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SUMMARY 

We performed a proteogenomic analysis of hepatocellular carcinomas (HCCs) across clinical 

stages and etiologies. We identified pathways differentially regulated on the genomic, 

transcriptomic, proteomic and phosphoproteomic levels. These pathways are involved in the 

organization of cellular components, cell cycle control, signaling pathways, transcriptional and 

translational control and metabolism. Analyses of CNA-mRNA and mRNA-protein correlations 

identified candidate driver genes involved in epithelial-to-mesenchymal transition, the Wnt-β-

catenin pathway, transcriptional control, cholesterol biosynthesis and sphingolipid metabolism. 

The activity of targetable kinases aurora kinase A and CDKs was upregulated. We found that 

CTNNB1 mutations are associated with altered phosphorylation of proteins involved in actin 

filament organization, whereas TP53 mutations are associated with elevated CDK1/2/5 activity 

and altered phosphorylation of proteins involved in lipid and mRNA metabolism. Integrative 

clustering identified HCC subgroups with distinct regulation of biological processes, metabolic 

reprogramming and kinase activation. Our analysis provides insights into the molecular processes 

underlying HCCs. 

 

KEYWORDS: Hepatocellular carcinoma, proteogenomics; proteomics, phosphoproteomics, 

CTNNB1, TP53, molecular subtypes, mass spectrometry 

 

INTRODUCTION 

Liver cancer was the sixth most commonly diagnosed cancer with 841,000 cases and the fourth 

leading cause of cancer death with 782,000 deaths globally in 2018 (Arnold et al., 2020). 

Hepatocellular carcinoma (HCC) accounts for 75%-85% of all primary liver malignancies and has 

rising incidence and mortality in western countries (Arnold et al., 2020). The past decade has 

seen numerous studies characterizing the genomic and transcriptomic features and diversity of 

HCC. Genomic analyses have revealed that TERT promoter, CTNNB1 (encoding β-catenin) and 
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TP53 (encoding p53) are frequently mutated in HCC, while genes involved in other critical 

processes, such as oxidative stress response, chromatin remodeling and hepatocyte 

differentiation, are recurrently mutated but in <10% of HCC (Cancer Genome Atlas Research 

Network, 2017; Fujimoto et al., 2012, 2016). Transcriptomic subtyping has revealed between 2 

and 6 HCC subclasses that differ in the expression of genes related to proliferation, stemness, 

metabolism, hepatocyte differentiation and liver function (Bidkhori et al., 2018; Boyault et al., 

2007; Désert et al., 2017; Hoshida et al., 2009; Lee et al., 2004; Makowska et al., 2016).  

 

More recently, global proteome and phosphoproteome profiling has been made possible by mass 

spectrometry-based methods. Two proteogenomic studies of HCCs, both of hepatitis B virus 

(HBV)-associated HCCs, have been published (Gao et al., 2019; Jiang et al., 2019). In the first 

study, the proteome and phosphoproteome profiling of early-stage HBV-associated HCCs found 

that a subset of HCCs characterized by disrupted cholesterol homeostasis and overexpression of 

SOAT1 was associated with poor outcome (Jiang et al., 2019). Indeed, avasimibe, a SOAT1 

inhibitor, effectively reduced the size of tumors that overexpressed SOAT1 in patient-derived 

xenograft mouse models (Jiang et al., 2019). In the second study, integrated proteogenomic 

analysis of HBV-related HCC (Gao et al., 2019) revealed activation status of key signaling 

pathways and metabolic reprogramming in HBV-related HCC. In particular, the authors identified 

three proteome subclasses, namely metabolism, proliferation and microenvironment 

dysregulated subgroups, that were associated with clinical and molecular features such as patient 

survival, tumor thrombus and genetic profile. PYCR2 and ADH1A, both involved in metabolic 

reprogramming in HCC, were further identified as proteomic prognostic biomarkers. In contrast to 

the surgically resected HBV-associated HCCs profiled in the previous studies, here we performed 

an integrated proteogenomic analysis of HCC biopsies across diverse etiologies and clinical 

stages. 
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RESULTS 

Proteogenomic profiling of HCC 

We collected paired biopsies from 122 tumors and 115 non-tumoral tissues from 114 patients 

(Table 1 and Table S1). Six patients had 2 synchronous multicentric tumor biopsies with a single 

matched non-tumoral tissue included in the study. One patient had 3 multicentric tumor biopsies 

and two non-tumoral biopsies, obtained 7 years apart, included in the study (Figure S1). None of 

the patients had undergone systemic therapy for their disease. At the time of the study, 53% of 

the patients were early stage (BCLC 0/A) and 47% were advanced stage (BCLC B/C/D). 94% of 

the patients had at least one underlying liver disease, with alcohol liver disease (59%) and 

hepatitis C infection (26%) being the most common. Most biopsies were of intermediate grade 

(54% Edmondson grade 2 and 34% grade 3). Whole-exome sequencing and RNA-sequencing 

was performed for all 122 tumors and 115 non-tumoral biopsies (Table S1). A subset of 51 tumors 

from 49 patients were subjected to global proteome and phosphoproteome profiling using liquid 

chromatography-tandem MS analyses (Table 1 and Table S1). The proteome was measured in 

data-independent manner by selected window acquisition of theoretical mass (SWATH) (Gillet et 

al., 2012) adapted for HCC biopsies (Guri et al., 2017), which is an efficient method to acquire 

quantitative MS data of a large cohort in a relatively short time frame. The phosphoproteome was 

measured in data-dependent and label-free manner. Aside from a slight enrichment of HCV-

associated etiology (p=0.04), no other difference in terms of the clinicopathological parameters 

was observed in the 51 tumors subjected to proteome and phosphoproteome profiling compared 

to the 71 that were not (all p>0.05, Table 1) and no difference in terms of their mutational and 

transcriptomic landscape (Figure S2). As controls, we also performed RNA-sequencing, global 

proteome and phosphoproteome profiling on 15, 11 and 10 normal biopsies from 19 patients 

without HCC and with normal liver values, respectively (Table S1).  

 

Deregulated pathways in HCC 
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Principal component analyses showed that HCCs are distinct from and more variable than normal 

livers on the transcriptome, proteome and phosphoproteome levels, with the normal livers forming 

a tight cluster and the HCCs spread out (Figure 1A-C). Across all molecular levels, low-grade 

HCCs were more homogeneous than high-grade HCCs as measured by intra-group variability 

(Spearman rho between 0.26 and 0.37, all p<0.0001, Figure 1D). In accordance with the definition 

of histological (Edmondson) grading, we also found that low-grade HCCs were more similar to 

normal livers than high-grade HCCs (Spearman rho between 0.51 and 0.66, all p<0.0001, Figure 

1E).  

 

To identify pathways deregulated in HCC, we performed differential expression analyses of the 

transcriptome and proteome of HCCs compared to normal livers. Overall, we observed a 

moderate correlation between the deregulation of the transcriptome and the proteome (Spearman 

rho=0.33, p<0.0001, Figure 1F). We performed a quadrant analysis of transcriptome and 

proteome data to identify genes and proteins consistently up-/down-regulated, or regulated 

differently. We found that 37.7% (15.7% for adjusted p≤0.05) of genes were up-regulated on both 

levels, 20.9% (6.2%) were up-regulated on the mRNA level but down-regulated on the protein 

level, 16.6% (5.4%) were up-regulated in protein but down-regulated on the mRNA level, and 

24.8% (13.6%) were down-regulated in both. Pathway analysis of these four quadrants revealed 

that the genes that were up-regulated on both the mRNA and the protein levels were enriched in 

pathways related to mRNA splicing, epigenetic regulation of rRNA expression and translation 

(Figure 1F and Table S2). By contrast, genes that were consistently down-regulated were 

enriched in pathways related to metabolism of amino acids, fatty acids, xenobiotics and other 

metabolites. Among the genes up-regulated only on the mRNA level, pathways related to 

translational control, proteasome and oxidative phosphorylation were enriched. By contrast, 

pathways related to the complement and coagulation were enriched among genes upregulated 

only on the protein level. 
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Taken together, while we observed overall upregulation of pathways related to mRNA splicing 

and downregulation of pathways related to normal liver function, we also observed pathways 

related to translational control being upregulated on the mRNA level only, and pathways related 

to coagulation and the complement upregulated on the protein level only. 

 

CNA-mRNA-protein correlation analysis identifies candidate driver genes 

Next, we evaluated the correlation between copy number alteration (CNA), mRNA expression 

and protein expression. The median CNA-mRNA and mRNA-protein Spearman correlation 

coefficients were 0.201 and 0.282, respectively (Figure 2A-B). For the CNA-mRNA correlation, 

50.10% of the genes showed significant positive correlation, while for the mRNA-protein 

correlation, 45.08% of the genes showed significant positive correlation. Gene set enrichment 

analysis of CNA-mRNA and mRNA-protein expression correlation revealed 275 and 45 

overlapping Reactome pathways, with only one (protein localization) enriched in both 

comparisons. The pathways enriched among genes that showed high CNA-mRNA correlation 

include RNA transport, ubiquitination and proteasome degradation, transcriptional regulation by 

TP53, translation, cell cycle and DNA repair, cellular response to stress and asparagine N-linked 

glycosylation (Figure 2C and Table S3). By contrast, genes that showed high mRNA-protein 

expression correlation are enriched in pathways related to the metabolism of amino acids, 

glucose, fatty acids, xenobiotics and biological oxidations (Figure 2C and Table S3). 

 

Genome-wide copy number analysis identified 8 recurrently amplified peaks and 11 recurrently 

deleted peaks (Table S3), 5 of which were enriched among genes with high CNA-mRNA 

correlation but none was enriched among genes with high mRNA-protein correlation (Figure 2D 

and Table S3). While many of the genes in these recurrently amplified or deleted genomic regions 

showed high correlation between CNA and mRNA, many of them showed little-to-no mRNA-
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protein correlation (Figure 2D). One could hypothesize that candidate driver genes would be 

over-represented among cis-copy number-regulated genes (i.e. when the copy number variant 

impacts its own expression) that also show high mRNA-protein correlation. To identify such 

candidate driver genes within the recurrently altered regions, we focused on the 136 genes that 

showed high CNA-mRNA and mRNA-protein correlation (Spearman rho>0.5, Table S4). Among 

this group of genes were known cancer genes and putative drug targets such as CHD1L 

(Chromodomain Helicase DNA Binding Protein 1 Like, 1q21.3 peak) (Cheng et al., 2013), ADAR 

(Adenosine Deaminase RNA Specific, 1q21.3 peak) (Chan et al., 2014), MTDH (metadherin, 

8q22.2 peak) (Dhiman et al., 2019; Hu et al., 2009; Shi and Wang, 2015), and YWHAZ (also 

known as 14-3-3 zeta, 8q22.2 peak) (Pennington et al., 2018; Yang et al., 2012) (Figure 2D 

inset).  

 

There were other candidate copy number-driven cancer genes implicated in oncogenesis (Figure 

2D inset and Table S4). For example, in addition to YWHAZ, the 8q22.2 amplicon also contains 

NUDCD1 (NudC domain containing 1, also known as OVA66), previously shown to promote 

colorectal carcinogenesis and metastasis by inducing EMT and inhibiting apoptosis (Han et al., 

2018) and to promote oncogenic transformation by hyperactivating the PI3K/AKT, ERK1/2-MAPK 

and IGF-1R-MAPK signaling pathways (Rao et al., 2014a, 2014b). The overexpression of SQLE 

(Squalene epoxidase, 8q24.13 peak), an enzyme involved in cholesterol biosynthesis, promotes 

cell proliferation and migration in HCC cells and positively regulates ERK signaling (Sui et al., 

2015). UBQLN4 (Ubiquilin-4, 1q21.3 peak) has recently been suggested to regulate Wnt-β-

catenin pathway activation in HCC cells (Yu et al., 2020) and is associated with genomic instability 

(Jachimowicz et al., 2019). Of note, there are many poorly characterized genes among those that 

showed strong CNA-mRNA and mRNA-protein correlation, such as ALYREF, involved in 

transcriptional control and mRNA stabilization (Hautbergue et al., 2008; Hung et al., 2010; Stubbs 

and Conrad, 2015; Stubbs et al., 2012) and whose expression correlated with cell cycle regulation 
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and mitosis and poor prognosis in HCC (He et al., 2020), and CERS2, a key component in 

sphingolipid metabolism, whose co-expression with TGF-β1 is associated with poor outcome in 

HCC (Ruan et al., 2016). The role of these genes/proteins in HCC has not been studied in depth 

but may warrant further investigation. On the other hand, MTOR in the 1p36.23 deletion peak 

showed high CNA-mRNA correlation (rho=0.58) but no mRNA-protein correlation (p>0.05), 

suggesting alternative mechanisms (e.g. epigenetic) for the regulation of protein expression.  

 

Taken together, our analysis of the CNA-mRNA and mRNA-protein expression correlations 

showed distinct pathways being regulated on different levels and identified potential HCC driver 

genes.  

 

Dysregulated phosphorylation in HCC 

Next, we investigated the protein phosphorylation landscape in HCC. Given that protein 

phosphorylation may be highly driven by the protein expression rather than changes in 

phosphorylation, we investigated dysregulated phosphorylation sites with and without 

normalization by overall protein levels. Differential expression analyses revealed 692 and 648 

sites that are hyper- and hypophosphorylated, respectively, and 302 and 355 normalized (by 

overall protein levels) hyper- and hypophosphorylated sites compared to normal livers (adjusted 

p≤0.05 and |log2 fold-change|>1, Figure 3A, Figure S3A and Table S5). A pathway enrichment 

analysis revealed that the hyperphosphorylated sites are in proteins involved in cell cycle, mRNA 

splicing, the immune system, cancer-related signaling pathways such as receptor tyrosine 

kinases and MAP kinase and regulation by PTEN and p53 (Figure 3B, Figure S3B and Table 

S6). Signaling by AKT, FGFR, VEGF, TGF-beta are also enriched among the 

hyperphosphorylated proteins, though not always statistically significant in the analyses of both 

normalized and unnormalized phosphorylation levels. Among the hypophosphorylated sites, 

processes related to histone modification were enriched (Figure 3B, Figure S3B and Table S6). 
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Interestingly, pathways related to metabolism of amino acids, carbohydrates, lipids were enriched 

among the overall hypophosphorylated sites but also the normalized hyperphosphorylated sites. 

By contrast, proteins involved cellular senescence and chromatin organization showed the 

opposite trend, with enrichment of overall hyperphosphorylated sites but normalized 

hypophosphorylated sites. While base excision repair and DNA double-strand break repair were 

enriched among both hypophosphorylated sites, nucleotide excision repair was enriched among 

the hyperphosphorylated sites (Figure 3B, Figure S3B and Table S6). 

 

To infer the activation of kinases in HCC, we performed a Kinase-Substrate Enrichment Analysis 

(KSEA)(Casado et al., 2013). KSEA revealed that Aurora kinase A (AURKA), Cyclin-dependent 

kinases 1/2/5/7 (CDK1/2/5/7), ERK1/2 (MAPK1/3) and PLK1 showed increased activation 

compared to normal livers, while PKACA/G (PRKACA/G), PKCA/Z (PRKCA/Z) and SGK1 showed 

reduced activity (Figure 3C and Table S7). When analyzing dysregulated phosphorylation 

normalized by protein level, KSEA revealed increased AURKA, CDK1/2/5 and ERK1/2 but also 

GSK3B activity in HCCs (Figure S3C and Table S7). 

 

Our results show that altered phosphorylation in HCC affects a wide range of biological processes 

from cell proliferation and DNA repair to immune system and signal transduction pathways. 

 

Proteogenomic analysis of significantly mutated genes 

Using whole-exome sequencing, we identified 24,488 somatic mutations (23,660 SNVs and 828 

indels) across the 122 tumor biopsies (Figure S4A and Table S8). One tumor (D096) was 

hypermutated with 9035 mutations. In the remaining 121 tumor biopsies, we identified a median 

of 123 somatic mutations per biopsy (range 25-446). Using MutSigCV (Lawrence et al., 2013) 

and OncodriveFML (Mularoni et al., 2016), we identified 7 significantly mutated genes (SMGs, 

ALB, ARID1A, AXIN1, CDKN1A, CTNNB1, GPAM, TP53, Figure S4A). While ALB, ARID1A, 
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AXIN1, CDKN1A, CTNNB1 and TP53 had previously been identified as SMGs in more than one 

genomic study (Bailey et al., 2018; Fujimoto et al., 2016; Martincorena et al., 2018; Schulze et al., 

2015), GPAM was identified as an SMG only in a meta-analysis of HCC genomic studies (Li et 

al., 2018) (1.8% vs 7.4% in the current study, Fisher’s exact test, p=0.001). Here we found seven 

of the nine GPAM mutations were frameshift mutations, strongly suggestive of a tumor suppressor 

role (Figure S4B), though only one was homozygous (bi-allelic inactivation).  

 

We evaluated the clinicopathological correlates of the 7 SMGs, together with 7 additional cancer 

genes identified from at least 2 previous HCC genomics studies (Bailey et al., 2018; Fujimoto et 

al., 2016; Martincorena et al., 2018; Schulze et al., 2015) and mutated in at least 3 HCCs of the 

current cohort (ACVR2A, APOB, ARID2, CDKN2A, KEAP1, RB1 and TSC2). We found that 

CTNNB1-mutant tumors were more frequently lower grade (Edmondson grade, p=0.017) and with 

a pseudoglandular growth pattern (p=0.034). Consistent with previous reports (Calderaro et al., 

2017; Luke et al., 2019), CTNNB1-mutant tumors were also associated with the immune-desert 

phenotype (p=0.039). By contrast, TP53-mutant tumors were of higher grade (p=0.001) and 

associated with HBV (p=0.010, Figure S4C). However, none of the clinicopathological 

associations was statistically significant after correcting for multiple testing. Among the 14 driver 

genes, TP53 and CTNNB1 mutations were mutually exclusive (odds ratio=0.35, p=0.012, Fisher’s 

exact test), as previously reported (Guichard et al., 2012). A multivariate Cox-proportional hazard 

model suggests that mutations in CDKN2A, GPAM, KEAP1 and TSC2 are associated with poor 

overall survival independent of BCLC clinical stage (Figure S4D). 

 

To evaluate the transcriptome, proteome and phosphoproteome changes associated with 

CTNNB1 and TP53 mutations, we performed differential expression analyses comparing mutant 

and wild-type HCCs. We identified 3067 differentially expressed genes in CTNNB1-mutant and 

3949 in TP53-mutant HCCs. Changes on the protein level were also observed, with 23 
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differentially expressed proteins for CTNNB1-mutant and 399 for TP53-mutant HCCs (Figure 

4A,E and Table S9). No statistically significant differences were observed on the 

phosphoproteome level at FDR 5%. Of the 23 proteins that were up- or down-regulated in 

CTNNB1-mutant HCCs, 13 were also differentially expressed at the mRNA level (Figure 4A and 

Table S9). These include glutamine synthetase (encoded by GLUL), α-methylacyl-CoA racemase 

(AMACR, reported to be associated with CTNNB1 mutations in HCC (Sekine et al., 2011)), 

ACSS3 (ACSS3, associated with a metabolic HCC subclass characterized by frequent CTNNB1 

mutations (Bidkhori et al., 2018)). On the other hand, the remaining ten differentially expressed 

proteins were not associated with differential transcription. Notably, these include TNRC6B 

(TNRC6B, involved in the β-catenin-independent Wnt signaling), Protein Kinase C Epsilon 

(PRKCE, a β-catenin binding partner (Duong et al., 2017)), and PPIE (PPIE, a spliceosome 

component that regulates the splicing of the long non-coding RNA FAST which in turns regulates 

β-catenin and Wnt signaling (Guo et al., 2020)). Several of the Wnt target genes whose mRNA 

expression is typically altered in association with CTNNB1 mutation, such as NKD1, AXIN2, 

RNF43 and ALDH3A1 are not differentially expressed at the protein level (Figure 4A and Table 

S9).  

 

CTNNB1 encodes β-catenin, a protein involved in intercellular adhesion. In HCC, mutations in 

CTNNB1 lead to accumulation of cytoplasmic β-catenin and its subsequent relocation to the 

nucleus and aberrant activation of the Wnt pathway. Therefore, we searched for phosphorylations 

that differ the most between CTNNB1-mutant and CTNNB1-wild-type HCCs (10% in terms of p-

value from differential expression analysis) but are not associated with differences on the protein 

level (interquartile range in terms of p-value signed according to the direction of differential 

expression, Figure 4B). Pathway analysis showed that 189 such phosphorylation sites are in 

proteins involved in the regulation of actin filament organization and related processes (Figure 

4C and Table S10). Among the sites that showed increased phosphorylation in CTNNB1-mutant 
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HCCs were Par3-alpha (encoded by PARD3) S1046 and PDLIM2 (PDLIM2) S197. On the other 

hand, MAP1B (MAP1B) S541/S937/S1396 and ACF7 (MACF1) S1752 showed decreased 

phosphorylation in CTNNB1-mutant HCCs. Phosphorylation or loss of Par3-alpha has been found 

to lead to the loss of cell polarity (McCaffrey et al., 2016; Xue et al., 2013). Similarly, 

phosphorylation of PDLIM2 leads to its stabilization in the cytoplasm and facilitates β-catenin 

activation (Cox et al., 2019). By contrast, Wnt activation causes GSK3 kinase inactivation and 

decreased MAP1B and ACF7 phosphorylation, resulting in increased microtubule stability (Trivedi 

et al., 2005) and migration (Wu et al., 2011; Zaoui et al., 2010). KSEA revealed that, compared 

to CTNNB1-wild-type HCCs, CTNNB1-mutant HCCs showed increased kinase activity of 

AMPKα2 and reduced activity of the kinases CK II alpha, CK II alpha' and CDK5 (Figure 4D). On 

the other hand, KSEA of the normalized phosphorylation levels showed increased activity of FGR, 

a kinase that contributes to the regulation of immune response and cytoskeleton remodeling 

(Figure 4D).  

 

Similarly, of the 399 differentially expressed proteins between TP53-mutant and -wild-type HCCs, 

238 were also significantly differentially expressed at the mRNA level (Table S9). Interestingly, 

the direction of the protein differential expression for 14 of these genes/proteins differed on the 

mRNA level. While stathmin 2 (STMN2) and Nuclear receptor corepressor 1 (NCOR1) were 

overexpressed at the protein level, they were underexpressed on the mRNA level (Figure 4E). 

By contrast, the remaining 12 were underexpressed on the protein level but overexpressed on 

the mRNA level, and these included Centromere Protein F (CENPF), TACC3 (TACC3) and 

Kinetochore-associated protein 1 (KNTC1), all involved in the regulation of the mitotic spindle. 

Focusing on sites whose phosphorylation differed between TP53-mutant and -wild-type HCCs 

without differences on the protein level, we identified 178 such phosphorylation sites (Figure 4F). 

A pathway analysis of these phosphorylation sites suggests that TP53 mutations are associated 

with phosphorylation changes in proteins involved in the regulation of lipid and mRNA metabolic 
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processes, and the regulation of cellular component biogenesis and organization (Figure 4G and 

Table S10). In particular, PKR (EIF2AK2) S83 is an activating autophosphorylation site (Taylor et 

al., 2001). PKR is involved in diverse cellular processes, including stress response against 

pathogens (e.g., HCV) and its activation inhibits protein synthesis (García et al., 2006). HCV 

infection triggers PKR phosphorylation (Garaigorta and Chisari, 2009), though here we did not 

observe an enrichment of HCV-associated HCCs among the TP53-mutant HCCs (p>0.05, 

Fisher's exact test). KSEA revealed that TP53-mutant HCCs showed increased activity of the 

kinases CDK1/2/5 (Figure 4H). Several other kinases involved in the control of cell cycle, mitotic 

checkpoint and spindle formation (Aurora Kinase A, TTK, NEK2), protein synthesis and stress 

response (PKR), and MAPK signaling (PRKD2, p38 delta (MAPK13)) were also found to show 

increased activity when comparing overall phosphorylation levels. Interestingly, when comparing 

the normalized phosphorylation levels between TP53-mutant and -wild-type HCCs, Aurora Kinase 

A was found to show reduced pathway activation. 

 

Taken together, the proteogenomic analysis of CTNNB1 mutations in HCC suggest that the EMT 

phenotype frequently seen in CTNNB1-mutant HCCs may result from alterations in 

phosphorylation in proteins involved in pathways related to the organization of actin filaments, 

thereby regulating cell polarity and migration. On the other hand, TP53-mutant HCCs are 

associated with altered phosphorylation of proteins related to cell cycle control, spindle formation 

and protein synthesis. 

 

Molecular subtypes of HCC 

While molecular subtyping has been performed for transcriptome and proteome data, integrative 

clustering incorporating phosphoproteome data has not been performed. We therefore performed 

unsupervised analyses to identify HCC subtypes in each of the 5 individual omics data sets 

(‘single-omics’) as well as an integrative analysis incorporating all 5 data sets, namely, somatic 
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mutation, CNA, transcriptome, proteome and phosphoproteome (n=122 for the first three types 

and n=51 for the last two, Figure S5A-E). For the single-omics analyses, we identified between 

2 and 4 robust clusters using two independent clustering approaches for each of the 5 omics 

types. On the somatic mutation level, we identified four subclasses characterized by the presence 

of a mutation in CTNNB1, TP53, or ARID1A or the lack of a mutation in these three genes (Figure 

S5F), while on the CNA level, two subclasses were identified, distinguished by the overall level of 

genomic instability (Figure S5G). For the transcriptome, we identified three subclasses that were 

distinguished by elevated cell cycle related processes, immune pathways or metabolism (Figure 

S5H and Table S11). Of note, the mutation and transcriptome clusters were associated with 

Edmondson grade (both p<0.05, chi-squared tests).  

 

For the proteome and phosphoproteome, in each case two clusters were identified. The first 

proteome subclass is associated with ribonucleoprotein organization, as well as mRNA splicing 

and processing, while the second subclass is associated with metabolism, peroxisome 

organization and oxidative phosphorylation (Figure 5A and Table S11). The first 

phosphoproteome subclass is also linked to ribonucleoprotein assembly and mRNA splicing and 

processing but also to chromatin organization and activation of CK II alpha. On the other hand, 

the second phosphoproteome subclass is associated with processes such as telomere 

maintenance, nucleosome organization, DNA repair, actin cytoskeleton regulation and activation 

of PKA C-alpha (Figure 5B and Table S11). While the proteome clusters are associated with 

Edmondson grade (p<0.05, Fisher’s exact test), the phosphoproteome clusters are not (p>0.05, 

Fisher’s exact test). A comparison between the various single-omics clusterings revealed 

significant association between mutation, transcriptome and proteome clusterings (i.e. those that 

were associated with Edmondson grade), whereas the phosphoproteome clusters are not 

significantly associated with any other clustering (Fig S5I). 
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We then asked whether an integrative clustering using all five layers of molecular information 

would provide further insight into the diversity of HCC. Using the iCluster method (Mo et al., 2018), 

we defined three robust clusters (Figure 5C), which are largely recapitulated using the 

algorithmically distinct similarity network fusion (SNF) approach (Wang et al., 2014) (Figure S5J). 

To investigate how these integrative clusters differ from each other, we compared them on the 

individual molecular levels (Table S12). In cluster 1, we observed an enrichment of genes 

involved in ECM organization, angiogenesis and amino acid metabolism on the mRNA level and 

amino acid metabolism on the protein level. In cluster 2, pathways related to fatty acid, amino 

acid and small molecule metabolism were enriched on both the mRNA and protein levels. In 

cluster 3, pathways related to cell proliferation, chromatin assembly and RNA processing were 

enriched on both the mRNA and protein levels, while on the phosphoprotein level, we observed 

pathways related to cell cycle, epigenetic gene regulation and activation of CDK1/2/6. Overall, 

the pathways enriched on the mRNA, protein and phosphoprotein levels are in accordance with 

the enrichment of CTNNB1 mutations in cluster 2 and TP53 mutations and higher Edmondson 

grade in cluster 3. No specific copy number alterations were found to be enriched in any of the 

subclasses. Compared to the single-omics clustering, the integrative clusters were associated 

with the mutation, transcriptome and proteome clusters (i.e. those that were associated with 

Edmondson grade) but not with the CNA or the phosphoproteome clusters (Figure 5C).  

 

Finally, we asked whether the single-omics and integrative molecular subclasses are prognostic. 

Using univariate Cox proportional hazard analyses, transcriptome cluster 1 (increased cell 

proliferation and high Edmondson grade, p=0.037), proteome cluster 1 (ribonucleoprotein 

organization, mRNA processing and high Edmondson grade, p=0.022) and integrative cluster 3 

(increased cell proliferation, epigenetic gene regulation, TP53 mutation and high Edmondson 

grade, p=0.005) were associated with poor overall survival, while proteome cluster 2 (metabolism 

and low Edmondson grade, p=0.022) and integrative cluster 2 (metabolism, CTNNB1 mutation 
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and low Edmondson grade, p=0.015) were associated with improved overall survival (Figure S6). 

Given that BCLC is the primary prognostic indicator in HCC, we fit multivariate Cox proportional 

hazards models to evaluate whether the subclasses may be prognostic independent of BCLC. 

Here we observed that mutation cluster 2 (CTNNB1-mutant) was associated with good prognosis 

(p=0.025), while mutation cluster 3 (TP53-mutant) was associated with poor prognosis (p=0.034, 

Figure S6). 

 

In summary, while molecular clustering of the proteome data largely recapitulated that of the 

transcriptome and histological grading, molecular clustering of the phosphoproteome data 

differed from that of other single-omics and integrative clustering. 

 

DISCUSSION 

In this study, we performed a multiomic profiling of HCC biopsies across diverse etiologies and 

clinical stages. An integrated proteogenomic analysis revealed similar but also distinct biological 

processes, metabolic reprogramming and activation of signaling pathways on the different 

molecular levels. Our analysis provides novel insights into the molecular processes underlying 

HCCs. 

 

Of the pathways altered in HCC, RNA processing was consistently upregulated and metabolic 

pathways were consistently downregulated on the transcriptome, proteome and 

phosphoproteome levels. Notably, metabolic pathways were enriched among 

hyperphosphorylated sites when we studied phosphorylation levels normalized by protein 

abundance. Conversely, genes related to translational regulation and oxidative phosphorylation 

were upregulated on the mRNA but not the protein level, whereas the complement and 

coagulation cascades were upregulated on the protein level but not the mRNA level. One could 

speculate that the increased transcription of genes related to translational regulation may be a 
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compensatory mechanism for increased protein degradation. On the phosphoproteome level, 

altered protein phosphorylation was associated with pathways related to the cell cycle and the 

immune system, DNA repair and organization, as well as several oncogenic signaling pathways 

such as MAPK, PI3K/Akt/PTEN and FGFR. Indeed, KSEA revealed the increased activity of 

ERK1/2 and cell cycle-related kinases such as AURKA, CDK1/2/5/7, PLK1 and TTK.  

 

Our proteogenomic analysis has also identified novel putative HCC driver genes and drug targets. 

In our analysis of genes and proteins that show positive correlation on the CNA-mRNA and 

mRNA-protein levels, we identified several candidate driver genes, such as NUDCD1, SQLE, 

UBQLN4, ALYREF and CERS2, involved in diverse processes including epithelial-to-

mesenchymal transition (EMT), Wnt-β-catenin pathway regulation, transcriptional control, 

cholesterol biosynthesis and sphingolipid metabolism. In particular, NUDCD1 (OVA66, 8q22.2 

peak) and SQLE (8q24.13 peak) can both promote oncogenic transformation and/or cell 

proliferation and migration via major oncogenic signaling pathways such as PI3K/AKT, ERK1/2-

MAPK and/or IGF-1R-MAPK (Rao et al., 2014a, 2014b; Sui et al., 2015). In the context of HCC, 

SQLE may be of particular interest given its role in cholesterol biosynthesis and that disrupted 

cholesterol homeostasis may be a hallmark in a subset of HCC (Jiang et al., 2019). Similarly, 

CERS2, a key component in sphingolipid metabolism, may also contribute to perturbations in 

sphingolipid synthesis that promote HCC development (Guri et al., 2017). Moreover, given that 

pathways related to RNA processing appear to be consistently altered on multiple molecular 

levels in HCC, genes involved in transcriptional control, such as ALYREF (Hautbergue et al., 

2008; Hung et al., 2010; Stubbs and Conrad, 2015; Stubbs et al., 2012), are potential driver genes 

that warrant further study. Our analysis of the HCC phosphoproteome also revealed several 

targetable kinases with elevated activity in HCC, especially Aurora Kinase A and CDKs. Aurora 

Kinase A and CDK1/2 are classical cell cycle-related kinases whereas CDK5 regulates many 

biological processes, among which are angiogenesis and DNA damage response (Ehrlich et al., 
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2015; Liebl et al., 2010). Preclinical studies have shown that inhibitors of Aurora Kinase A or 

CDK1/2/5 are efficacious in HCC models (Benten et al., 2009; Dauch et al., 2016; Haider et al., 

2013) and may act synergistically with sorafenib/regorafenib and chemotherapeutic agents 

(Ehrlich et al., 2015; Xu et al., 2019; Zhang et al., 2018). 

 

The two most frequently mutated genes in HCC are CTNNB1 and TP53. By identifying sites 

whose phosphorylation differed between mutant and wild-type HCCs, but were not associated 

with alterations in expression of the phosphorylated protein, we identified phosphorylation sites in 

proteins, such as ACF7, MAP1B, PDLIM2 and Par3-alpha, that may underpin the EMT phenotype 

frequently seen in CTNNB1-mutant HCCs. ACF7 (MACF1), part of the β-catenin destruction 

complex (Kimelman and Xu, 2006), is required for stabilizing Axin during its translocation from 

the cytoplasm to the cell membrane upon Wnt activation (Salinas, 2007). Wnt activation causes 

GSK3 kinase inactivation and inability to phosphorylate ACF7, and dephosphorylated ACF7 

remains active and able to form necessary connections between microtubules and the actin 

cytoskeleton for migration to occur (Wu et al., 2011; Zaoui et al., 2010). Similarly, GSK3 kinase 

inactivation has been shown to decrease MAP1B phosphorylation facilitating microtubule 

assembly and migration processes. By contrast, PDLIM2, located at the actin cytoskeleton, is 

required for polarized cell migration. PDLIM2 phosphorylation leads to its stabilization in the 

cytoplasm, facilitating β-catenin activation and nuclear translocation (Cox et al., 2019). Par3-alpha 

(PARD3), a regulator of tight junction assembly at epithelial cell-cell contacts (Chen and Macara, 

2005), changes the affinity for its interaction partners (Funahashi et al., 2013; Hurd et al., 2003; 

Khazaei and Püschel, 2009) upon phosphorylation, leading to loss of cell polarity and induction 

of migration. KSEA of CTNNB1-mutant HCCs also revealed increased activity of FGR, involved 

in immune response and cytoskeleton remodeling. Of note, a previous study identified ALDOA 

S36 phosphorylation as a molecular feature of CTNNB1-mutant HBV-associated HCCs (Gao et 

al., 2019), but we did not observe elevated ALDOA S36 phosphorylation in our cohort 
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(FDR=0.98). On the other hand, KSEA of TP53-mutant HCCs identified increased activity of 

CDK1/2/5 that are key regulators of the cell cycle and mitotic spindle, which could in part explain 

the higher histological grade typically associated with TP53 mutations. Our analysis also identified 

altered phosphorylation of proteins involved in lipid metabolism in TP53-mutant HCCs. p53 with 

a gain-of-function mutation has been reported to promote lipid synthesis via at least two 

mechanisms, by activating the SREBP transcription factors and the mevalonate pathway and by 

inhibiting AMPK to promote tumorigenesis (Freed-Pastor et al., 2012; Zhou et al., 2014). 

 

Proteome and phosphoproteome classifications revealed two clusters each. Although for both 

classifications, one of the clusters was associated with overexpression or enhanced 

phosphorylation of proteins involved in ribonucleoprotein organization, as well as mRNA 

processing and splicing, there was little concordance between the two classifications. The lack of 

concordance of the phosphoproteome clusters was also seen with mutation and transcriptome 

clusters. As protein phosphorylation is highly dynamic and our profiling captures a snapshot of 

the tumor, phosphoproteomic data are inherently noisier than other types of molecular data. In 

fact, the lack of concordance of the phosphoproteome clusters was also seen when compared to 

integrative clustering. Integrative clustering, using the algorithmically distinct iCluster and SNF, 

identified three clusters that resembled the single-omics clusters by mutation status, 

transcriptome and proteome profiles but not those by copy number and phosphoproteome 

profiles. The three classes as defined by integrative clustering resemble the spectrum of 

Edmondson grade and BCLC. They also resemble the three proteome subclasses identified in 

two previous studies in HBV-related HCC, both of which described subclasses characterized by 

metabolic reprogramming, microenvironment dysregulation and cell proliferation (Gao et al., 

2019; Jiang et al., 2019). In particular, the proliferation proteome subclasses in HBV-related HCC 

were found to be associated with tumor thrombus (Gao et al., 2019) and microscopic vascular 

invasion (Jiang et al., 2019). Here our integrative cluster 3 (increased cell proliferation, TP53 
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mutation and high Edmondson grade) is associated with macro-vascular invasion (p=0.01, 

Fisher's exact test) though the association is not statistically significant after multiple testing 

correction. As for the prognostic value of the multiomics clusters, integrative clusters 2 and 3 are 

associated with good and poor outcomes, respectively, although the associations were not 

significant after accounting for the difference in BCLC. By contrast, mutation clusters 2 (CTNNB1-

mutant) and 3 (TP53-mutant) were associated with overall survival independent of BCLC. 

However, it should be noted that our cohort was accrued over a long period and clinical practice 

has changed significantly over the past decade, hence outcome data are inherently difficult to 

interpret.  

 

In conclusion, our study provides a comprehensive analysis of the proteomic and 

phosphoproteomic landscape of HCCs, identifying proteome and phosphoproteome alterations 

underlying HCC.  
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FIGURE LEGENDS 

Figure 1: Deregulated pathways in HCC. (A-C) Principal component analysis plots of (A) 

transcriptome, (B) proteome, (C) phosphoproteome of HCC biopsies (colored by Edmondson 

grade) and normal liver biopsies. (D) Intra-group (within Edmondson grade) variability as 

measured by pairwise Euclidean distance between samples according to principal components. 

(E) Distance of each HCC to the median of normal livers as measured by Euclidean distance 

according to principal components. (F) Scatter plot of (y-axis) the moderated t-statistics from the 

differential protein expression analysis of HCC vs normal liver against (x-axis) the F-statistics from 

the differential gene expression analysis of HCC vs normal liver. Points are colored according to 

the four quadrants. Enrichment maps show the top 10 enriched Reactome pathways from over-

representation tests of the genes/proteins in each of the four quadrants. In each enrichment map, 

gene sets with overlapping gene sets are joined by edges. Nodes are colored according to p-

value, where gray indicates a higher p-value and dark blue/violet/purple/red indicates a lower p-

value. The size of the nodes is proportional to the number of genes in the quadrant within a given 

gene set. See also Table S2. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2021. ; https://doi.org/10.1101/2021.03.05.434147doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434147
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

Figure 2: CNA-mRNA-protein correlation. (A-B) Histograms of the distributions of the per-gene 

Spearman correlation coefficients (A) for CNA-mRNA and (B) mRNA-protein expression. sig.: 

significant. (C) Venn diagram of the number of enriched Reactome pathways for genes/proteins 

ranked by CNA-mRNA expression correlation (orange) and mRNA-protein expression correlation 

(blue). Enrichment was defined by gene set enrichment analysis. Barplot of selected Reactome 

pathways enriched among genes with high CNA-mRNA expression correlation (orange) and/or 

with high mRNA-protein expression correlation (blue). Statistically significant normalized 

enrichment scores (NES, p<0.05) are shown in darker shades (dark orange/blue) while non-

significant NESs are shown in lighter shades (light orange/blue). (D) Scatterplot of the per-gene 

Spearman correlation coefficients (y-axis) between mRNA and protein expression against (x-axis) 

between CNA and mRNA. Genes in five of the recurrently altered regions as defined by GISTIC2 

are colored according to the color key. Inset shows the genes with >0.5 correlation coefficients in 

both comparisons. See also Tables S3-4. 

 

Figure 3: The phosphoproteomic landscape of HCC. (A) Volcano plot of the -log10(adjusted 

p-value) against the log fold-change (logFC) of the differentially regulated phosphorylation sites 

in HCC compared to normal livers. Dots are colored by logFC. Vertical dotted lines indicate 

|logFC|=2 and horizontal dotted lines indicate adjusted p-value=0.05. (B) Dot plot illustrating 

selected enriched Reactome pathways according to gene set enrichment analysis (GSEA) from 

the differential expression analysis in (A). NES: normalized enrichment score. (C) Top barplot 

showing the enrichment z-score of the kinases with significantly up- or downregulated kinase 

activity in a kinase-substrate enrichment analysis (KSEA) comparing HCC to normal livers. In the 

bubble plot below, the phosphorylation site substrates are shown in rows, where red and blue 

dots indicate that the phosphorylation site is up- and downregulated, respectively. The size of the 

dots is proportional to the log2 fold-change of the phosphorylation site. Phosphorylation sites with 
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at least a 5-fold difference between HCCs and normal livers are shown. For kinases with <3 

substrates with at least a 5-fold difference, the top three substrates with the highest |logFC| are 

shown. See also Figure S3 and Tables S5-7. 

 

Figure 4: Proteogenomic analysis of SMGs. (A) Heatmaps showing the log fold-change 

(compared to the median of normal livers) of (left) 23 proteins differentially expressed between 

CTNNB1-mutant and -WT HCCs (FDR<0.05) and (right) the corresponding gene expression on 

the mRNA level. Samples are stratified according to CTNNB1 mutation status. Genes with 

asterisks were also differentially expressed on the transcriptome level. (B) Binned scatterplot 

plotting the signed p-values from differential expression analyses of protein expression (x-axis) 

and of phosphorylation site expression (y-axis) between CTNNB1-mutant and -WT HCCs. Signed 

p-values refer to the p-values from differential expression analyses signed according to the 

direction of the fold change. Phosphorylation sites at >99th quantile of the unsigned p-values with 

their corresponding protein within the inter-quartile range of signed p-values of differential protein 

expression analysis are labeled. (C) Enrichment map showing the Gene Ontology biological 

processes enriched among proteins with phosphorylation sites at >90th quantile of the unsigned 

p-values with their corresponding protein within the inter-quartile range of signed p-values of 

differential protein expression analysis. (D) Plot showing the kinase-substrate enrichment 

analyses (KSEA) enrichment z-scores ordered in increasing order, comparing (left) 

phosphorylation site abundance and (right) phosphorylation site abundance normalized by protein 

abundance between CTNNB1-mutant vs -WT HCCs. Significant kinases are labeled. (E) Small 

heatmap showing the log fold-change (compared to the median of normal livers) of (left) 399 

proteins differentially expressed between TP53-mutant and -WT HCCs (FDR<0.05) and (right) 

the corresponding gene expression on the mRNA level. Large heatmap showing the subset of 14 

proteins/genes for which the direction of the differential expression between TP53-mutant and -

WT HCCs differed between the proteomic and transcriptomic signatures. Samples are stratified 
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according to TP53 mutation status. (F-H) as (B-D) for stratified by TP53 mutation status. See also 

Figure S4 and Tables S8-10. 

 

Figure 5: Integrated phosphoproteomic classification of HCC. (A-B) Unsupervised clustering 

of the (A) proteome and (B) phosphoproteome data using consensus non-negative matrix 

factorization. (C) Integrative clustering of the mutation, copy number alteration, transcriptome, 

proteome and phosphoproteome using the iCluster method. Copy number alterations not shown 

in the figure as no genomic region differed between clusters. See also Figures S5-6 and Tables 

S11-12. 

 

TABLE 

  
Cohort with genomic and 
transcriptomic data (122 biopsies 
from 114 patients 

Cohort with genomic, 
transcriptomic, proteomic and 
phosphoproteomic data (51 
biopsies from 49 patients) 

Comparison 
between 
biopsies with 
(n=51) and 
without (n=71) 
complete 
molecular 
profiling 

  n (%) n (%) 

Sex (n=114, 49) 
Male 97 85% 41 84% 

ns 
Female 17 15% 8 16% 

Age at classification 
(n=114, 49) (median, range) 69 (18-87) 66 (18-84) ns 

BCLC (n=115, 49)a 

0 4 3% 1 2% 

ns 

A 57 50% 25 51% 

B 27 23% 14 29% 

C 24 21% 7 14% 

D 3 3% 2 4% 

Number of tumors 
(n=115, 49)a 

1 53 46% 24 49% 

ns 

2 20 17% 7 14% 

3 6 5% 3 6% 

4 1 1% 0 0% 

5 1 1% 0 0% 

multinodular 34 30% 15 31% 

Macrovascular 
invasion (n=115, 
49)a 

yes 17 15% 5 10% 
ns 

no 98 85% 44 90% 

Metastasis (n=115, yes 11 10% 3 6% ns 
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49)a no 104 90% 46 94% 

Child-Pugh (n=115, 
49)a 

A 69 60% 26 53% 

ns 
B 40 35% 18 37% 

C 3 3% 2 4% 

(na/nd) 3 3% 3 6% 

MELD (n=115, 49)a 
(median, range) 9 (5-25) 9 (6-24) 

ns 
(na/nd) 2 2% 2 4% 

Cirrhosis (n=115, 
49)a 

yes 83 72% 35 71% 
ns 

no 32 28% 14 29% 

Underlying liver 
disease (n=115, 
49)a,b 

Hepatitis B 13 11% 7 14% ns 

Hepatitis C 30 26% 18 37% p=0.04 

Alcoholic liver 
disease 68 59% 25 51% ns 

Non-alcoholic fatty 
liver disease 19 17% 9 18% ns 

No liver disease 7 6% 2 4% ns 

Edmondson grade 
(n=122, 51) 

1 7 6% 5 10% 

ns 
2 66 54% 25 49% 

3 41 34% 16 31% 

4 8 7% 5 10% 

Immunophenotype 
(n=122, 51) 

Inflammed 37 30% 13 25% 

ns 
Immune-excluded 43 35% 21 41% 

Immune-desert 38 31% 14 27% 

(na/nd) 4 3% 3 6% 

 

Table 1: Summary of clinicopathological information of the cohort. aDetermined at the time 

of biopsy. One patient was biopsied twice seven years apart. bPatient may have >1 underlying 

liver disease. Statistical comparisons were performed using Fisher's exact tests (for categorical 

data with two levels), Chi-squared tests (for categorical data with >2 levels), and Mann-Whitney 

U tests (for numerical and ordinal data). BCLC: Barcelona Clinic Liver Cancer clinical staging 

system; MELD: model for end-stage liver disease; na: not available; nd: not determined; ns: not 

significant. See also Figures S1-2 and Table S1. 

 

STAR METHODS 

HCC biopsy procedure and sample collection 
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Human tissues were obtained from patients undergoing diagnostic liver biopsy at the University 

Hospital Basel between 2008 and 2018. Written informed consent was obtained from all patients. 

The study was approved by the ethics committee of the northwestern part of Switzerland (Protocol 

Number EKNZ 2014-099). Ultrasound-guided needle biopsies were obtained from tumor lesion(s) 

and the liver parenchyma at a site distant from the tumor with a coaxial liver biopsy technique that 

allows taking several biopsy samples through a single biopsy needle tract as described (Nuciforo 

et al., 2018). Clinical disease staging was performed using the Barcelona Clinic Liver Cancer 

system (European Association for the Study of the Liver, 2018). Biopsies from multicentric tumors 

(i.e. genetically independent primary tumors), but not intra-hepatic metastases, were included. In 

total, 122 HCC biopsies and 115 non-tumoral tissues from 114 patients were included in the study 

(Table S1), including 6 patients from whom 2 synchronous multicentric tumor biopsies and 1 

patient from who, 3 multicentric tumor biopsies were obtained (Figure S1). None of the patients 

had received systemic or locoregional therapies for liver cancer prior to biopsy. Two patients were 

treated with curative surgery or ablation and were biopsied after HCC recurrence was diagnosed 

by imaging.  

 

As control, we used liver biopsies with normal histology obtained from 19 patients without HCC 

and with normal liver values (Table S1). The biopsy procedure was as described above. 

 

Histopathological assessment 

Diagnosis of HCC and histopathology evaluation were carried out on FFPE slides blindly by at 

least two board-certified hepatopathologists (CE, MSM and/or LMT) at the Institute of Pathology 

of the University Hospital Basel. Histopathologic grading was performed according to the 

Edmondson grading system (Edmondson and Steiner, 1954; Nuciforo et al., 2018). Hematoxylin 

& eosin (H&E) slides were reviewed to define the presence or absence of cirrhosis, underlying 

liver disease, cholestasis, vessel infiltration, necrotic areas, major growth pattern, cytological 
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variants and special subtypes according to the guidelines by the World Health Organization 

(World Health Organization, 2010). Immunophenotypes were classified according to Chen et al 

(Chen and Mellman, 2017). Specifically, inflamed tumors are defined as tumors in which tumor 

infiltrating lymphocytes (TILs) are present in the tumor parenchyma in close proximity to tumor 

cells; immune-excluded are tumors in which TILs are present only in ≥10% of the tumor stroma 

and/or tumor margins is populated by lymphocytes located in the immediate vicinity of tumor cells; 

and immune-desert, in which less than 10% of the tumor stroma is populated by lymphocytes, 

and neither dense immune cell infiltrates nor immune cells are in contact with tumor cells. 

 

DNA and RNA extraction 

Genomic DNA and total RNA from tumor and adjacent liver parenchyma were extracted using the 

ZR-Duet DNA and RNA MiniPrep Plus kit (Zymo Research) following the manufacturer’s 

instructions. Prior to extraction, biopsies were crushed in liquid nitrogen to facilitate lysis. Total 

RNA of 15 patients without HCC was extracted using Trizol (Thermo Fisher Scientific) according 

to the manufacturer's instructions. Extracted DNA was quantified using the Qubit Fluorometer 

(Invitrogen). Extracted RNA was quantified using NanoDrop 2000 spectrophotometer (Thermo 

Fisher Scientific), and RNA quality/integrity was assessed with an Agilent 2100 BioAnalyzer using 

RNA 6000 Nano Kit (Agilent Technologies). 

 

Whole-exome sequencing and data processing 

All 122 HCC biopsies and 115 non-tumoral tissues from 114 patients were subjected to whole-

exome sequencing. Whole-exome capture was performed using the SureSelectXT Clinical 

Research Exome (Agilent Technologies) or SureSelect Human All Exon V6+COSMIC (Agilent 

Technologies) platforms according to the manufacturer’s guidelines. Sequencing was performed 

on an Illumina HiSeq 2500 at the Genomics Facility Basel according to the manufacturer’s 

guidelines. Paired-end 101-bp reads were generated. Tumor biopsies and non-tumoral biopsies 
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were sequenced to median depths of 94.3 (range 16.4-140.0) and 49.4 (range 34.5-86.2), 

respectively (Table S1). 

 

Sequence reads were aligned to the reference human genome GRCh37 using Burrows-Wheeler 

Aligner (BWA, v0.7.12/13) (Li and Durbin, 2009). Local realignment, duplicate removal and base 

quality adjustment were performed using the Genome Analysis Toolkit (GATK, v3.6) (McKenna 

et al., 2010) and Picard (http://broadinstitute.github.io/picard/, v2.4.1). Somatic single nucleotide 

variants (SNVs) and small insertions and deletions (indels) were detected using MuTect (v1.1.4) 

(Cibulskis et al., 2013) and Strelka (v1.0.15) (Saunders et al., 2012), respectively. We filtered out 

SNVs and indels outside of the target regions: those with variant allelic fraction (VAF) of <1% 

and/or those supported by <3 reads. We excluded variants for which the tumor VAF was <5 times 

that of the paired non-tumor VAF. We further excluded variants identified in at least two of a panel 

of 123 non-tumor samples, including the 115 non-tumor samples included in the current study, 

captured and sequenced using the same protocols using the artifact detection mode of MuTect2 

implemented in GATK 3.6. Mutations affecting hotspot residues (Chang et al., 2016) were 

annotated. Significantly mutated genes were identified using MutsigCV (v1.4) (Lawrence et al., 

2013) and OncodriveFML (Mularoni et al., 2016). Genes with q < 0.1 were considered significantly 

mutated. ‘Lollipop’ plots were generated using the ‘MutationMapper’ tool on the cBioPortal 

(Cerami et al., 2012). Mutual exclusivity and co-occurrence of significantly mutated genes were 

computed using one-sided Fisher’s exact test (p<0.05), where log2 odds ratio >0 indicates 

occurrence and log2 odds ratio <0 indicates mutual exclusivity. Tumor mutational burden was 

defined as the total number of somatic mutations (including synonymous and nonsynonymous 

point mutations and indels) in the coding region and splice sites.  

 

Allele-specific CNAs were identified using FACETS (v0.5.5) (Shen and Seshan, 2016), which 

performs a joint segmentation of the total and allelic copy ratio and infers allele-specific copy 
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number states. Somatic mutations associated with the loss of the wild-type allele (i.e., loss of 

heterozygosity [LOH]) were identified as those for which the lesser (minor) copy number state at 

the locus was 0. All mutations on chromosome X in male patients were considered to be 

associated with LOH. Copy number states were collapsed to the gene level based on the median 

values to coding gene resolution based on all coding genes retrieved from the Ensembl (release 

GRCh37.p13). Genes with total copy number greater than gene-level median ploidy were 

considered gains; greater than ploidy + 4, amplifications; less than ploidy, losses; and total copy 

number of 0, homozygous deletions. Fraction of genome altered was computed as the fraction of 

genes with amplification, gain, loss or deletion. Tumors with >5% of the genome at copy number 

0 (homozygous deletions, 5 tumors) were excluded from the identification of homozygous 

deletions and from the computation of fraction of genome altered. Significant focal copy number 

alterations were identified from segmented data for all 122 tumor biopsies using GISTIC2.0 

(v2.0.23) (Mermel et al., 2011). 

 

RNA-sequencing and data processing 

RNA-seq library prep was performed with 200 ng total RNA using the TruSeq Stranded Total RNA 

Library Prep Kit with Ribo-Zero Gold (Illumina) according to manufacturer’s specifications. Single-

end 126-bp sequencing was performed on an Illumina HiSeq 2500 using v4 SBS chemistry at the 

Genomics Facility Basel according to the manufacturer’s guidelines. Primary data analysis was 

performed with the Illumina RTA version 1.18.66.3. 

 

Sequence reads were aligned simultaneously to the human reference genome GRCh37, HBV 

strain ayw genome (NC 003977.2), and HCV genotype 1 genome (NC 004102.1) by STAR 

(v2.5.2a) (Dobin et al., 2013) using the two-pass approach. Median numbers of reads aligning to 

the human genome were 52.2 million (range 37.4 - 115.1 million) and 63.5 million (range 52.5 - 

82.2 million) for the HCC and normal liver biopsies, respectively (Table S1).  
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Transcript quantification was performed using RSEM (v1.2.31) (Li and Dewey, 2011). Gene-level 

expected counts were upper-quartile-normalized to 1000. For downstream analysis, we computed 

the log2-fold-changes of normalized RSEM gene counts between tumors and the median of 15 

normal livers.  

 

Biopsy sample preparation for proteomics, protein extraction and digestion 

Fresh liver biopsies from 51 HCC and 11 normal livers were immediately snap-frozen in liquid 

nitrogen and processed as previously described (Dazert et al., 2016). The average time from 

removing the biopsy from the liver to freezing took about 2 min. In brief, for protein extraction, 

each frozen biopsy was crushed in an in-house constructed metal mortar cooled on dry ice into a 

fine powder (cryogenic grinding) and transferred into a cooled 1.5 ml tube containing 150 - 400 

ml lysis buffer (50 mM Tris-HCl pH 8.0, 8M urea, 150 mM NaCl, 1 mM PMSF, Complete Mini 

Protease Inhibitors (Sigma-Aldrich), PhosSTOP Phosphatase Inhibitors (Sigma-Aldrich)). The 

biopsy lysate was vigorously vortexed for 5 min, rotated for 1h at 4°C and sonicated twice in a 

VWR Ultrasonic cleaner bath (USC300T) for 1 min. Next, the lysate was centrifuged for 10 min at 

15°C at 14.000 rpm and supernatant was removed and stored. Next, 50 μl of fresh lysis buffer 

were added and the sample was homogenized with a Teflon pestle in a hand homogenizer (Pellet 

Pestle Motor, Kontes/Kimble, USA) at maximum speed on ice twice for 1 min. Samples were 

centrifuged for 10 min at 15°C at 14.000 rpm and supernatant was removed and pooled with 

previous one. Protein concentration was measured with a Bradford assay. Next, proteins were 

reduced with 10 mM DTT for 1h at 37 °C and alkylated with 50 mM iodoacetamide for 30 min at 

RT in the dark, both with gentle shaking. Urea concentration was lowered to 4 M with 50 mM Tris-

HCl, pH 8.0. Lysates were digested with two rounds of endoproteinase LysC (Wako) at a 1:100 

enzyme-to-protein ratio at 37°C for two hours. Next, the urea concentration was lowered to 1 M. 

Lysates were digested with two rounds of trypsin (Sigma): 1:50 ratio overnight and 1:100 ratio for 
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2 h at 37°C. Digestion was stopped with TFA to a final concentration of 0.5%. Digests were 

centrifuged for 2 min at 1,500 g and desalted on a C18 SepPak cartridge (50mg column for up to 

2.5mg peptide load capacity) (Waters) or C18 Macrospin/Microspin cartridge (Waters). Peptide 

concentration was estimated at 280nm, aliquots were taken and peptides were dried in the 

SpeedVac. 

  

Peptide fractionation for proteome of human HCC biopsies 

Human HCC biopsies were measured by sequential window acquisition of all theoretical mass 

spectra (SWATH), in which data-independent acquisition is coupled with spectral library match 

(Gillet et al., 2012). From each biopsy, 30 μg of peptides were used for SWATH analysis and 100 

μg of peptides were used for library preparation. The biopsies from the 11 patients with healthy 

livers were measured individually and also as a pool. This pool was measured as a reference 

several times over the course of the project to account for potential batch effects. Ten biopsy 

samples were measured together as one batch of samples on the same capillary column. For 

library generation, 100 μg of peptides from each of the 10 biopsies of one batch were pooled 

together and subjected to high-pH fractionation with a total of 1mg of peptide injected by 5 

individual injections of 200 μg. Peptides were fractionated by high-pH reversed phase separation 

using a XBridge Peptide BEH C18 column (3,5 μm, 130 Å, 1mm x 150 mm, Waters) on an Agilent 

1260 Infinity HPLC system. Peptides were loaded on column in buffer A (ammonium formate (20 

mM, pH 10) in H2O) and eluted using a two-step linear 60 min gradient from 2% to 50% (v/v) 

buffer B (90% acetonitrile / 10% ammonium formate (20 mM, pH 10) at a flow rate of 42 μl/min. 

Elution of peptides was monitored with a UV detector (215 nm, 254 nm). A total of 36 fractions 

were collected and subsequently pooled into 12 fractions using a post-concatenation strategy as 

previously described (Wang et al., 2011). Peptides were dried in a SpeedVac, resuspended in 
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0.1% formic acid (mobile phase A) and OD was measured. Twenty μg of each fraction were used 

for library measurements. 

  

SWATH analysis and library preparation 

The biopsy samples were analyzed on a Thermo Fisher QExactive Plus instrument coupled to an 

Easy nLC 1000. For SWATH analysis of the biopsy samples, 1.1 μg was injected on column 

including 10% of iRT peptide mix (HRM kit Ki-3003, Biognosys, Zurich, Switzerland). For library 

generation, 2 μg of each high pH fraction including 10% of iRT peptide mix (HRM kit Ki-3003, 

Biognosys, Zurich, Switzerland) were injected on column. Proteomes were analyzed by capillary 

LC-MS/MS using a homemade separating column (0.075 mm × 38 cm) packed with Reprosil C18 

reverse-phase material (2.4-μm particle size; Dr. Maisch). The solvents used for peptide 

separation were 0.1% formic acid (solvent A) and 0.1% formic acid and 80% AcCN in water 

(solvent B). Two microliters of sample were injected. A linear gradient from 0–40% solvent B in 

solvent A in 190 min was delivered with the nano pump at a flow rate of 200 nL/min. After 190 

min, solvent B was increased to 95% in 5 min. The eluting peptides were ionized at 2.5 kV. Singly 

charged ions and ions with unassigned charge state were excluded from triggering MS2 events. 

For SWATH measurements, one Full MS-SIM scan at resolution of 70.000 was followed by 40 

mass windows of dynamic size ranging from 400 to 1600 m/z with 4 kDa overlap at a resolution 

of 17.500. For library measurements, the mass spectrometer was operated in data-dependent 

mode and the precursor scan was done in the Orbitrap at 70,000 resolution. A top-20 method was 

run. For SWATH analysis and library generation, samples were injected in triplicates. 

  

SWATH data analysis 

The library was generated with MaxQuant (version 1.5.1.2) (Cox and Mann, 2008) using the 

default settings except that the mass tolerance of the instrument was set to 10 ppm and the 

minimal ratio count for quantification was set to 1. The Uniprot SwissProt database (17th August 
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2015) including the iRT fusion peptide was used for the searches. All library measurements were 

pooled into one MaxQuant analysis to generate one general HCC library. The raw SWATH MS 

runs of the individual biopsies were converted using the HTRMS converter (Biognosys). The 

converted SWATH runs were analyzed with Spectronaut X (Version 12.0.20491.20.29183) 

(Biognosys) using the default settings and searched against our in-house generated general HCC 

library. 

  

Proteome analysis 

Raw protein-group based data were exported from Spectronaut and imported into FileMakerPro 

Advanced (Version FMP18) for further data processing. The raw intensities of the triplicates were 

averaged and the mean values transformed by the logarithm to the base 2. Next, the values were 

normalized by median subtraction. To account for potential batch effects, the log2 median-

subtracted intensities of each biopsy were normalized to the mean intensity of all measured runs 

of the pool of healthy liver tissue. The proteome of the patient biopsies was continuously 

measured over a time frame of 2 years. Throughout this time period also aliquots of the pooled 

healthy sample were measured. All measured runs of the pooled healthy sample were therefore 

averaged for normalization. 

 

We obtained data for 6167 proteins that were quantified (always against healthy liver) in at least 

one run in at least one HCC (Table S1), 5612 proteins quantified in at least 26 HCCs and 1997 

in at all 51 HCCs. Starting with the 6167 proteins quantified in at least one HCC, we removed 

proteins for which data were missing from >50% of the samples (50% to enable sufficient data for 

imputation), resulting in 5631 proteins for further analysis. Data imputation using nearest neighbor 

averaging was performed using the ‘impute.knn’ function from the ‘impute’ R package (v1.64.0).  
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Phospho-proteome analysis 

Peptide samples were enriched for phosphorylated peptides using Fe(III)-IMAC cartridges on an 

AssayMAP Bravo platform as recently described (Post et al., 2017). We used an input peptide 

amount of approx. 165 μg for the phosphoenrichment. For 3 biopsies, input to phosphoenrichment 

was slightly reduced but was accounted for by Progenesis/SafeQuant (see below). These 3 

samples did not show an outlier pattern in terms of the quantified phosphorylation sites after data 

processing and were included in subsequent analyses. The μRPLC-MS system was set up as 

described previously (Ahrné et al., 2016). Chromatographic separation of peptides was carried 

out using an EASY nano-LC 1000 system (Thermo Fisher Scientific), equipped with a heated RP-

HPLC column (75 μm x 37 cm) packed in-house with 1.9 μm C18 resin (Reprosil-AQ Pur, Dr. 

Maisch). Dried phosphopeptides were resuspended in 20 μl of 0.1% formic acid and 3 μl of the 

sample were injected per triplicate LC-MS/MS run. Samples were analyzed using a linear gradient 

ranging from 95% solvent A (0.15% formic acid, 2% acetonitrile) and 5% solvent B (98% 

acetonitrile, 2% water, 0.15% formic acid) to 30% solvent B over 90 minutes at a flow rate of 200 

nl/min. Mass spectrometry analysis was performed on a Q-Exactive HF mass spectrometer 

equipped with a nanoelectrospray ion source (both Thermo Fisher Scientific). Each MS1 scan 

was followed by high-collision-dissociation (HCD) of the 10 most abundant precursor ions with 

dynamic exclusion for 20 seconds. Total cycle time was approximately 1 s. For MS1, 3e6 ions 

were accumulated in the Orbitrap cell over a maximum time of 100 ms and scanned at a resolution 

of 120,000 FWHM (at 200 m/z). MS2 scans were acquired at a target setting of 1e5 ions, 

accumulation time of 50 ms and a resolution of 30,000 FWHM (at 200 m/z). Singly charged ions 

and ions with unassigned charge state were excluded from triggering MS2 events. The 

normalized collision energy was set to 27%, the mass isolation window was set to 1.4 m/z and 

one microscan was acquired for each spectrum. The samples were measured in triplicates. The 

acquired raw-files were imported into the Progenesis QI software (v2.0, Nonlinear Dynamics 
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Limited), which was used to extract peptide precursor ion intensities across all samples applying 

the default parameters. The generated mgf-files were searched using MASCOT against a decoy 

database containing normal and reverse sequences of the predicted SwissProt entries of Homo 

sapiens (www.ebi.ac.uk) and commonly observed contaminants generated using the 

SequenceReverser tool from the MaxQuant software (version 1.0.13.13). The search criteria were 

set as follows: full tryptic specificity was required; 3 missed cleavages were allowed; 

carbamidomethylation (C) was set as fixed modification; oxidation (M) and phosphorylation (STY) 

were applied as variable modifications; mass tolerance of 10 ppm (precursor) and 0.02 Da 

(fragments). The database search results were filtered using the ion score to set the false 

discovery rate (FDR) to 1% on the peptide and protein level, respectively, based on the number 

of reverse protein sequence hits in the datasets. The relative quantitative data obtained were 

normalized and statistically analyzed using our in-house script SafeQuant (Ahrné et al., 2016). 

Here the gMin algorithm was chosen. Afterwards, data were imported into FileMakerPro 

Advanced (Version FMP18) for further data processing. Imputed values were excluded and data 

were median subtracted per biopsy. 

 

Processing of phospho-proteome data 

Our SafeQuant in house script generated phospho-peptide centric quantifications. In order to 

generate quantitative data for single phosphorylation sites, peptides with more than one 

phosphorylation site were deconvoluted. As a next step all intensities assigned to a single 

phosphorylation site were added up to generate one cumulative intensity per phosphorylation site. 

The raw intensities of the triplicates were averaged and the mean values transformed by the 

logarithm to the base 2. Next, the values were normalized by median subtraction. The phospho-

enrichments were performed and measured in three batches due to the limitation of the number 

of MS runs that can be performed using the same capillary column. In each batch also an aliquot 
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of the pooled healthy sample was enriched and measured. Normalization to the pooled healthy 

sample was then performed batch-wise to the pooled healthy sample enriched and measured at 

the same time with the same batch. Localization probabilities of each phosphorylation site were 

determined per batch using ScaffoldPTM (Version 3.2.0) (Proteome Software) and the maximum 

observed localization probability was assigned to each phosphorylation site. Only phosphorylation 

sites with a minimum localization probability of 50% were taken into account. 

We obtained data for 12205 phosphorylation sites (in 4230 proteins) that were quantified (always 

against healthy liver) in at least one HCC (Table S1), 9606 (3816) quantified in at least one HCC 

with >99% localization probability, 7911 (3160) quantified in at least 26 HCCs, 6403 (2856) 

quantified in at least 26 HCCs with >99% localization probability, 4112 (2031) quantified in all 51 

HCCs and 3439 (1837) quantified in at all 51 HCCs with >99% localization probability. Starting 

from the 12205 phosphorylation sites, we removed proteins for which data were missing from 

>50% of samples (50% to enable sufficient data for imputation), resulting in 7893 phosphorylation 

sites from 3156 proteins for further analysis. Since data were generated over three batches, we 

corrected for the batch effect using the ‘removeBatchEffect’ function in the edgeR R package 

(Robinson et al., 2010). Data imputation using nearest neighbor averaging was performed using 

the ‘impute.knn’ function from the impute R package. To normalize for overall protein levels, we 

computed the difference between the log2-fold-changes of phosphorylation site levels between 

tumors and the normal livers and the log2-fold-changes of protein levels between tumors and the 

normal livers, for proteins detected by both technologies. 

 

Differential expression analysis 

For transcriptome data, differential expression analysis using the ‘edgeR’ package (v3.32.0) 

(Robinson et al., 2010) between samples from a given class vs all other samples using raw RSEM 

expected counts as input. Specifically, normalization was performed using the “TMM” (weighted 
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trimmed mean) method (Robinson and Oshlack, 2010) and differential expression was assessed 

using the quasi-likelihood F-test, adjusted for multiple testing using Benjamini and Hochberg’s 

method. For proteome and phosphoproteome data, differential expression analysis was 

performed using the ‘limma’ package (v3.46.0) (Ritchie et al., 2015), using the log2-fold-changes 

of protein/phosphorylation site levels between tumors and the normal livers. limma fits a linear 

model to compute the moderated t-statistics using a Bayesian model and adjusts the p-values for 

multiple testing using Benjamini and Hochberg’s method. Genes, proteins and phosphorylation 

sites with adjusted p≤0.05 were considered differentially expressed. 

 

Pathway analysis 

Pathway analysis (over-representation analysis and gene set enrichment analysis (GSEA)) was 

performed using the ‘clusterProfiler’ (v3.18.0) and ‘ReactomePA’ (v1.34.0) packages (Yu and He, 

2016; Yu et al., 2012) for KEGG/Reactome pathways and Gene Ontology biological processes 

subset. For proteome and phosphoproteome data, the corresponding sets of detected proteins 

were used as background for overrepresentation tests. p≤0.05 was considered statistically 

significant. Pathway analysis results were represented as barplots, dotplots or enrichment maps. 

 

Kinase-substrate enrichment analysis (KSEA) 

KSEA (Casado et al., 2013) was performed using the ‘KSEAapp’ R package (v0.99.0) (Wiredja 

et al., 2017) using NetworKIN.cutoff=5, using the log fold-change and p-values computed from 

differential expression analysis (see Differential expression analysis) of unimputed 

phosphorylation site levels and unimputed phosphorylation site levels normalized by overall 

protein levels (see Processing of phospho-proteome data) as input. 

 

Analysis of dysregulated genes/proteins and pathways in HCC 
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For the assessment of dysregulated genes and proteins in HCC, we performed differential 

expression analysis between HCCs and normal livers (see Differential expression analysis) for 

transcriptome and proteome data. To compare the dysregulated genes/proteins between 

transcriptome data and proteome data, Uniprot accessions were mapped to Ensembl gene IDs, 

resulting in 5490 comparable genes/proteins. Dysregulated pathways were identified using a 

quadrant analysis, by performing over-representation tests (see Pathway analysis).  

 

CNA-mRNA-protein correlation 

Correlation was performed using segmented log ratio for CNA, and the log2-fold-changes of 

protein levels between tumors and the median of normal livers for mRNA and protein data. Uniprot 

accessions were mapped to Ensembl gene IDs. For the CNA-mRNA correlation, 15272 genes 

were included. For the mRNA-protein correlation, 5481 genes were included. CNA-mRNA and 

mRNA-protein correlations were assessed using Spearman correlation tests. To assess the 

enrichment of genes within significant focal copy number alterations defined by GISTIC, genes 

were ranked according to Spearman correlation coefficient for GSEA analysis using the 

clusterProfiler package (Yu et al., 2012). p-value ≤ 0.05 was considered statistically significant. 

 

Analysis of dysregulated phosphorylation sites in HCC 

For the assessment of dysregulated phosphorylation sites in HCC, we performed differential 

expression analysis between HCCs and normal livers (see Differential expression analysis) for 

phosphorylation site levels with and without normalization by protein level. Significantly regulated 

phosphorylation sites (adjusted p < 0.05 and |logFC|≥2) were used for pathway analysis using 

over-representation tests (see Pathway analysis), separately for up- and down-regulated 

phosphorylation sites, as well as for up- and down-regulated phosphorylation sites together. 

KSEA was also performed to identify differential kinase activity by computing the differential 

expression between HCCs and normal livers (see Kinase-substrate enrichment analysis). 
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Phosphoproteomic analysis for CTNNB1 and TP53 mutations 

Transcriptomic, proteomic and phosphoproteomic signatures of CTNNB1 and TP53 mutations 

were identified by differential expression analysis of the HCCs (see Differential expression 

analysis), by fitting a single model incorporating the mutation status of both genes. To identify 

phosphorylation sites associated with mutations in these two genes but were not associated with 

differences on the protein levels, we identified phosphorylation sites whose p-values were within 

the most extreme 10th percentile while the p-values of the corresponding proteins were within 

inter-quartile range. These phosphorylation sites were then subjected to pathway analysis by 

over-representation tests (see Pathway analysis). KSEA was also performed to identify 

differential kinase activity by computing the differential expression between mutant and wild-type 

HCCs (see Kinase-substrate enrichment analysis). 

 

Single-omics clustering 

Identification of tumor subclasses based on somatic non-synonymous mutations was performed 

using oncosign (v1.0) (Ciriello et al., 2013) and Network-Based Stratification (pyNBS, downloaded 

on 4th June 2020) (Hofree et al., 2013; Huang et al., 2018). Significantly mutated genes identified 

using MutsigCV (Lawrence et al., 2013), as well as genes identified as significantly mutated in 

HCC in at least 2 of Martincorena et al(Martincorena et al., 2018), Schultz et al (Schulze et al., 

2015), Fujimoto et al (Fujimoto et al., 2016), Bailey et al (Bailey et al., 2018) (excluding TERT) 

and mutated (non-synonymous) in at least 3 tumor samples were included for the clustering.  

 

Identification of tumor subclasses based on copy number alterations was performed using 

consensus k-means clustering and consensus hierarchical clustering using the 

‘ConsensusClusterPlus’ R package (v1.54.0) (Wilkerson and Hayes, 2010), using gene-level 

amplification, gain, neutral, loss and deletion status as input. 117 tumors were included, excluding 
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the 5 for which copy number gain/loss status could not be determined (see Whole-exome 

sequencing and data processing). For both clustering methods, Euclidean distance was used 

as the distance metric, and up to 10 clusters were evaluated over 100 subsamples. Hierarchical 

clustering was performed using the "ward.D2" method.  

 

Identification of tumor subclasses based on transcriptome, proteome and phosphoproteome 

subclasses was performed using consensus nonnegative matrix factorization (NMF) and 

consensus k-means clustering using the ‘CancerSubtypes’ (v1.16.0) and the 

‘ConsensusClusterPlus’ (v1.54.0) R packages (Wilkerson and Hayes, 2010; Xu et al., 2017), 

respectively. Log2-fold-change between tumors and the median of normal livers were used as 

input. For transcriptome and phosphoproteome clustering, features with standard deviation ≥2 

across the tumors were included for clustering, resulting in 1370 and 1024 features, respectively. 

For proteome clustering, features with standard deviation ≥1 across the tumors were included, 

resulting in 1083 features. For consensus NMF, up to 10 clusters were evaluated over 50 NMF 

runs. For consensus k-means clustering, 1-Spearman correlation coefficient was used as the 

distance metric, and up to 10 clusters were evaluated over 100 subsamples. 

 

Robustness of the subclasses was assessed by downsampling to 70%, 80% or 90% of samples 

over 20 runs, reclustering the reduced dataset, and calculating the adjusted Rand index compared 

to the full dataset. Cluster quality was assessed by Silhouette widths (except for mutation 

subclasses). The final number of clusters was chosen on the basis of the Silhouette widths and 

adjusted Rand index of the full dataset and for the 20 iterations of the downsampled datasets. 

 

For mutation subclasses, the enrichment of mutated genes was assessed using a chi-squared 

test across all clusters and using Fisher’s exact tests comparing a given cluster to all other 

clusters. For CNA subclasses, the enrichment of copy number-altered genes was assessed using 
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Mann-Whitney U tests, adjusted for multiple testing using Benjamini and Hochberg’s method. 

Genes with adjusted p≤0.05 were considered statistically significant. For transcriptome, proteome 

and phosphoproteome subclasses, over-expressed features were identified by differential 

expression analysis between all samples in a given class and all other samples (see Differential 

expression analysis) followed by pathway analysis (see Pathway analysis). KSEA was also 

performed for the phosphoproteomics subclasses (see Kinase-substrate enrichment analysis). 

Figures were generated using the ‘ComplexHeatmap’ R package (v2.6.2) (Gu et al., 2016). 

 

Integrative clustering 

Integrative clustering was performed for the 51 HCCs for which data were available for all data 

types using the ‘iClusterBayes’ function, which fits a Bayesian latent variable model that 

generates an integrated cluster assignment based on joint inference across data types, 

implemented in the ‘iClusterPlus’ R package (v1.26.0) (Mo et al., 2018) and the similarity network 

fusion (SNF) method (Wang et al., 2014), which constructs a fusion patient similarity network by 

integrating the patient similarity obtained from each of the genomic data types, as implemented 

in the ‘SNFtool’ (v2.3.0) and the ‘CancerSubtypes’ R packages (Wang et al., 2014; Xu et al., 

2017). As input data, significantly mutated genes identified using MutsigCV (Lawrence et al., 

2013), as well as genes identified as significantly mutated in HCC in at least 2 of Martincorena et 

al (Bailey et al., 2018; Martincorena et al., 2018), Schultz et al (Schulze et al., 2015), Fujimoto et 

al (Fujimoto et al., 2016), Bailey et al (Bailey et al., 2018) (excluding TERT) and mutated (non-

synonymous) in at least 2 samples were included as mutational data. CNA data were included as 

collapsed copy number regions, constructed using the ‘CNregions’ function in the ‘iClusterPlus’ 

R package to reduce the segmented logR ratio, as recommended in the package vignette, 

resulting in 927 features for clustering. For transcriptome and phosphoproteome data, features 

with standard deviation ≥2 across the tumors were included for clustering, resulting in 1646 and 

1024 features, respectively. For proteome data, features with standard deviation ≥1 across the 
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tumors were included, resulting in 1083 features. Transcriptome, proteome and 

phosphoproteome data were z-score-transformed prior to clustering. For both clustering, up to 10 

clusters were evaluated. 

 

Robustness of the subclasses was assessed by downsampling to 70%, 80% or 90% of samples 

over 20 runs, reclustering the reduced dataset, and calculating the adjusted Rand index compared 

to the full dataset. For iClusterBayes, the final number of clusters was chosen on the basis of the 

Bayesian Information Criterion, the deviance ratio (interpreted as percent explained variation) and 

adjusted Rand index between the full dataset and the 20 iterations of the downsampled datasets. 

For SNF, cluster quality was assessed by Silhouette widths and the final number of clusters was 

chosen on the basis of the Silhouette widths and adjusted Rand index of the full dataset and for 

the 20 iterations of the downsampled datasets. 

 

The identification of enriched features were performed as per single-omics clustering for the 

corresponding data type. Figures were generated using the ‘ComplexHeatmap’ R package 

(v2.6.2) (Gu et al., 2016). 

 

Statistical Analysis 

Principal component analysis (PCA) of transcriptome, proteome and phosphoproteome data was 

performed using ‘prcomp’ from the stats R library. For transcriptome data, the upper-quartile-

normalized RSEM values were used as input. For proteome and phosphoproteome data, the log2-

fold-changes of protein/phosphorylation site abundance between tumors and the median of 

normal livers were used. Intra-group variability from PCA was computed as the pairwise Euclidean 

distance between samples of the same Edmondson grade using all principal components. 

Distance to normal livers was computed as the Euclidean distance between a given HCC sample 

to the median of normal livers using all principal components.  
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Statistical analyses of the clinicopathological variables were performed in R version 4.0.3. 

Comparisons of ordinal variables (e.g. BCLC, Edmondson grade, number of tumors) were 

performed using Mann-Whitney U tests. Comparisons of categorical variables (e.g. 

immunophenotype, presence of metastasis) were performed using Fisher’s exact tests or chi-

squared tests. Comparisons of numerical variables (e.g. tumor mutational burden) were 

performed using Mann-Whitney U or Kruskal-Wallis tests. Correction for multiple testing was 

performed using the Benjamini-Hochberg method. 

 

The association of overall survival and molecular subclasses was performed using Cox 

proportional-hazards model, including BCLC stage as a covariate. Overall survival was defined 

as the time interval between the diagnosis of HCC to death. Individuals who were lost-to-followup 

or had undergone liver transplantation were considered censored. For patients with >1 biopsy 

included in the study, only one biopsy was considered if all biopsies were of the same molecular 

subclass and patients excluded from overall survival analysis if the biopsies were of multiple 

molecular subclasses. All statistical tests were two-sided unless otherwise indicated, and p≤0.05 

was considered statistically significant. 

 

Resource Availability 

Lead Contact: Further information and requests for resources should be directed to and will be 

fulfilled by the Lead Contact, Markus H Heim (markus.heim@unibas.ch). 

 

Data Availability: The sequencing datasets generated during this study are available at European 

Genome-phenome Archive under accessions EGAS00001005073 (whole-exome sequencing) 

and EGAS00001005074 (RNA-sequencing). 
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SUPPLEMENTAL INFORMATION TITLES AND LEGENDS 

Figure S1: Heatmaps illustrate the variant allele fractions (shades of blue according to the color 

key, gray indicates absence) of the somatic mutations identified in the 7 patients for whosm >1 

tumor biopsy was included in the study. Non-synonymous mutations in HCC driver genes are 

labeled. To the right of the heatmaps are genome-wide copy number plots of the tumor biopsies. 

In the copy number plots, segmented Log2 ratios (y-axis) were plotted according to their genomic 

positions (x-axis). Alternating blue and gray demarcate the chromosomes. Related to Table 1. 

 

Figure S2: (A) Oncoprint showing the somatic mutational landscape of HCC biopsies, stratified 

by the availability of proteome and phosphoproteome profiling. Significantly mutated genes in the 

current cohort (CTNNB1, CDKN1A, TP53, ALB, ARID1A, GPAM, AXIN1) and six additional HCC 

driver genes (previously reported in at least 2 studies and mutated in at least 3 biopsies in this 

study) are included. Barplot above the oncoprint shows the total number of somatic mutations in 

each biopsy. Percentages to the left of the oncoprint show the fraction of biopsies harboring 

somatic mutations in a given gene. Barplot to the right of the oncoprint shows the total number 

and type of mutations identified in a given gene. The type of mutations is color-coded according 

to the legend. (B) Oncoprint showing the copy number profiles of HCC biopsies, stratified by the 

availability of proteome and phosphoproteome profiling. Significantly altered regions as defined 

by GISTIC2 on the entire cohort are shown. Copy number status was defined by GISTIC2. (C) 

Principal component analysis plot of gene expression of HCC biopsies (filled circles) and normal 

liver biopsies (open circles), colored by the availability of proteome and phosphoproteome 

profiling. Related to Table 1. 

 

Figure S3: (A) Volcano plot of the -log10(adjusted p-value) against the log fold-change (logFC) 

of the differentially regulated phosphorylation sites normalized by overall protein levels 

('normalized phosphorylation sites') in HCC compared to normal livers. Dots are colored by logFC. 
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Vertical dotted lines indicate |logFC|=2 and horizontal dotted lines indicate adjusted p-value=0.05. 

(B) Dot plot illustrating selected enriched Reactome pathways according to gene set enrichment 

analysis (GSEA) from the differential expression analysis in (A). NES: normalized enrichment 

score. (C) Top barplot showing the enrichment z-score of the kinases with significantly up- or 

downregulated kinase activity in a kinase-substrate enrichment analysis (KSEA) comparing 

normalized phosphorylation sites in HCC to normal livers. In the bubble plot below, the 

phosphorylation site substrates are shown in rows, where red and blue dots indicate that the 

phosphorylation site is up- and downregulated, respectively. The size of the dots is proportional 

to the log2 fold-change of the phosphorylation site. Phosphorylation sites with at least a 5-fold 

difference between HCCs and normal livers are shown. For kinases with <3 substrates with at 

least a 5-fold difference, the top three substrates with the highest |logFC| are shown. Related to 

Figure 3. 

 

Figure S4: (A) Oncoprint showing the somatic mutational landscape of HCC. Significantly 

mutated genes in the current cohort (CTNNB1, CDKN1A, TP53, ALB, ARID1A, GPAM, AXIN1, in 

bold) and six additional HCC driver genes (previously reported in at least 2 studies and mutated 

in at least 3 biopsies in this study) are included. Barplot above the oncoprint shows the total 

number of somatic mutations in each biopsy. Percentages to the left of the oncoprint show the 

fraction of biopsies harboring somatic mutations in a given gene. Barplot to the right of the 

oncoprint shows the total number and type of mutations identified in a given gene. The type of 

mutations is color-coded according to the legend. (B) Lollipop plot showing the distribution of the 

GPAM mutations along the protein, with the mutations colored according to the color key in (A). 

(C) Bubble plot showing association between mutation status and clinicopathological parameters. 

Size of the circles is proportional to -log10(p-value) and blue circles indicate statistically significant 

associations. Statistical analyses were performed by Fisher’s exact or Chi-squared tests. (D) 
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Forest plot showing multivariate Cox proportional-hazards model of overall survival according to 

the mutation status of HCC driver genes and BCLC clinical staging. Related to Figure 4. 

 

Figure S5: For the clustering of HCC biopsies based on somatic mutations, we used OncoSign 

(primary) and pyNBS (alternative). For CNA, we used consensus k-means clustering (primary) 

and consensus hierarchical clustering (alternative). For the remaining data types, we used 

consensus nonnegative matrix factorization (NMF, primary) and consensus k-means clustering 

(alternative). We assessed the mean Silhouette width (cluster quality) and adjusted Rand index 

(concordance with the classes derived from the full dataset) by subsampling 70%, 80% and 90% 

of the samples. (A, left) Boxplot showing adjusted Rand index between the classes derived from 

OncoSign (single-omics clustering using mutation data) using the full data set and the classes 

derived from downsampled data. Downsampling (70%, 80% and 90% of the samples) was 

performed over 20 iterations. (right) Concordance between clusters derived from OncoSign and 

pyNBS. (B-E, from left) Mean silhouette widths against k (the number of clusters), mean silhouette 

widths against k from clustering using downsampled datasets (70%, 80% and 90% of the 

samples, 20 iterations of downsampling), adjusted Rand index between the classes derived from 

the full dataset and the classes derived from subsampled data using the primary clustering 

method, and concordance between the primary and alternative clustering methods. Statistical 

comparisons were performed by Fisher’s exact or chi-squared tests. (F) Clusters derived from 

OncoSign based on the significantly mutated genes found in this study and in previous studies 

(see methods). (G) Clusters derived from copy number alterations by consensus K-means 

clustering. (H) Clusters derived from gene expression by consensus NMF. (I) Concordance 

between single-omics clusters. Statistical comparisons were performed by Fisher’s exact or chi-

squared tests. (J, top) Assessment of the Bayesian Information Criterion and the deviance ratio 

(interpreted as percent explained variation) from integrative clustering using iClusterBayes. 

(bottom left) Boxplot showing adjusted Rank index between the classes derived from integrative 
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clustering using the full data set and the classes derived from downsampled data. Downsampling 

(70%, 80% and 90% of the samples) was performed over 20 iterations. (bottom right) 

Concordance between clusters derived from iClusterBayes and SNF. Statistical comparison was 

performed using a chi-squared test. Related to Figure 5. 

 

Figure S6: Forest plots from Cox proportional hazards analyses. (Left) Univariate analysis for 

each single-omics and integrative clusters. (Right) Multivariate analysis for each single-omics and 

integrative clusters incorporating BCLC clinical stage as a covariate. Related to Figure 5. 

 

Table S1: Clinicopathological parameters of the cohort, as well as technical details of molecular 

profiling. Related to Table 1. 

 

Table S2: List of enriched Reacome, KEGG and Gene Ontology biological processes for 

deregulated pathways on the mRNA and protein levels. Related to Figure 1F. 

 

Table S3: List of enriched Reactome/KEGG pathways/GISTIC2 peaks among genes with high 

CNA-mRNA expression correlation and genes with high mRNA-protein expression correlation.  

Related to Figure 2C-D.  

 

Table S4: List of genes with high (rho≥0.5) CNA-mRNA and mRNA-protein correlations. Genes 

within GISTIC2 peaks and GISTIC2 peaks enriched among genes with high CNA-mRNA 

correlation are annotated. Related to Figure 2D. 
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Table S5: List of dysregulated phosphorylation sites in HCC. Related to Figure 3A and Figure 

S3A.  

 

Table S6: List of enriched Reacome, KEGG and Gene Ontology biological processes for 

deregulated pathways on the phosphoprotein levels. Related to Figure 3B and Figure S3B. 

   

Table S7: List of kinases with altered activity in HCC and their associated substrates (at least a 

5-fold difference between HCCs and normal livers) in a KSEA. Related to Figure 3C and Figure 

S3C. 

  

Table S8: List of somatic mutations. Related to Figure 4 and Figure S4A.  

 

Table S9: List of proteins differentially expressed between CTNNB1/TP53-mutant vs wild-type 

HCCs and their corresponding differential expression on the mRNA level. Related to Figure 4A/E. 

 

Table S10: List of enriched Gene Ontology biological processes for CTNNB1- and TP53- mutant 

HCC. Related to Figure 4C/G. 

 

Table S11: Pathway/KSEA analysis for single-omics subclasses. Related to Figure 5A-B and 

Figure S5H. 

 

Table S12: Pathway/KSEA analysis for integrative clustering (iCluster) subclasses. Related to 

Figure 5C. 
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