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Abstract 

Summary: ATAC-seq is a frequently used assay to study chromatin accessibility levels. Differential chromatin 
accessibility analyses between biological groups and functional interpretation of these differential regions are es-
sential in ATAC-seq data analyses. Although distinct methods and analyses pipelines are developed for this pur-
pose, a stand-alone R package that combines state-of-the art differential and functional enrichment analyses pipe-
lines is missing. To fill this gap, we developed cinaR (Chromatin Analyses in R), which is a single wrapper func-
tion and provides users with various data analyses and visualization options, including functional enrichment anal-
yses with gene sets curated from multiple sources.  

Availability and implementation: cinaR is an R/CRAN package which is under GPL-3 License and its source 
code is freely accessible at https://CRAN.R-project.org/package=cinaR. 
Gene sets are available at  https://CRAN.R-project.org/package=cinaRgenesets. 
Bone marrow ATAC-seq data is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165120 
Contact: onur.karakaslar@jax.org or duygu.ucar@jax.org   

 

1 Introduction  
Assay for transposase accessible chromatin with high-throughput 

sequencing (ATAC-seq) is a technology for probing the chromatin-
accessibility levels from small cell numbers (Buenrostro et al., 2013). 

Briefly, Tn5 transposase cuts the open chromatin regions (OCRs); these 
fragments are sequenced using high-throughput sequencing and then 
aligned to the genome to uncover ATAC-seq peaks mapping to OCRs 
(Tsompana and Buck., 2014). ATAC-seq is highly adopted by the scien-
tific community including its application to study single cell epigenomes 
(Chung et al. 2019, Zhang et al., 2021, Satpathy et al. 2019). 

ATAC-seq data analyses guidelines have been developed in-
cluding by the ENCODE project (ATAC-seq Data Standards and Pro-
cessing Pipeline – ENCODE, 2020)  and others (Gaspar, 2020). Howev-

er, an easy-to-use R package for this purpose is missing. To fill this gap, 
we developed, cinaR, (Chromatin Analyses in R), which can conduct 
differential accessibility analyses, batch correction, and functional en-
richment of differential peak results. cinaR accomplishes these within a 
single wrapper function in order to provide an easy-to-use interface for 
users while maintaining high customizability via various options for data 
analyses and visualization. To complement functional enrichments in 

cinaR, we also implemented an additional CRAN/R package which 
contains gene sets that are carefully curated from different sources espe-
cially for the analyses of immune cells (https://github.com/eonurk/cinaR-

genesets). 

2 Materials and Methods 
Starting from a consensus peaks matrix, cinaR filters the peaks, anno-
tates them to their corresponding genes, conducts differential and func-
tional enrichment analyses with customizable options and then let users 
to visualize their findings (summarized in Figure 1A). 

2.1 Implementation Details 
2.1.1 Peak filtering and annotation to genes 

cinaR requires a consensus peak matrix and a vector that indicates 
the biological/clinical grouping of the ATAC-seq samples to be used in 
the differential analyses. First, ATAC-seq peaks are kept for down-
stream analyses if the count-per-million (CPM) normalized counts are 
above a certain threshold (>0.5) for more than k samples (default k=2). 
Then these selected peaks are annotated to the closest gene based on 
distance to Transcription Start Site (TSS)  using ChIPseeker (Yu et al, 
2015). The annotated peaks are further filtered with a threshold (default 
50Kb) of their absolute distance to transcription start sites (TSS). 
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2.1.2 Differential accessibility analyses  
To conduct differential accessibility analyses, a design matrix is 

built to conduct pairwise comparisons among all distinct biologi-
cal/clinical groups provided by the user. For n groups, ��2� comparisons 
are conducted. Users can select among four alternative methods for 
differential analyses: edgeR (Robinson et al, 2009), limma-voom and 
limma-trend (Richie et al, 2015) and DESeq2 (Love et al, 2014). edgeR 

is selected as the default option with FDR = 0.05. If the input consensus 
peak matrix is composed of raw counts (e.g., CPM), we suggest using 
either edgeR or DESeq2. If the library sizes are heterogenous limma-

voom is recommended. If the consensus peaks are already normalized, 

limma-trend should be used.  
To eliminate potential batch-effects, we implemented two alterna-

tive methods. If batch information is not provided by the user, surrogate 
variable analyses (SVA) is conducted to detect unknown batch effects 
(Leek and Storey, 2020). This option will calculate the number surrogate 
variables (SVs) automatically and add these to the design matrix. Users 
also have an option for using a certain number of SVs instead of all 
significant ones. On the other hand, if the batches are known, the batch 
information is included in the design matrix of the linear model and used 

as a covariate in the differential analyses.  
 

2.1.3 Functional enrichment analyses 
For functional enrichment analyses, cinaR provides two options: 

hypergeometric p-value (HPEA) and gene set enrichment analyses 
(GSEA) (Subramanian et al., 2005). If HPEA is selected, the differential 
peaks are split based on the direction of changes (opening versus closing 
peaks) and enrichment p-values are calculated for each group separately. 
If GSEA is selected, annotated peaks are sorted with respect to their fold 

change. If a gene is associated with multiple peaks, the one that is closest 
to the gene TSS is used in these analyses.  For both methods, the enrich-
ment p-values are corrected using Benjamini-Hochberg procedure 
(Hochberg and Benjamini, 1990) and adjusted p-values are reported. The 

users can also retrieve the hits for enriched gene sets for further analyses 

and interpretation of the data. cinaR supports two human (hg19 and 
hg38) and one mouse genome (mm10) versions. The default option is 

hg38, yet if not set by the user, it will throw a warning to avoid genome 
mismatching. 

 
2.2 Gene sets curated for cinaR 

Functional enrichment of differential peaks is an important yet 
daunting task. We have curated several gene sets from multiple sources 
throughout years for this purpose, which are provided within another 
CRAN/R package that we use as part of the cinaR pipeline 
(https://CRAN.R-project.org/package=cinaR).  This includes six differ-

ent gene sets that are particularly effective for the study of immune cells: 
immune modules, PBMC-scRNAseq, wikipathways, wikipathway-
inflammation, activated-immune gene sets, and gene sets from the DICE 
project (dice-major). Immune modules are a total of 28 gene sets that are 
compiled from gene expression profiles of human peripheral blood mon-
onuclear cells (PBMCs) samples including from healthy and diseased 
samples (Chaussabel et al., 2008). PBMC-scRNAseq consists of 15 
modules, where each gene set represents cell type specific genes for 
immune cell subsets within PBMCs, that are inferred from single cell 

RNA-seq PBMC data (Márquez et al., 2020; Nehar-Belaid et al., 2020). 
WikiPathways are 671 biologically meaningful pathways which are 
created by a community-based collaborative effort. In addition to all 
WikiPathways, we also curated a subset of these (n=50) that are inflam-
mation and immune system related and labeled them as Wikipathways-
inflammation (Pico et al., 2008). Lastly, we curated 6 modules from the 
dice database which includes the transcriptional signatures of different 
immune cell types (Schmiedel et al., 2018). This additional package is 
also freely accessible under GPL-3 license at https://cran.r-

project.org/package=cinaRgenesets. In addition, users can also incorpo-
rate their own gene sets into the cinaR pipeline by using .gmt format, 
which provides extra flexibility for functional enrichment analyses. 

 

Figure 1  (A) Overall workflow schematic of the cinaR pipeline. (B) PCA plot clearly separates 3 months (blue) and 18 months (red) NZO mice samples using filtered and normalized 
peaks (n=34116). (C) Heatmap of Differentially Accessible (DA) peaks at FDR=0.05. In total there are 6653 peaks (2956 opening, 3697 closing with age). (D) Functional enrichment 
analyses of DA peaks using HPEA and GSEA options. It yielded similar results most notably regarding the up-regulation of pro-inflammatory pathways such as Myeloid lineage 1,2 and 
NfKB activation. 
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3 Results 
To benchmark cinaR, we generated ATAC-seq data from bone-marrow 
(GEO accession GSE165120) in short-lived NZO/HILtJ (NZO) mice 
strain at two age groups: 3-month-old (n=6, young) and 18-month-old 
(n=6, old) animals. These samples were analyzed using cinaR to identify 
age-related changes in the chromatin accessibility maps. Figure 1B 
shows the PCA plot for filtered and normalized peaks (n=34116), where 
samples are separated with respect to age (no batch effects are detected). 

Using default settings of cinaR, we identified 6653 differentially acces-
sible peaks between young and old animals (2956 opening, 3697 closing 
with age) at FDR 5%. Functional enrichment analyses of these peaks 
using HPEA and GSEA options with the immune modules revealed that 
as expected pro-inflammatory modules are activated (myeloid lineage, 
NFkB) with age (Figure 1C).  
 
4 Discussion 

ATAC-seq is a widely used technology to study open chomatin re-

gions in the genome. Although there are distinct pipelines for differential 
and functional enrichment analyses of ATAC-seq data, a pipeline which 
combines the state-of-art methodologies is still missing. Here, we pre-
sented cinaR, a CRAN/R package that provides users with flexibility to 
run both analyses with their methods of choice. In addition to that it has 
options to correct for batch effects as well as covariates, and it also in-
cludes highly customizable functions for visualizations. We also imple-
mented another CRAN/R package (cinaR-genesets) along with the origi-
nal one where we shared immune-related gene sets that we have curated 

from different resources. 
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