollment. 
Additionally, a subset of Parkinson’s disease cases and controls from the PPMI study were 
excluded as they came from a targeted study recruitment design purposely enriching for known 
genetic risk mutation carriers (LRRK2 and GBA mutation carrier focused recruitment).  
 
Participants with required clinical, demographic and genomic (DNA and RNA sequencing) data 
were identified for inclusion, with excessive missing data (> 15% per feature) as exclusion 
criteria. Each contributing study abided by the ethics guidelines set out by their institutional 
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review boards, and all participants gave informed consent for inclusion in both their initial 
cohorts and subsequent studies.  
 
Clinical and demographic data ascertained as part of this project included age at diagnosis for 
cases and age at baseline visit for controls. Family history (self-reporting if a first or 
second-degree relative has a Parkinson’s disease diagnosis) was also a known 
clinico-demographic feature of interest. Ashkenazi Jewish status was inferred using principal 
component analysis comparing those samples to a genetic reference series 1. Sex was clinically 
ascertained but also confirmed using X chromosome heterozygosity rates. The University of 
Pennsylvania Smell Inventory Test (UPSIT) was used in modeling 2. For a summary of basic 
clinical and demographic features, please refer to Table 1. 
 
 

Table 1: Descriptive statistics of studies included from AMP PD. 
 

 
 
DNA sequencing data were generated using Illumina’s standard short-read technology, and the 
functional equivalence pipeline during alignment was the Broad Institute’s implementation 3. 
Jointly genotyped sequencing data using the standard GATK pipeline from AMP-PD was used. 
This process is described in detail, from sample prep to variant calling, in a separate manuscript 
detailing the AMP PD whole-genome DNA sequencing effort [under review] 4. 
 
Quality control for these samples based on genetic data output by the pipeline included the 
following inclusion criteria: concordance between genetic and clinically ascertained genders, call 
rate > 95% at both the sample and variant levels, heterozygosity rate < 15%, freemix estimated 
contamination rate < 3%, transition:transversion ratio > 2, unrelated to any other sample at a 
level of the first cousin or closer (identity by descent < 12.5%) and genetically ascertained 
European ancestry. For inclusion of whole-genome DNA sequencing data, the variants must 
have passed basic quality control as part of the initial sequencing effort (PASS flag from the 
joint genotyping pipeline) as well as meeting the following criteria: non-palindromic alleles, 
missingness by case-control status P > 1E-4, missingness by haplotype P > 1E-4, 
Hardy-Weinberg p-value > 1E-4, minor allele frequency in cases > 5% (in the latest Parkinson’s 
disease meta-GWAS) 5. As an a priori genetic feature to be included in our modeling efforts, we 

3 

Study Status 

Age at 
baseline 
mean (SD) 

UPSIT score 
mean (SD) 

Male 
(%) 

Positive 
family 
history of PD 
(%) 

Inferred 
Ashkenazi 
ancestry (%) 

PPMI Case 61.75 (9.69) 23.48 (8.35) 65.57 25.53 6.09 

 Control 60.61 (10.43) 34.18 (4.71) 63.74 5.85 11.11 

PDBP Case 64.59 (8.99) 19.65 (8.01) 64.18 24.88 3.61 

 Control 62.87 (10.96) 32.52 (5.98) 45.25 8.14 4.07 
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also used the basic polygenic risk score from the latest Parkinson’s disease meta-GWAS 
(genome-wide significant loci only) that did not include our testing or training samples as 
weights 5.  
 
RNA sequencing data from whole blood on the same samples was generated by the 
Translational Genomics Research Institute team using standard protocols for the Illumina 
NovaSeq technology 6. For this study, we focused on blood withdrawn at baseline. Variance 
stabilized counts were adjusted for experimental covariates using standard limma pipelines7. 
Gene expression counts for protein-coding genes were extracted, then differential expression 
p-values were calculated between cases and controls using logistic regression adjusted for 
additional covariates of sex, plate, age, ten principal components, and percentage usable 
bases.  
 
This project is carried out entirely within an open science framework, and the code and data 
underlying the summary above can be found in linked notebooks and datasets described in the 
Online Repository . 

Data munging 
As part of the initial data munging, principal components summarizing genetic variation in DNA 
and RNA sequencing data modalities are generated separately. For the DNA sequencing, ten 
principal components were calculated based on a random set of 10,000 variants sampled after 
linkage disequilibrium pruning that kept only variants with r2 < 0.1 with any other variants in +/- 
1MB. As a note, these variants were not p-value filtered based on recent GWAS, but they do 
exclude regions containing large tracts of linkage disequilibrium8. For RNA sequencing data, all 
protein-coding genes’ read counts per sample were used to generate a second set of 10 
principal components. All potential features representing genetic variants (in the form of minor 
allele dosages) from sequencing were then adjusted for the DNA sequence-derived principal 
components using linear regression, extracting the residual variance. The same was done for 
RNA sequencing data using RNA sequencing derived principal components. This way, we 
statistically account for latent population substructure and experimental covariates at the feature 
level to increase generalizability across heterogeneous datasets. In its simplest terms, all 
transcriptomic data were corrected for possible confounders, and the same is done for genotype 
dosages. After adjustment, all continuous features were then Z transformed to have a mean of 0 
and a standard deviation of 1 to keep all features on the same numeric scale when possible. 
Once feature adjustment and normalization were complete, internal feature selection was 
carried out in the PPMI training dataset using extra decision trees to identify features 
contributing information content to the model while reducing the potential for overfitting 9,10. 

Feature and model selection 
After the data munging process (quality control, feature selection, adjustment, and scaling) 
described above, data from PPMI was randomly split into 70% training and 30% testing. 
Training of the algorithms was performed on the training set, and validation of the algorithms 
was performed on the testing set. A total of 12 well-performing ML algorithms were competed to 
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identify which algorithm could maximize AUC across the two classes (cases and controls). 
These algorithms were chosen due to their success in other domains, execution in Python’s 
scikit-learn package, and their ability to export probability-based predictions, allowing the 
training, testing, and interpretation of the model more straightforward. The algorithms included 
are: logistic regression (LogisticRegression), random forests (RandomForestClassifier), 
adaptive boosting (AdaBoostClassifier), gradient boosting (GradientBoostingClassifier), 
stochastic gradient descent (SGDClassifier), support vector machines (SVC), multi-layer 
perceptron neural networks (MLPClassifier), k-nearest neighbors (KNeighborsClassifier), linear 
discriminant analysis (LinearDiscriminantAnalysis), quadratic discriminant analysis 
(QuadraticDiscriminantAnalysis), bagging (BaggingClassifier) and extreme gradient boosting 
(XGBClassifier). The algorithm with the highest AUC and balanced accuracy in the withheld 
30% of PPMI was selected for tuning and cross-validation. Tuning is the process in which 
multiple algorithm hyperparameters, such as learning rate, are tested to optimize performance. 
The best hyperparameters were chosen through cross-validation, a technique that estimates 
model performance on unseen data by training and testing the model on different splits of the 
dataset. The top competing algorithm was then selected to undergo a computationally intensive 
hyperparameter tuning phase in the entire PPMI dataset, no longer split into training and testing 
once, instead, undergoing cross-validation each time parameters were iterated. In this analysis, 
the top-performing algorithm (AdaBoostClassifier) was tuned for several potential predictors 
(estimators) between 1 and 1000 for 25 random iterations at 5-fold cross-validation per iteration.  
 
This process detailed in the paragraphs above was carried out 49 times, at varying thresholds of 
p-values based feature inclusion thresholds. We iterated across all possible combinations of 
p-value thresholds [1E-2, 1E-3, 1E-4, 1E-5, 1E-6, 1E-7, 1E-8] for genetic data from the most 
recent published GWAS and for transcriptomic data from our differential expression work also 
described above 5. Once the pipeline above was run for all 49 threshold combinations, we picked 
the p-value thresholds and algorithm that performed best in the training dataset for tung at 
cross-validation and external validation in PDBP to evaluate its generalizability and performance 
(all 49 models are available in the Online Repository). Prior to starting the modeling process, 
we specified that this manuscript would focus on the model trained in PPMI that presented the 
highest mean AUC, accuracy, and balanced accuracy in withheld samples before moving on to 
validation in a de novo dataset. We acknowledge that incorporating p-values as a pre-filtering 
step in the feature selection phase may cause data leakage to some degree. The PPMI training 
set is only a minuscule portion of the most recent GWAS study (less than 0.1% of the sample 
size); additionally, the algorithmic feature selection described above is generally much more 
conservative and excluded the majority of features reaching the p-value thresholds of interest. 
In this report, we only focused on a model with a 1E-5 maximum p-value for genetic data 
inclusion and a 1E-2 maximum P for transcriptomic data inclusion; however, all potential models 
were exported and saved for public use in transfer learning for similar datasets for the scientific 
community (Online Repository ).  

Post-hoc optimization for class imbalance 
After training, we refit the model to the withheld samples using an optimized threshold for case 
probability based on Youden’s J calculation to better account for case-control imbalance and 
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subsequently increase balanced accuracy and related metrics11. This post-hoc optimization was 
done again after fitting the tuned model to the external validation cohort. 

Network communities 
After building the ML classifiers, we turned our attention to potentially novel PD gene networks 
that may be hidden within the classifier’s selected features. First, we extracted all identified RNA 
feature counts for this subset of genes. Next, we subsetted to cases only and calculated the 
correlation between gene-level transcriptomic data for the nominated genes to build a graph 
space (minimum correlation coefficient (r), the threshold of 0.8 for connections between gene 
nodes). Then the Leiden algorithm was implemented to cluster the genes within the larger 
network into related communities; finally, we calculated a modularity score to evaluate the 
quality of our network clusters 12. 
 
Looking for potential therapeutic connections across the communities within our defined 
networks, we utilized webGestaltR; we used its over-representation analysis function to explore 
druggable target enrichments for network genes within the two available drug databases hosted 
on the website (DrugBank and GLAD4U) 13,14,15. These queries were made under default 
settings. First, we queried the 300 genes comprising our network communities against a 
background of all 598 genes nominated at the initial feature selection phase in the 
transcriptomics data. This estimates how genes comprising our network communities, which are 
highly correlated in cases, might be enriched compared to genes potentially related to 
case:control differences. We also looked for enrichments similarly comparing all 598 potential 
genes delineating cases and controls to > 18,000 protein-coding genes. This was then repeated 
for our 300 network community genes, investigating over-representation of druggable targets 
against all protein-coding genes. Our primary goal with this analysis was to see if any 
drug-related annotations were enriched in our network communities based on correlated gene 
expression between cases compared to other protein-coding genes that were selected as 
potential case:control classifying features. This database was accessed on February 23rd, 
2021.  
 

ML metrics and model interpretation  
Our prioritized metric for evaluating model performance was the area under the curve, AUC. 
The AUC metric is an aggregate metric summarizing the performance of a classifier across all 
potential probability thresholds for delineating cases:controls (the labels used in this study) and 
is less affected by class imbalance than other common metrics. In general, an AUC of greater 
than 80% may be considered qualitatively to be a robust and “very good to excellent” 
diagnostic16. For other metrics such as sensitivity and true positive rate (these relate to the 
proportion of true positive cases identified) or specificity and true negative rate (these relate to 
the proportion of true controls identified), their values are easily altered by a change to the 
probability threshold used to split cases and controls. For example, after the model outputs a 
probability estimate of a sample being a case, a researcher has the option to use the default 
probability threshold of 50% for binary classification, or use several methods to optimize this 

6 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 7, 2021. ; https://doi.org/10.1101/2021.03.05.434104doi: bioRxiv preprint 

https://paperpile.com/c/vusGCg/MqxUg
https://paperpile.com/c/vusGCg/5fhu5
https://paperpile.com/c/vusGCg/DECp8
https://paperpile.com/c/vusGCg/2TSeU+fMXvA
https://paperpile.com/c/vusGCg/Fb5Qr
https://doi.org/10.1101/2021.03.05.434104


threshold for better performance. As part of our automated ML workflow, we output performance 
metrics at default, followed by optimized probability thresholds (using Youden’s J). We 
prioritized secondary performance metrics of interest in addition to AUC; these were accuracy 
and balanced accuracy, the former being the rate of correct predictions, the latter being the 
mean accuracy weighted across cases, and controls samples used for dealing with imbalanced 
datasets 17. 
 
The Shapley additive explanations (SHAP) approach was used to evaluate each feature’s 
influence in the ML model. This approach, used in game theory, assigns an importance 
(Shapley) value to each feature to determine a player’s contribution to success 18.  In this 
analysis, the concept of “success” has been replaced by case status. Shapley explanations 
enhance understanding by creating accurate explanations for each observation in a dataset. 
The SHAP package was used to calculate and visualize these Shapley values seen in the 
figures in the manuscript and the interactive website 19,20. A surrogate xgboost model was 
trained in 70% of the data, and later tested in the 30% of withheld data to evaluate the model’s 
contributing features. The interactive website 
(https://share.streamlit.io/anant-dadu/shapleypdpredictiongenetics/main) was developed as an 
open-access and cloud-based platform for researchers to investigate the top features of the 
model developed in this study and how these may influence the classification (or in some cases, 
misclassification) of a particular sample. In its simplest description, the Shapley values are 
similar to standard regression derived relative importance measures with regard to 
interpretation, and all the Shapley values sum to a total value of 1. 
 

Details on data from the Accelerating Medicines Partnership - 
Parkinson’s Disease (AMP-PD) and the Global Parkinson’s 
Genetic Project (GP2) 
The summaries below are from AMP PD’s website on the different studies used in this 
manuscript. 

Cohort Summaries - PPMI  

Study Overview for PPMI  

The Parkinson’s Progression Markers Initiative (PPMI) is a study sponsored by the Michael J. 
Fox Foundation. It is a longitudinal, observational study where participants can contribute 
clinical, demographic, and imaging data alongside biological samples used for whole-genome 
sequencing, whole blood RNA sequencing, and other assays at 33 clinical sites globally. PPMI 
follows participants for anywhere from five to 13 years. For this manuscript, we have only 
focused on data collected at baseline. This data is now hosted as part of AMP PD’s version 1 
release. For more information on the PPMI study, please visit this link 
(https://amp-pd.org/unified-cohorts/ppmi#study-overview). 
 

7 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 7, 2021. ; https://doi.org/10.1101/2021.03.05.434104doi: bioRxiv preprint 

https://paperpile.com/c/vusGCg/lFMan
https://paperpile.com/c/vusGCg/TM6HI
https://paperpile.com/c/vusGCg/RYiwt+Tml4B
https://share.streamlit.io/anant-dadu/shapleypdpredictiongenetics/main
https://amp-pd.org/unified-cohorts/ppmi#study-overview
https://amp-pd.org/unified-cohorts/ppmi#study-overview
https://doi.org/10.1101/2021.03.05.434104


Study Inclusion Criteria for PPMI - PD Cases  

1. Patients must have at least two of the following: resting tremor, bradykinesia, rigidity 
(must have either resting tremor or bradykinesia); OR either asymmetric resting tremor 
or asymmetric bradykinesia 

2. A diagnosis of Parkinson disease for 2 years or less at Screening 
3. Hoehn and Yahr stage I or II at Baseline 
4. Confirmation from imaging core that screening dopamine transporter SPECT scan is 

consistent with dopamine transporter deficit (or for sites where DaTSCANTM is not 
available, that VMAT-2 PET scan is consistent with VMAT deficit) 

5. Not expected to require PD medication within at least 6 months from Baseline. Male or 
female age 30 years or older at time of PD diagnosis 

Study Exclusion Criteria for PPMI - PD Cases 
 

1. Currently taking levodopa, dopamine agonists, MAO-B inhibitors, amantadine, or other 
PD medication 

2. Has taken levodopa, dopamine agonists, MAO-B inhibitors, or amantadine within 60 
days of Baseline 

3. Has taken levodopa or dopamine agonists prior to Baseline for more than a total of 60 
days 

4. Received any of the following drugs that might interfere with dopamine transporter 
SPECT imaging: Neuroleptics, metoclopramide, alpha methyldopa, methylphenidate, 
reserpine, or amphetamine derivative, within 6 months of Screening 

5. Current treatment with anticoagulants (e.g., coumadin, heparin) that might preclude safe 
completion of the lumbar puncture 

6. Condition that precludes the safe performance of routine lumbar puncture, such as 
prohibitive lumbar spinal disease, bleeding diathesis, or clinically significant 
coagulopathy or thrombocytopenia 

7. Use of investigational drugs or devices within 60 days prior to Baseline (dietary 
supplements taken outside of a clinical trial are not exclusionary, e.g., coenzyme Q10) 

 

Study Inclusion Criteria for PPMI - Healthy Controls  
Healthy controls for the PPMI study included males or females 30 years or older at Screening 

 

Study Exclusion Criteria for PPMI - Healthy Controls  

1. Current or active clinically significant neurological disorder (in the opinion of the 
Investigator).  

2. First degree relative with idiopathic PD (parent, sibling, child) 
3. MoCA score < 26 
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4. Received any of the following drugs that might interfere with dopamine transporter 
SPECT imaging: Neuroleptics, metoclopramide, alpha methyldopa, methylphenidate, 
reserpine, or amphetamine derivative, within 6 months of Screening 

5. Current treatment with anticoagulants (e.g. coumadin, heparin) that might preclude safe 
completion of the lumbar puncture 

6. Condition that precludes the safe performance of routine lumbar puncture, such as 
prohibitive lumbar spinal disease, bleeding diathesis, or clinically significant 
coagulopathy or thrombocytopenia 

7. Use of investigational drugs or devices within 60 days prior to baseline (dietary 
supplements taken outside of a clinical trial are not exclusionary, e.g., coenzyme Q10) 

Cohort Summaries - PDBP 

Study Overview for PDBP 

The Parkinson's Disease Biomarkers Program (PDBP) is a study sponsored by the National 
Institute of Neurological Disorders and Stroke (NINDS). It is a longitudinal, observational study 
where participants can contribute clinical, demographic, and imaging data alongside biological 
samples used for whole-genome sequencing, whole blood RNA sequencing, and other assays. 
The goal of this study is to accelerate the discovery of promising new diagnostic and 
progression biomarkers for Parkinson's Disease. This data is now hosted as part of AMP PD’s 
version 1 release. For more information on the PDBP study, please visit this link 
(https://amp-pd.org/unified-cohorts/pdbp#study-overview). 

Study Inclusion Criteria for PDBP - PD Cases  

1. Clinically diagnosed with Parkinson's Disease 
2. Male or Female aged 21 years or older at screening 
3. Able to cooperate with consent procedures (or has appropriate surrogate as defined and 

approved per local IRB) 
4. Able to participate in study activities including all required clinical assessments and 

biological donations 
5. Participation would not lead to hardship or adverse health or mental health conditions 

Study Exclusion Criteria for PDBP - PD Cases 
1. Clinical Diagnosis uncertain at the time of enrollment 
2. Condition that preclude the safe performance of routine lumbar puncture, such as 

prohibitive lumbar spinal disease, bleeding diathesis, or coagulopathy or 
thrombocytopenia 

3. Current treatment with anti-coagulants (e.g., Coumadin, heparin) that might preclude 
safe completion of the lumbar puncture 

4. Has a history of neuroleptic use or exposure 
5. Has a history of schizophrenia 
6. Otherwise unable to participate in biological specimen collection due to a medical 

condition or medication status (other than items listed above) 
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7. Otherwise unable to participate in clinical assessments due to a medical condition or 
medication status (other than items listed above) 

8. Unable to participate in consent procedures 
9. Use of investigational drugs or devices within 60 days prior to baseline visit (dietary 

supplements such as Coenzyme Q10, for example, are not exclusionary) 

 

Study Inclusion Criteria for PDBP - Healthy Controls  

1. Male or Female aged 21 years or older at screening 
2. Able to cooperate with consent procedures (or has appropriate surrogate as defined and 

approved per local IRB) 
3. Able to participate in study activities including all required clinical assessments and 

biological donations 
4. Participation would not lead to hardship or adverse health or mental health conditions 

Study Exclusion Criteria for PDBP - Healthy Controls  

1. Has a current or clinically significant neurological disorder in the opinion of the 
investigator 

2. Family history of Neurodegenerative disease in a first degree relative or second degree 
blood relative 

3. Condition that preclude the safe performance of routine lumbar puncture, such as 
prohibitive lumbar spinal disease, bleeding diathesis, or coagulopathy or 
thrombocytopenia 

4. Current treatment with anti-coagulants (e.g., Coumadin, heparin) that might preclude 
safe completion of the lumbar puncture 

5. Has a history of neuroleptic use or exposure 
6. Has a history of schizophrenia 
7. Otherwise unable to participate in biological specimen collection due to a medical 

condition or medication status (other than items listed above) 
8. Otherwise unable to participate in clinical assessments due to a medical condition or 

medication status (other than items listed above) 
9. Unable to participate in consent procedures 
10. Use of investigational drugs or devices within 60 days prior to baseline visit (dietary 

supplements such as Coenzyme Q10, for example, are not exclusionary) 
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Age distribution per cohort 

 

Supplemental Figure 1: Age distributions of cohorts, broken down by cases and controls 
| Blue indicates male, while purple indicates female. Panels A, B, and C show the age 
distribution of males and females in the full PPMI cohort, cases in PPMI, and controls in PPMI, 
respectively. Panels D, E, and F show the age distribution of males and females in the full 
PDBP cohort, cases in PDBP, and controls in PDBP, respectively.  
 

Network Graphical Summary of Nominated Genes  
We identified 13 network communities consisting of 300 genes with an Erdos-Renyi modularity 
score of 0.794 (a modularity score closer to 1 indicates better model fit). 
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Supplemental Figure 2:  Network plot of nominated genes  | Panel A provides a macro-level 
view of the distance between communities (color-coded). Panel B is a micro-level view of 
connectivity within and between network community modules. The colors of communities in 
Panel A correspond to those in panel B.  
 
 

Misclassified cases by the best performing model  
Encrypted ID of Misclassified Case: 756ac1345d7068cdc60c8b2583a80092 
 
Decision plots work on visualizing the path a model takes before arriving at a classification.  A 
decision plot shows that a sample that was clinically diagnosed to be a PD case, we see that 
most of the features seemed to indicate that the individual was about to be classified as a PD 
case by the model, but ultimately an unexpectedly high UPSIT score misclassified the individual 
as healthy control. 
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Supplemental Figure 3: Misclassified case as a healthy control using the best model  
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