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ABSTRACT 

Family and population studies indicate clear heritability of major depressive disorder (MDD), though its 

underlying biology remains unclear. The majority of single-nucleotide polymorphism (SNP) linkage blocks 

associated with MDD by genome-wide association studies (GWASes) are believed to alter transcriptional 

regulators (e.g., enhancers, promoters), based on enrichment of marks correlated with these functions. A key to 

understanding MDD pathophysiology will be elucidation of which SNPs are functional and how such functional 

variants biologically converge to elicit the disease. Furthermore, retinoids can elicit MDD in patients, and 

promote depressive behaviors in rodent models, acting via a regulatory system of retinoid receptor transcription 

factors (TFs). We therefore sought to simultaneously identify functional genetic variants and assess retinoid 

pathway regulation of MDD risk loci. Using Massively Parallel Reporter Assays (MPRAs), we functionally 

screened over 1 000 SNPs prioritized from 39 neuropsychiatric trait/disease GWAS loci, with SNPs selected 

based on overlap with predicted regulatory features—including expression quantitative trait loci (eQTL) and 

histone marks—from human brains and cell cultures. We identified >100 SNPs with allelic effects on 

expression in a retinoid-responsive model system. Further, functional SNPs were enriched for binding 

sequences of retinoic acid-receptive transcription factors (TFs); with additional allelic differences unmasked by 

treatment with all-trans retinoic acid (ATRA). Finally, motifs overrepresented across functional SNPs 

corresponded to TFs highly specific to serotonergic neurons, suggesting an in vivo site of action. Our 

application of MPRAs to screen MDD-associated SNPs suggests a shared transcriptional regulatory program 

across loci, a subset of which are unmasked by retinoids.  

 

INTRODUCTION 

Major depressive disorder (MDD) is a common but debilitating psychiatric disorder affecting hundreds of 

millions worldwide1, exacting substantial tolls on both individuals2 and societies3. Despite the global burden of 

MDD, nearly half of patients do not clinically respond to treatment4, in part due to limited understanding of its 

biological underpinnings. Family studies have demonstrated that MDD risk is at least 30% heritable5,6. More 

recently, genome-wide association studies (GWASes) have demonstrated similar estimates for severe MDD7, 

and have helped narrow in on associated single nucleotide polymorphisms (SNPs)8–12, a tantalizing entry point 

for understanding the biology of MDD. However, GWAS studies do not identify causal variants, but rather 

implicate wider co-inherited regions consisting of many SNPs in linkage disequilibrium (LD). Most disease-

associated SNPs are found outside of protein-coding sequences suggesting probable roles in transcriptional 

regulation (TR)13–16. However, this leaves unresolved issues of identifying which linked SNPs have functional 

allelic impacts on TR, and how these act together across loci to result in disease.  

 

In addition, it is generally thought that undetected, small-effect SNPs acting across the genome—including 

conditional SNPs within GWAS-significant loci17—contribute to the substantial heritability not caught by 

GWAS-significant SNPs alone18. A recent analysis of psychiatric disorder GWASes confirmed the existence of 

such conditional SNPs in MDD19. As such, multiple SNPs with allelic TR effects could exist per LD block, but 

functional demonstration has been sparse to date. The largest functional TR assay of MDD-associated variants 

examined 34 SNPs using luciferase assays20, representing successful but low-throughput identification of 
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functional MDD SNPs. However, in terms of broad linkage, these loci constitute well over 10,000 SNPs, which 

will ultimately require higher-throughput approaches. 

 

Furthermore, how functional SNPs biologically result in disease remains unclear, even once such SNPs are 

identified. Nonetheless, polygenic21 and omnigenic18 models provide a guiding principle for interpretation of 

complex disease genetics. In brief, these theories posit that consistent emergence of a specific phenotype via 

widespread genomic variation necessarily requires common biological endpoints of those variants’ effects. At 

the molecular level, these points of convergence could be either upstream (shared regulation across loci)22 or 

downstream (common biological pathways across loci). For downstream analyses, myriad approaches have 

been developed to nominate gene targets of putative TR SNPs using proximity23, chromatin structure24–26, or 

expression quantitative trait loci (eQTLs)27–29, yielding gene sets tested for enrichment in biological 

pathways27,28,30 and cell types31. However, no analogous approaches exist for identifying convergent upstream 

(i.e., TR) molecular effects of genetic risk, in part because a prerequisite is defining the functional SNPs. 

One possible point of upstream TR convergence of MDD risk variants is retinoic acid and related compounds 

(retinoids). Retinoids are steroid hormones, driving transcriptional responses via several retinoid-binding 

transcription factors (TFs) and heterodimerizing partners32,33. Besides their critical role in neurodevelopment, 

including of depression-implicated limbic structures34, retinoids have been associated with MDD onset and 

suicidality by epidemiological studies of the retinoid agonist isotretinoin35. Additional evidence for retinoid 

pathway activity in the adult brain—and its overactivity as a risk factor for depression—comes from rodent 

pharmacology and genetic models. For example, knockdown of Cyp26b1—which metabolizes retinoids—in 

adult mouse anterior insula suppresses interest in social novelty by reducing spontaneous activity of excitatory 

neurons36. Likewise,  depressive symptoms have been observed in rats after intracerebroventricular all-trans 

retinoic acid (ATRA) administration37. In addition, retinoid agonism of the TF RARA upregulates 

corticotrophin releasing hormone (CRH) expression, and RARA is more abundant in CRH neurons of affective 

disorder hypothalami38; moreover, RARA prevents corticoid negative feedback on CRH expression39, resulting 

in overactivity of stress signaling in the brain and body. Finally, given the substantial shared genetic risk across 

psychiatric disorders40, it is notable that schizophrenia GWAS loci show enrichment for retinoid TR41,and that 

circulating retinoids are dysregulated in schizophrenia patients 42. Similarly, retinoid pathway genes including 

CYP26B1 are dysregulated in postmortem brain from autism spectrum disorders, bipolar disorder, and 

schizophrenia patients43. These findings led us to speculate that a component of MDD risk genetics may, in fact, 

demonstrate an upstream convergence via recurrent retinoid-mediated TR disruptions by MDD-associated 

SNPs.  

 

Massively parallel reporter assays (MPRAs) provide a solution to both experimentally identify functional 

variants and, consequently, their shared TR features. MPRAs assess thousands of DNA elements for 

transcriptional-regulatory functions and allelic differences simultaneously by pairing each short genomic 

sequence element of interest to several unique barcodes, with a constant promoter and reporter gene placed in 

between44–47. Delivery of a library of DNA elements to cells, followed by RNA collection and sequencing, 

enables quantitative estimation of the expression driven by each element as a ratio of collected RNA barcode to 
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delivered DNA barcode. These assays have recently been adapted to systematically identify SNPs with 

functional allelic TR differences from GWAS loci for several diseases48–56. Two key features make MPRAs 

advantageous for identifying both functional SNPs and their TR interactions. 57First, the assay is carried out via 

transfection and targeted RNA-sequencing, meaning it can be executed in unmodified cell lines appropriate to 

the application. Second, MPRAs can be conducted to define TR effects of experimental manipulations in these 

systems, such as steroid hormone administration57. 

 

Therefore, we sought to experimentally identify functional TR SNPs from 39 GWAS loci associated with 

MDD, neuroticism, and broader psychiatric disease risk, with the hypothesis that functional SNPs converge at 

the level of retinoid-mediated TR. From broad linkage regions, we selected over 1 000 SNPs based on 

overlapping human brain and neural epigenomic signals suggestive of TR activity. Critically, selection of 

neither the loci nor the SNPs was predicated on retinoid involvement, allowing for unbiased functional 

screening of a cross-section of MDD GWAS loci. To ensure we could detect SNPs subject to retinoid-mediated 

TR, we used neuroblastoma (N2a) cells, as they are strongly and rapidly retinoid-responsive58,59. Our initial 

assay identified over 75 functional SNPs from 29 GWAS regions, confirming that GWAS loci contain several 

functional SNPs. We then examined whether these functional SNPs possessed shared upstream TR features—

namely, transcription factor (TF) binding motifs. Remarkably, there was indeed enrichment of retinoic acid 

binding TFs among the MPRA-functional vs. -nonfunctional SNPs, supporting our hypothesis. To further 

characterize retinoid effects on TR at MDD-associated SNPs, we performed a second assay using all-trans 

retinoic acid (ATRA), known to stall division of N2a and other neuroblastoma cells by inducing neuronal-like 

differentiation58. First, we found that functional SNPs containing retinoid receptor motifs had increased 

magnitudes of effect in the presence of ATRA, consistent with bonafide retinoid receptor TR activity. More 

broadly, ATRA led to striking rearrangements of the baseline regulatory landscape, including altered magnitude 

and reversed direction of allelic effects. Additionally, it revealed new SNPs with allelic TR differences 

unmasked by ATRA treatment. Significant ATRA-allele interaction SNPs were enriched not only for binding 

sequences of the retinoid receptor RARG, but for motifs of several known retinoid-induced TFs, indicating 

broad roles of both retinoid TFs and their downstream TR systems at functional MDD-associated SNPs. 

 

Finally, we explored the cell type-specificity of TFs predicted to regulate our functionally identified SNPs. 

Strikingly, we found TFs highly specific to serotonin neurons were strongly enriched among those we predicted 

to be recurrently involved in retinoid-dependent SNP function. These findings suggest that the broad 

transcriptional-regulatory systems engaged by retinoids—and as we illustrate, the genetic component of MDD 

risk they engage—may converge on serotonergic neurons. In summary, we identify MDD-associated functional 

SNPs with both baseline and ATRA-mediated allelic differences in TR, and these disproportionately show 

upstream convergent regulation by retinoid receptors and TFs they induce. This highlights a striking potential 

point of convergence between genetic risk loci and an environmental risk factor for MDD. 

 
 

METHODS 
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Identifying candidate psychiatric GWAS regulatory variants. 

To prioritize putatively regulatory variants from neuropsychiatric disease GWAS regions (predominantly MDD; 

Figure 1A), SNPs in linkage disequilibrium (LD) with GWAS tag variants at R2 > 0.1 were collected and 

intersected with histone modification, eQTL, Hi-C, and enhancer segmentation datasets from human 

postmortem tissue and neural lineage cell lines (see Supplemental Methods, Figure 1B). SNPs were manually 

selected based on diversity and density of annotation overlap within each locus (detailed in Supplemental 

Methods.) As a negative control, we identified candidates from one additional locus associated with several 

anthropomorphic traits60, in a blinded manner. Altogether, 1453 SNPs were selected. Final LD of selected SNPs 

was distributed similarly to starting SNPs (Fig 1D). 59 Further included was a positive control TR SNP 

functionally demonstrated in mouse retina and brain55. 

 

Human genomic sequence (hg19) tiles up to 126bp were taken centered on the 1454 candidate enhancer SNPs, 

each paired to 10 unique 10 base pair barcode sequences per allele and ordered as an oligonucleotide pool. 

Further included in the pool were 110 “basal” barcodes, where no human genomic sequence was placed 

upstream of the minimal promoter (i.e., such that the only variable sequence was the barcode itself). PCR-

amplified oligos were then cloned into plasmid (Fig 1E), with subsequent insertion of a reporter cassette 

containing a constant minimal promoter (hsp68) driving the dsRed reporter gene61, and the untranslated 

“woodchuck” element (for RNA stabilization, to improve signal)62. 

 
Massively Parallel Reporter Assays 

N2A cells were grown in uncoated 6-well plates in medium consisting of 0.1µM vacuum-filtered DMEM with 

10% Fetal Bovine Serum (2% fetal bovine serum for the ATRA assay, based on media conditions from the 

literature63,64). For transfection, cells were reverse transfected by plating in antibiotic-free medium onto pre-

plated 400µL mixtures of 2.5µg plasmid with Lipofectamine 2000. After 7 hours of incubation at 37°C and 5% 

CO2, medium was replaced with the respective medium containing antibiotics, and in the second assay, a final 

concentration of 20 µM ATRA dissolved in DMSO, or equivalent volume of vehicle (DMSO). Medium was not 

replaced before RNA collection in the first assay; in the second assay, it was refreshed every 24 hours. 72 hours 

after transfection, cells were collected and RNA extracted using the Zymo Clean-and-Concentrator 5 kit per 

manufacturer instructions. Eluted RNA was treated with Turbo DNA-free kit to remove any residual plasmid to 

prevent contaminating DNA reads during sequencing, and cleaned a second time using the Zymo kit as above. 

 
Targeted sequencing of RNA and input plasmid 
Briefly, equal amounts of RNA (1µg) from each sample were prepared for sequencing by targeted cDNA 

synthesis using a primer against the distal 3’UTR of the reporter. These, along with input plasmid, were 

subjected to PCR, enzymatic digestion, ligation of Illumina sequencing adapters, and a final PCR to add sample 

indexes for sequencing. Enzymes, and size-selection cleanup steps used in this process are fully detailed in 

Supplemental Methods. No-reverse-transcriptase controls utilizing sample RNA were co-prepared for both 

experiments and did not generate detectable product, indicating sequencing amplicons generated from RNA 

samples were exclusively representative of RNA content. Samples were sequenced to an average depth of ~8 

million reads (first assay) or ~20 million reads (second assay).  
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Analysis 

Allelic SNP effects on expression in the first assay and in single-condition analyses of the second assay were 

assessed by t-testing the element’s expression of each allele across replicates. dbSNP-assigned reference (“ref”) 

and alternative (“alt”) alleles for each SNP were used to define comparison direction (the difference of activity 

under the alt allele vs. the ref allele). For the first MPRA and single-condition analysis of vehicle samples from 

the second assay, P values were adjusted using empirical q-value correction via simulated allelic comparisons 

between random subsets of “basal” barcodes (see Supplemental Methods) following an analogous procedure 

from a multiplex CRISPR study65, with significance defined as q<0.05 unless specified otherwise. This ensures 

that a representative cross-section of expression variability driven by barcode sequences is accounted for when 

assessing TR differences. Single-condition analysis of ATRA samples utilized standard Benjamini-Hochberg 

FDR correction, as primary effects of interest in these samples were ascertained by linear modeling. For 

analysis of ATRA effects, barcode level expression values for both alleles of a SNP from all samples were used 

in a linear mixed model (LMM) with a random variable for replicate (to account for well-specific effects) as: 

barcode expression ~ allele + drug + allele:drug + (1|replicate). Empirical q-value correction for LMM F 

statistics was performed in an analogous manner to the prior experiment, generating a vector of F statistics for 

each coefficient from 20 000 randomized basal-only comparisons. For SNPs with significant allele and 

interaction coefficients, a meaningful allele main effect was considered present if the single-condition vehicle 

and ATRA analyses showed the same allelic direction of effect, with a vehicle q < 0.1 and ATRA FDR<0.1 

(i.e., near-significant within each condition of n=6, thus reasonably capable of achieving significance in the 

LMM analysis of the two conditions combined). 

 

Motifbreakr analysis and functional SNP enrichment for perturbed motifs 

The motifbreakR66 package was used to identify TF binding motifs significantly different between alleles of 

each SNP. Briefly, the number of MPRA-identified functional SNPs matching a given motif for at least one 

allele was compared to the number of non-functional SNPs matching that motif across 10,000 random draws of 

n (number of significant) SNPs. A second version of this analysis focused on the concordance rate – that is, 

whether the frequency of functional variants experiencing concurrent strengthening of motif and expression or 

vice versa—was significant compared to 10,000 draws of n random SNPs from the analyzed set. In the first 

assay, SNPs were defined as functional based on a q value threshold of 0.05. In the second assay, we performed 

two comparisons. One analysis compared allele main effect SNPs at q<0.1 vs. those subject to neither main 

effects of allele or drug, nor their interaction (all q>0.1), representing the breadth of functional variant-

susceptible cis-regulators. The second analysis compared interaction SNPs at q<0.05 vs. SNPs with an allele 

main effect (qallele<0.1) but no interaction (qinteraction>0.1). 

 

RESULTS 

 

Many MDD loci contain more than one functional SNP 

We identified >1 000 SNPs from MDD-associated GWAS loci, prioritizing SNPs overlapping with epigenetic 

data from neural samples, and cloned them into an MPRA library (Figure 1). We included one positive control 
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SNP, shown to alter neural tissue gene expression, and one control locus near CDKAL1 not a priori associated 

with psychiatric disease. To identify functional variants from these SNPs, the library was transfected into N2a 

(also known as Neuro2a) cells (n=6 replicates, Fig 1E). Variant activity was assessed by RNA sequencing and 

barcode counts compared to input plasmid barcode counts. After filtering for read depth and barcode 

representation, 1013 SNPs spanning all 40 LD regions remained for analysis. Results were highly replicable 

across samples (Pearson r 0.63-0.85 for barcode expression; 0.90-0.96 for elements, Supplemental Figure 1). 

We use “element” to signify the set of barcodes corresponding to one unique sequence of interest (1 SNP = 2 

elements).  

 

Of 1013 SNPs analyzed, we identified significant allelic TR (q<0.05) at 76 SNPs (65 from MDD loci; 1 from 

the control CDKAL1 locus) across 27 of the 40 analyzed GWAS regions, with effects ranging 0.1 to 0.63 

(median 0.2) log2 fold-change (Fig 2B). Interestingly, the functional variant from the control locus is 

suggestively associated (GWAS p < 5•10-6) with “Poisoning by analgesics, antipyretics, and antirheumatics” 

in UK Biobank67. As this likely includes attempted suicides, the SNP was retained for analyses. The positive 

control SNP showed the expected higher expression of the T allele at a q-value of <0.051 (Fig 2A)55. 

 

Consistent with prior studies of  “conditional” or “secondary” SNP associations—wherein additional LD SNPs 

have associations independent of their linked, larger-effect variant19,68,69 —we identified several loci with 

multiple functional SNPs (Fig 2C) (range 1-8, mean 2.8, median 2). Notably, we identified as functional 

rs1806153, which was recently defined as a “conditional SNP” for MDD18. Our findings support models 

predicting multiple functional SNPs in GWAS loci, and directly validate one such finding from association 

analysis. 

 

One notable TR SNP we identified, rs314267, comes from a “LIN28B” (nearest gene) GWAS locus repeatedly 

linked to MDD9,12 as well as cross-psychiatric disorder risk40. MPRA significance and effect size are illustrated 

for the region, showing that this locus contains several functional SNPs (Fig 2D). All significant MPRA SNPs 

in the locus had effect directions consistent with brain eQTLs. rs314267 is the most significant LIN28B eQTL 

SNP (eSNP) in the region in PsychENCODE70, and is a CommonMind Consortium (CMC) eSNP for both 

LIN28B and HACE163. HACE1 is also downregulated in postmortem MDD hippocampal CA171. Hi-C data from 

human neural cell cultures suggest rs314267 is within a neuron-specific LIN28B regulator, with promoter 

chromatin contacts found in dentate and cortical neurons, but not astrocytes72. LIN28B plays broad roles in 

neurodevelopment73 and has potentially sex-differentiated functions74–77—which, considering sex differences in 

MDD prevalence and severity78,79—makes LIN28B an especially interesting gene target from this locus. Finally, 

we examined potential upstream TR mechanisms for SNP activity usingVARAdb80. Query of rs314267 

revealed a two order of magnitude allelic difference in the motif match p-value for TCF4—a gene itself 

implicated in cross-psychiatric-disorder risk40,81. Overall, the identification of functional SNPs implicated in 

regulation of HACE1 and LIN28B exemplifies the ability of MPRAs to identify functional variants involving 

sensible TR mechanisms target genes.  

 

Shared regulatory architecture across distinct loci 
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We next sought to test our hypothesis that functional MDD risk variants shared retinoic acid-related TR 

architecture. If so, functional SNPs should disproportionately disrupt binding sites of retinoid-binding TFs 

compared to SNPs without an allelic effect on TR. Such data would indicate that MDD risk is mediated in part 

through perturbations of specific upstream transcriptional circuits, and may highlight how risk conferred 

through retinoids converges with risk conferred through genetics to perturb downstream gene expression. 

 

To take an unbiased approach to our retinoid hypothesis, we first broadly analyzed all motifs showing 

enrichment at TR SNPs. Motifs for several dozen TFs were perturbed by the functional SNPs more frequently 

than expected, often with ‘strong’ perturbations to motifs and/or overrepresentation of concordant expression 

effects (Fig 2E, Supplemental Figure 2). This included several TFs aligned with biological processes relevant 

to psychiatric disease. For example, several TFs are involved in steroid pathways, from regulating biogenesis 

(SREBF family, 6 SNPs) to conveying downstream TR effects——most notably, via glucocorticoid receptor 

(NR3C1, 5 SNPs; Supplemental Figure 3), a central component of the stress response. Functional SNP 

overrepresentation of SREBF motifs is consistent with high expression of these TFs in N2as and related 

neuroblastomas82,83. A second group of transcription factors included three TFs involved in neural lineage 

commitment/development: TCF384,85, EOMES, and NR2F186 (6,4, and 3 SNPs, respectively). Altogether, 

functional SNP enrichment for these TFs’ motifs bolster our confidence in this approach, as a) detected 

variation involves TFs known to be expressed in N2As (SREBF); b) functional variation involves TFs with roles 

in developing CNS, where disease variants likely act; and c) that the single-best characterized trigger of MDD 

(stress) is reflected in enrichment of alterations to NR3C1 motifs. 

Finally, consistent with our hypothesis of convergence on retinoid-mediated TR, functional variants were 

enriched for “strong” perturbations of retinoid receptor TF motifs (Fig 3), including RARA, RARB, and RXRA 

(5 SNPs from 4 MDD loci, Fig 3). Especially notable is the motif configuration at SNP rs34416841, which falls 

within three partially overlapping motifs for retinoid TFs. In addition, the elements overlapping rs489591 and 

rs13330178 appear to be functional human retinoid TF binding sites in vivo based on DNAse hypersensitivity 

footprinting87. 

 

Retinoids unmask additional functional SNPs in MDD loci. 

Our findings supported the hypothesis that MDD-associated variants across multiple loci converge on TR that 

may be modulated by retinoids. We thus designed a pharmacological follow-up with two goals in mind. The 

first goal was to functionally verify that retinoids were involved in TR at SNPs where their motifs were found 

(in cis), and potentially unmask additional retinoid-targeted alleles. Our second goal was to further assess 

retinoid signaling trans (i.e., indirect) effects on variants from these same GWAS regions, e.g., via non-retinoid 

TF induction, co-regulation, or repression32. Therefore, we performed a second MPRA adding an all-trans 

retinoic acid (ATRA) condition. 

 

After 48 hours, cultures were imaged to verify drug delivery and activity (as ATRA is light-sensitive) based on 

known morphologic responses of N2as to ATRA, which include neurite outgrowth and mitotic arrest58,88,89. 

Indeed, drug-treated cells had a qualitatively lower cell density and produced neurite-like processes (Fig 4A) in 
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comparison to vehicle-treated cells (Fig 4B). After RNA sequencing, we first analyzed vehicle-treated 

replicates alone to ensure replicability of the assay. Element expression levels in the vehicle condition strongly 

correlated to the first experiment (Pearson r = 0.91; Fig 4C), and replicated the functional variants (Fig 4D); all 

31 shared significant SNPs showed consistent directions of effect. 

 

We next applied a linear mixed model (LMM) to identify SNPs responding to ATRA (that is, allele-drug 

interactions). A total of 1079 SNPs were analyzed after filtering for read and barcode depth. In part due to the 

effective doubling in power to detect allelic effects with 12 replicates and the LMM approach, we now 

identified 137 variants with a main effect of allele (129 from MDD loci). Four of the five retinoid receptor 

motif-perturbing variants from the first assay passed filtering; all four of these variants again showed allelic 

main effects (all q < 0.01), as did many other functional variants identified in the previous experiment (Fig 4D). 

To our surprise, more variants showed a significant drug-allele interaction effect: a total of 128 SNPs (122 from 

MDD loci) (Fig 4E-F). Among the drug-allele interaction SNPs were one of the four retinoid-related SNPs 

identified from the first assay (rs4801117; qinteraction<0.025, Fig 4G), while another trended towards interaction 

(rs489591; qinteraction=0.117). This strongly supports a role of retinoid TF activity at rs4801117 as predicted by 

the motif analysis. More broadly, comparison of changes between the two conditions reveals the striking extent 

to which the regulatory landscape of the N2As was altered by ATRA (Fig 4F and 4H). Notably, several 

additional functional variants were identified in the previously highlighted LIN28B locus, further illustrating 

multi-variant and context-dependent aspects of GWAS loci (Fig 4E and 4I). In all, this experiment highlights 

the ability of MPRAs to detect contextual influences such as cell states and signaling on functional noncoding 

variation, and to unmask distinct, context-dependent functional SNPs. 

 

Retinoids reveal additional axes of convergent regulation at functional MDD-associated SNPs at levels of 

TF and cell type 

As the ATRA-based assay provided improved power to identify allelic variant effects on expression, we sought 

to again assess convergent transcriptional effects of these regulatory variants by employing the same 

motifbreakR-based analyses. When examining SNPs with allelic effects in comparison to SNPs with no allelic, 

drug, or interaction effects, several retinoid receptor motifs were again overrepresented, including those of 

RXRA, RXRB, RARA, and RARG (Fig 5A, Supplemental Figure S3), totaling 11 of the 92 allele-main effect 

SNPs analyzed and spanning 10 MDD GWAS loci. These findings further support retinoid receptor binding 

sites as an upstream regulatory system recurrently involved in MDD risk genetics. 

 

As retinoids resulted in stark changes across the transcriptional-regulatory landscape, we further sought to 

understand the TFs potentially underlying allelic effects with retinoid exposure. Therefore, we also analyzed the 

interaction SNPs in comparison to allelic SNPs that were not subject to interactions. This revealed a novel set of 

TFs not observed in the preceding analyses, including TFs with roles in neural differentiation and maturation 

(Fig 5A, Supplemental Figure S3). We compared the overrepresented motifs to TFs recently demonstrated to 

be upregulated in neuroblastoma lines (KCNR, LAN5) by ATRA. Of the 26 TFs identified as ATRA-induced in 

these two lines, motifs were available for 18 in our analysis. Of these, motifs for 6 of the TFs were enriched 

among allele main-effect-only SNPs, while motifs for 12 of these TFs were enriched among the retinoid-allele 
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interaction variants88 (Fig. 5A, Supplemental Figure S3), supporting our predictions of TFs playing ATRA-

dependent roles at functional SNPs.  

 

Comparison between ATRA-interacting and -independent functional SNPs results should properly control for 

motif matches that do not correspond to retinoid-bound TFs (as ATRA agonism of retinoid receptors should 

modify their activity). Indeed, in contrast to our preceding motif analyses of allelic effect variants, only two 

retinoid receptors were enriched among the retinoid-interacting functional variants: RARG (eight SNPs, five of 

which also matched RARB motifs) (Fig 5A, Supplemental Figure S3). This suggests that RARG and/or 

RARB is the particular retinoid receptor at the nexus of allele-ATRA interaction effects in this model, and may 

likewise be TFs responsible for ATRA-dependent allelic effects at MDD risk loci overall. Altogether, these 

findings support cross-locus involvement of retinoid receptor binding sites—including those of RARG—and of 

retinoid-regulated TFs in MDD-associated regulatory variants.  

 

Finally, we utilized these sets of TFs as gene sets to investigate whether retinoid-dependent or -independent 

regulatory variants might be particularly active in certain cell types of the brain. Using a collection of 

previously published translatome-wide brain cell type-specificity metrics31, we screened these TFs for enriched 

expression in specific cell types. Three TFs (spanning 8 ATRA-interacting SNPs) were discovered to be highly 

specific to serotonin neurons (Fig 5B): GATA2, GATA3, and FEV, while no cell type enrichments under 

FDR<0.1 were noted for TFs linked to ATRA-independent variants. We believe this is not an artifact of the N2a 

system because we could identify no evidence in the literature suggesting a serotonin-like identity of N2a cells 

with or without ATRA treatment. However, exogenous retinoids have been shown to lower circulating 

serotonin in humans90 and to alter morphology of rat raphe neurons in slice culture91, suggesting they are 

retinoid responsive. Single-cell RNA sequencing data from mouse brain reveals that these TFs are only 

expressed in serotonergic, noradrenergic, peripheral autonomic, and midbrain inhibitory neurons—with all three 

expressed in serotonin neurons92—suggesting that these cell types in particular may be a cellular point of 

convergence for several retinoid-mediated functional SNP effects on MDD risk. 
 

DISCUSSION 

To date, most functional investigations of SNPs in the context of psychiatric disorders have taken place in a 

low-throughput manner, such as single-variant classical reporter assays20or using CRISPR-Cas9 technology to 

edit limited positions for deep phenotyping93. Here, we leveraged MPRA to screen over 1 000 SNPs from loci 

associated with MDD, related phenotypes, and broader psychiatric disease, demonstrating the utility of this 

technique for dissecting the functional regulatory architecture of psychiatric GWAS loci, and defining shared 

upstream regulatory features across loci. 

 

In doing so, we identify over 100 SNPs with allelic effects on expression, with most coming from loci 

containing ≥ 2 functional SNPs. These data provide experimental support for the assumptions of 

polygenic/omnigenic theories, which predict multiple SNPs with allelic effects within GWAS loci. Further, we 

examined convergence across loci, predicted by omnigenic theory. By examining the shared regulatory features 

(transcription factor binding site motifs) based on enrichment at functional SNPs, we were able to predict 
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several TFs with TR activity recurrently altered across MDD-associated SNPs, highlighting retinoid receptor 

TFs in particular.  

 

Retinoids are encountered both exogenously (e.g., as ATRA in oncology, and as isotretinoin, carrying a black-

box warning for suicidality) and endogenously, including during brain development. To investigate how SNP 

functions may be altered by retinoids we repeated the assay with an ATRA drug condition. ATRA drastically 

rearranged the TR landscape of N2a cells, resulting in altered and novel allelic effects at over 100 SNPs and 

revealing ATRA-dependent mechanisms of function across 122 SNPs from 22 of 26 MDD GWAS loci 

assessed. Motif-SNP perturbation enrichment identified two retinoid receptors, RARG and RARB, as the likely 

TFs involved in functional SNP activity at retinoid receptor binding sites in this system. This could be because 

either a) in N2as, RARG/RARB are the predominant retinoid receptor, or b) that these cells express a broader 

array of retinoid-activated TFs, but only the RARG and RARB motifs are a high-fidelity representation of 

“true” retinoid receptor family-wide binding sites. Nonetheless, these findings suggest that RARB, and RARG 

in particular, merit mechanistic follow-up regarding TR differences at MDD-associated SNPs. Future work may 

be able to leverage biobank-level datasets to ascertain whether retinoid-interacting SNPs are overrepresented in 

retinoid-treated patients experiencing adverse psychiatric side effects. While data on endogenous retinoids, e.g. 

plasma values, are not currently available in large genotype-phenotype-health record cohorts like UK Biobank, 

future datasets may enable investigation of circulating retinoids and their interaction with genotype in cognitive 

and psychiatric phenotypes. 

 

The methodologic requirements of high-throughput assays, such as MPRAs, bring inherent limitations to their 

results. The primary precaution to be taken is with regard to cell type relevance. MPRAs are subject to the TR 

landscape of the cell type used. The cell type here was selected for its intact retinoid signaling, but is not likely 

central to MDD, as neuroblastomas are derived from peripheral neural crest progenitors (though they can be 

differentiated into dopaminergic neurons89, and commit to neuronal differentiation with ATRA58,64). On the 

other hand, the neural crest-derived autonomic nervous system has received little consideration (i.e., relative to 

brain) in psychiatric genetics of MDD despite the well-appreciated role of stress in depression. Some of the 

functional SNPs identified may thus play a role in the autonomic system as opposed—or in addition—to the 

brain, though this assay is not well designed to empirically address this, as SNPs were prioritized for assay 

based on brain epigenomics. 

 

We find that principles of the omnigenic model appear to hold true for MDD risk genetics, including the 

presence of far more functional variants (a total of 351 SNPs with allelic and/or interaction effects of 1178 

assessed across the two assays) than there are GWAS loci per se. We find, interestingly, that functional SNPs 

form convergent subsets of upstream (transcription-regulatory) sequences and systems, which in turn have 

shared retinoid dependence and are collectively enriched in serotonin neurons via eight of 113 SNPs spanning 

functional variants in binding motifs of TFs GATA2, GATA3, and FEV. It has previously been demonstrated 

that systemic administration of all-trans retinoic acid depletes serotonin by over 40% in the rat brain94, 

supporting the serotonin system as a convergent target of retinoid-regulated pathways. As GWAS of MDD 

begins to explore severe, treatment-refractory cases7, it will be interesting to see whether associated variation 
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still shows such convergence, as treatment-resistant depression (generally, non-response to two or more classes 

of antidepressant) effectively signifies non-response to multiple serotonergic agents. 

 

In all, we assessed the architecture of cis-regulatory variation in psychiatric disease risk loci, identifying at least 

one functional SNP in the majority of the 40 GWAS loci examined, largely corresponding to MDD-associated 

SNPs. Strikingly, retinoid receptor binding sites and TR systems subject to regulation by ATRA have a 

substantial impact on whether and how MDD-associated SNPs are functional. These findings constitute a robust 

experimental demonstration of the influence of physiological and environmental states on the molecular 

activities of disease-associated SNPs, and constitute a high-confidence set of MDD SNPs meriting deeper 

functional characterization of both their TR mechanisms and their environmental interactions. 

 

Data and code availability 

A summary spreadsheet of all significant SNPs identified in one or both assays, along with full analysis results, 

including barcode-wise expression in each sample, single-condition allelic effect tests, linear modeling results, 

and significantly enriched TFs in each of the comparisons executed, along with the code utilized to execute 

these analyses, is available https://bitbucket.org/jdlabteam/n2a_atra_mdd_mpra_paper/src. Raw sequencing 

files are deposited in GEO under accession GSE167519.  
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FIGURES 
Figure 1: Design of an MPRA library to identify candidate functional SNPs in MDD loci. 
A) Table of GWAS studies and number of loci covered in the MPRA library. B) Flow chart of design and 
prioritization process. C) Brain and neural transcriptional-regulatory predictive annotation overlap with SNPs 
included in MPRA library. Fraction and number of SNPs in designed MPRA library intersecting each 
transcriptional-regulatory predictive annotation type. D) The manual prioritization process was not LD biased. 
The subset of prioritized SNPs are spread over LD space similarly to the full set of screened SNPs. E) 
Schematic of library construction and delivery. Panel adapted from47. 
 
Figure 2: MPRA defines SNPs with a functional effect on gene expression. 
A) MPRA results of positive control SNP. Shen, et. al. found that the T allele drove decreased expression 
relative to the deletion (“-”) allele, which was robustly reproduced in the present assay55.) B) Volcano plot of 
allelic differences in reporter expression. Points represent one SNP’s composite log2 allelic fold change (alt vs. 
ref), determined as the mean of samplewise alternative allele barcode expression minus the matched mean of 
reference allele barcodes. The dotted line indicates the statistically corrected significance threshold C) Number 
of functional SNPs (MPRA significant SNPs) per GWAS locus in the assay. Number of loci (y-axis) containing 
a given number of MPRA-significant (q<0.05) SNPs (x-axis).  D) The LIN28B locus harbors several functional 
SNPs. SNPs are plotted according to their chromosomal position (hg19) and colored based on their composite 
log2 allelic fold change. Refseq genes are visualized by the Integrative Genomics Viewer95. E) TF binding 
motifs involved in retinoid signaling, steroid synthesis and response, and neural activity are enriched among 
functional SNPs. Boxes are colored by FDR-corrected significance of enrichment for motifbreakR-defined 
“strong” allelic perturbations to binding motifs among functional SNPs; the number of functional SNPs 
perturbing (left column) and/or with concordant motif and MPRA effects (right column) are shown. Concordant 
effects were defined by greater MPRA expression driven by the allele better-matched to the corresponding TF 
motif and vice versa—the expected behavior of strictly activating TFs. 
 
Figure 3: MPRA Signal at SNPs Disrupting Putative Retinoid TF Motifs. 
The five functional SNPs driving enrichment signals for retinoid TF motif perturbations are shown, along with 
the MPRA results for each variant. Each motif diagram shows only distinct position-weight matrices (PWMs).  
(motifbreakR uses a large meta-collection of motifs, which were often identical or nearly identical across 
retinoid TFs; such redundant motifs are not shown ). Among functional-SNP enriched retinoid TFs, A) 
rs489591 and B) rs4801117 exclusively perturb RXRA motifs. C) rs79269275 perturbs an RARA (or RARB, 
identical but not shown) motif. D) rs34416841 alters several similar retinoid motifs across multiple positions 
and TFs. Not shown: near-identical motifs for RARB along the same sequence as the 5’ RARA motif; near-
identical RXRB and RARB motifs along the same sequence as the center RXRA motif; and a near-identical 
RARB motif along the same sequence as the 3’ RARA motif. E) rs13330178 disrupts an RARA or RXRA 
binding site. Given that RXRA and RARs are known to heterodimerize, it is possible that this SNP disrupts the 
RXRA component of such a heteromer’s binding sequence. 
 
Figure 4: Retinoid treatment alters transcriptional regulation and unmasks additional functional 
variants. 
A) ATRA-treated cells show growth arrest and neurite growth, demonstrating effective ATRA treatment, while 
B) Vehicle-treated cells continued to proliferate in a de-differentiated state. C) Results of the vehicle treatment 
replicate the initial MPRA findings. Element (single-allele) expression values for each sequence assessed in 
both assays is plotted. D) Significant and marginally significant functional SNPs from the first assay showed 
effects in the second assay. The larger allelic difference value from the ATRA and vehicle single-condition 
analyses is plotted for each SNP on the x-axis; the y-axis value is the corresponding corrected p-value (FDR 
correction for the ATRA-only analysis or empirical q-value correction for vehicle-only analysis). E) Retinoids 
unmask functional SNPs with additional or exclusive retinoid-mediated effects. F) SNP effect(s) color key for 
panels E, H, and I. SNPs with both effects were those with LMM interaction q<0.05, LMM allele q<0.05, and 
both single-condition analyses showing the same allelic effect directionality at ATRA FDR<0.1 AND vehicle 
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q<0.1. F) rs4801117-A shows greater activity with ATRA treatment while the G allele is unaffected. The 
ATRA having an expression effect only on the A allele is consistent with the A allele matching the RXRA 
motif as shown in Fig 3B. H) Transcriptional-regulatory SNPs show a wide range of altered and unaltered 
effects with ATRA treatment. Single-condition log2FC values are shown. I) Several additional SNPs with 
retinoid-dependent function (i.e., allele-ATRA interaction) in the LIN28B locus. Only significant SNPs are 
illustrated. Notably, there are several functional SNPs clustered around the GWAS index SNP, suggesting 
association signal at this locus may be driven by multiple functional/conditionally functional variants. 
 
Figure 5: Distinct TFs underlying retinoid-dependent functional SNPs and implication of serotonergic 
neurons. 
A) Motifs overrepresented among ATRA-independent (allele effect without interaction) SNPs (left columns) or 
among ATRA-dependent (interaction) SNPs (right column). The heatmap is shown in halves for visibility. TFs 
identified as ATRA-upregulated in human neuroblastoma lines88 are in bold font. B) TFs implicated by ATRA-
interacting SNPs significantly overlap TFs enriched in serotonergic neurons. Plot generated using the cell-
specific expression analysis (CSEA) tool (http://genetics.wustl.edu/jdlab/csea-tool-2/)31. 
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