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Summary 

Antibodies elicited in response to infection undergo somatic mutation in germinal centers that 

can result in higher affinity for the cognate antigen. To determine the effects of somatic mutation 

on the properties of SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibodies, we 

analyzed six independent antibody lineages. As well as increased neutralization potency, 

antibody evolution changed pathways for acquisition of resistance and, in some cases, 

restricted the range of neutralization escape options. For some antibodies, maturation 

apparently imposed a requirement for multiple spike mutations to enable escape. For certain 

antibody lineages, maturation enabled neutralization of circulating SARS-CoV-2 variants of 

concern and heterologous sarbecoviruses. Antibody-antigen structures revealed that these 

properties resulted from substitutions that allowed additional variability at the interface with the 

RBD. These findings suggest that increasing antibody diversity through prolonged or repeated 

antigen exposure may improve protection against diversifying SARS-CoV-2 populations, and 

perhaps against other pandemic threat coronaviruses.  

 
 

Keywords: SARS-CoV-2, Antibodies, Neutralization. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

INTRODUCTION 

Neutralizing antibodies elicited by infection or vaccination are a central component of 

immunity to subsequent challenge by viruses (Plotkin, 2010) and can also confer passive 

immunity in prophylactic or therapeutic settings. In the case of SARS-CoV-2, an understanding 

of how viral variants evade antibodies, and how affinity maturation might generate antibodies 

that are resilient to viral evolution is important to guide vaccination and treatment strategies. 

The receptor-binding domains (RBDs) of SARS-CoV-2 spike trimer are key 

neutralization targets and potent RBD-specific antibodies have been isolated from many 

convalescent donors (Brouwer et al., 2020; Cao et al., 2020; Chen et al., 2020; Chi et al., 2020; 

Hansen et al., 2020; Ju et al., 2020; Kreer et al., 2020; Robbiani et al., 2020; Rogers et al., 

2020; Seydoux et al., 2020; Shi et al., 2020; Wec et al., 2020; Wu et al., 2020b; Zost et al., 

2020). Indeed, such antibodies are used for treatment of SARS-CoV-2 infection (Chen et al., 

2021; Weinreich et al., 2021). Typically, RBD-specific neutralizing antibodies isolated during 

early convalescence have low levels of somatic hypermutation and nearly identical antibodies 

derived from specific rearranged antibody genes (e.g., VH3-53/VH3-63) (Barnes et al., 2020c; 

Robbiani et al., 2020; Yuan et al., 2020) are found in distinct convalescent or vaccinated 

individuals (Wang et al., 2021). Consistent with these findings, high titer neutralizing sera are 

generated following administration of at least some SARS-CoV-2 vaccines (Sahin et al., 2020; 

Widge et al., 2021). Conversely, SARS-CoV-2 infection may sometimes fail to induce sufficient 

B-cell stimulation and expansion to generate high neutralizing antibody titers. Indeed, 

neutralizing titers are low in some convalescent individuals, including those from whom 

commonly elicited potent antibodies can be cloned (Luchsinger et al., 2020; Robbiani et al., 

2020; Wu et al., 2020a).  

The RBD exhibits flexibility and binds the ACE2 receptor only in an “up” conformation, 

not in the “down” RBD conformation of the closed, prefusion trimer (Walls et al., 2020; Wrapp et 

al., 2020). Structural studies have allowed designation of distinct RBD-binding antibody 
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structural classes (Barnes et al., 2020b). Class 1 antibodies are derived from VH3-53 or VH3-63 

gene segments, include short CDRH3s, and recognize the ACE2 binding site on RBDs in an 

“up” conformation (Barnes et al., 2020b; Barnes et al., 2020c; Hurlburt et al., 2020; Shi et al., 

2020; Wu et al., 2020c; Yuan et al., 2020). Class 2 antibodies are derived from a variety of VH 

gene segments, also target the ACE2 binding site, but can bind to RBDs in either an “up” or 

“down” conformation. Some class 2 antibodies, e.g., C144 and S2M11 (Barnes et al., 2020b; 

Tortorici et al., 2020), bridge adjacent “down” RBDs to lock the spike trimer into a closed 

prefusion conformation. Class 3 antibodies, which can recognize “up” or “down” RBDs, do not 

target the ACE2 binding site (Barnes et al., 2020b).  

Despite the fact that cloned RBD-specific antibodies can select resistance mutations, 

such as E484K, in cell culture (Baum et al., 2020; Weisblum et al., 2020), until recently, little 

evidence had emerged that antibodies have imposed selective pressure on circulating SARS-

CoV-2 populations. Nevertheless, variability and decay of convalescent neutralizing titers, 

(Gaebler et al., 2021; Luchsinger et al., 2020; Muecksch et al., 2020; Robbiani et al., 2020; 

Seow et al., 2020), suggests that reinfection by SARS-CoV-2 may occur at some frequency. 

Indeed, recent reports have documented reinfection or rapidly increasing case numbers, 

associated with SARS-CoV-2 variants with resistance to commonly elicited antibodies (Fujino et 

al., 2021; Tegally et al., 2020; Volz et al., 2021; Wang et al., 2021; West et al., 2021; Wibmer et 

al., 2021). 

The majority of SARS-CoV-2 antibodies that have been studied in detail were cloned 

from individuals early in convalescence and have relatively low levels of somatic mutation. 

However, recent work has shown that antibodies evolve in convalescent patients, accumulating 

somatic mutations that can affect function (Gaebler et al., 2021; Sakharkar et al., 2021; Sokal et 

al., 2021). Here, we present a detailed functional and structural characterization of several 

groups of clonally-related antibodies recovered from the same individuals shortly after infection 

and then later in convalescence. We show that somatic mutations acquired in the months after 
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infection endow some SARS-CoV-2 RBD-specific antibodies with greater neutralization potency 

and breadth. Most importantly, the acquisition of somatic mutations provides some antibodies 

with resilience to viral mutations that would otherwise enable SARS-CoV-2 to escape their 

neutralizing effects. 

 

Results 

Evaluating resistance to clonally-related SARS-CoV-2 neutralizing antibodies. 

To determine the functional consequences of antibody maturation in SARS-CoV-2 

convalescence, we compared clonally-related antibodies, from six lineages (Table S1), isolated 

at a mean of 1.3 or 6.2 months (m) after PCR diagnosis of SARS-CoV-2 infection from patients 

with mild to moderately severe disease (Gaebler et al., 2021; Robbiani et al., 2020). We 

measured neutralization potency against a panel of HIV-1 SARS-CoV-2 pseudotypes bearing 

single amino acid substitutions that are naturally occurring or known to confer resistance to 

neutralization by individual human antibodies or plasma (Weisblum et al., 2020). Additionally, to 

determine the ability of the SARS-CoV-2 spike to acquire mutations conferring resistance to the 

antibodies, we employed a pair of replication-competent chimeric VSV derivatives (rVSV/SARS-

CoV-21D7 / 2E1) (Schmidt et al., 2020; Weisblum et al., 2020) to select antibody escape variants. 

 

Effects of maturation on potency and resilience of class 2 SARS-CoV-2 neutralizing 

antibodies  

Class 2 anti-RBD antibodies are commonly elicited and recognize an epitope that includes E484 

(Barnes et al., 2020b), a site that is mutated in certain circulating SARS-CoV-2 ‘variants of 

concern’ (Fujino et al., 2021; West et al., 2021; Wibmer et al., 2021). We examined members of 

three class 2 antibody lineages. 

 

The C144/C051/C052 lineage 
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One group of class 2, VH3-53/VL2-14-encoded antibodies included C144, a potent neutralizing 

antibody (IC50 <10ng/ml) isolated at 1.3m of convalescence (Robbiani et al., 2020) that is in 

clinical development for therapy/prophylaxis. Two clonally-related antibodies isolated from the 

C144 donor at 6.2m included C051, which was marginally less potent (IC50 ~25ng/ml), and 

C052, which had similar potency to C144 (Gaebler et al., 2021).  

SARS-CoV-2 pseudotype neutralization assay revealed that several RBD substitutions at 

positions L455, F456, E484, F490, Q493 and S494, which conferred C144 resistance 

(Figure1A, B), had no effect C051 and C052 sensitivity. Some, but not all, naturally occurring 

E484 substitutions that conferred C144 resistance also conferred resistance to C051 and/or 

C052. Selection for rVSV/SARS-CoV-2 resistance mutations using C144 gave enrichment of 

multiple substitutions at two positions; E484K/A/G and Q493R/K (Figure 1C), and plaque 

purification from selected virus populations yielded isolates with E484K or Q493R substitutions 

that confer high level C144 resistance (Weisblum et al., 2020) (Figure S1A). Conversely, 

rVSV/SARS-CoV-2 replication in the presence of C051 and C052 led to the dominance of the 

E484K mutant only, and rVSV/SARS-CoV-2 isolates bearing E484K substitutions were resistant 

to C051 and C052 (Figure 1C, S1). Thus, in this lineage of potently neutralizing antibodies 

elicited early after infection somatic mutation conferred resilience to a subset of naturally 

occurring potential escape variants. Nevertheless, resistance to each of the antibodies in this 

commonly elicited lineage was conferred by E484K (Figure 1A,B, Figure S1). 

 

The C143/C164/C055 lineage 

A second clonally-related antibody lineage, encoded by VH3-66/VL2-33, included C143 and 

C164, isolated at 1.3m and C055, isolated at 6.2m, were from the same individual as the C144 

lineage (Gaebler et al., 2021; Robbiani et al., 2020). C143 and C164 had weak neutralizing 

activity (IC50 values ~300ng/ml to >625ng/ml) against the HIV-1 pseudotype panel (Figure S2A). 

Conversely, C055 potently neutralized the majority of SARS-CoV-2 spike variant pseudotypes 
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(IC50 values of ~10ng/ml) (Figure S2A).  Naturally occurring spike substitutions (at positions 

A475, T478, E484, G485, and F486) caused loss of C055 potency (Figure S2A), indicating a 

target epitope close to that of the C144/C051/C052 lineage. Despite their modest potency, 

rVSV/SARS-CoV-2 replication with C143 or C164 led to the enrichment of T478K/R mutations, 

and a plaque purified T478R mutant isolate exhibited near-complete resistance to C143 and 

C164 while an E484K mutant exhibited partial resistance (Figure S2B, C). Conversely 

rVSV/SARS-CoV-2 selection with C055 yielded G485S/D and F486V/S, substitutions and 

isolates with G485S, F486S and F486V mutations exhibited near complete resistance to C055 

(Figure S2B, D). Overall, maturation of this antibody lineage yielded both greater potency and a 

change in the selected spike substitutions that yielded neutralization escape (Figure S2B). 

 

The C548/C549 lineage 

 A third class 2 antibody lineage, encoded by VH1-69/VL9-49, included C548, isolated at 1.3m, 

and C549, isolated at 6.2m (Gaebler et al., 2021; Robbiani et al., 2020). C548 was somewhat 

less potent (IC50 ~50ng/ml) than C549 (IC50 ~15ng/ml). Similar to C144, naturally occurring 

substitutions at positions L455, F456, E484, S494, Y489, Q493 and S494 caused near 

complete loss of C548 potency (Figure 1D). Remarkably, however, C549 potency was 

unaffected or only marginally affected by most of these mutations. E484K conferred partial 

(~50-100-fold) resistance (Figure 1D). Selection experiments with C548 led to rapid enrichment 

of E484K and Q493K C548-resistant rVSV/SARS-CoV-2mutants (Figure 1E, F), consistent with 

the finding that E484K or Q493R substitutions conferred C548 resistance in the HIV-1 

pseudotype assay. In contrast, initial attempts to select C549-resistant rVSV/SARS-CoV-2 

mutants failed (Figure 1E). However, by reducing the selecting concentration of C549 and 

sequential passaging with antibody four times, we obtained rVSV/SARS-CoV-2 populations in 

which Y449H, E484K, F486L and F490P/S mutations were enriched (Figure 1E). Notably, these 

selected populations yielded only isolates that encoded two RBD substitutions; one 
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Y449H/E484K and the other F486L/F490P. These viruses exhibited greater (1000-fold), C549-

resistance than the E484K single mutant (Figure 1G, Fig S3). Because individual substitutions 

at E484, F486, and F490 caused only partial or no C549 resistance (Fig 1D, G Figure S3), 

these data suggest that at least two substitutions are required to confer high-level resistance to 

C549. Thus, for this pair of antibodies, antibody maturation appeared to heighten the genetic 

barrier for the acquisition of antibody resistance. 

 

Maturation confers potency and resilience to escape in a class 1 antibody lineage  

A fourth antibody lineage, encoded by VH3-53/VK3-20 genes, also exhibited striking disparity in 

activity and breadth when 1.3m and 6.2m clonal relatives were compared. Specifically C098, 

isolated at 1.3m, displayed minimal activity (IC50 > 1000ng/ml) against most SARS-CoV-2 

pseudotypes while a clonal relative isolated at 6.2m, C099 had IC50 values ranging from ~15-48 

ng/ml for all variants except L455R, for which the IC50 was increased to 123ng/ml (Figure 2A, 

B). In rVSV/SARS-CoV-2 selection experiments, the low potency of C098 was reflected in the 

modest enrichment of mutations. Nevertheless, there was some enrichment of N460 

substitutions (Figure 2B, C), and after two passages, rVSV/SARS-CoV-2 (N460Y) mutant was 

isolated which displayed nearly complete C098 resistance (Figure 2D).  

Initial attempts to isolate C099-resistant rVSV/SARS-CoV-2 mutants failed. However, 

passaging rVSV/SARS-CoV-2 four times with reduced C099 concentrations, yielded populations 

enriched most prominently in D420Y, Y453H, and L455R substitutions (Figure 2 B, C). Plaque 

purification yielded D420Y, N460Y, or L455R single mutants with partial (10-fold or less) C099 

resistance (Figure 2B, E F) as well as D420Y/N460H and L455R/Y453H double mutants with 

higher levels of C099-resistance (~100-fold, Figure 2E, F). Analysis of HIV-1 pseudotypes with 

these mutations confirmed that D420Y, N460H, L455R and Y453H alone each abolished the 

weak C098 neutralization activity but conferred no or partial C099-resistance to (Figure S4A, B). 

However, the D420Y/N460H or L455R/Y453H combinations conferred greater C099-resistance 
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(Figure S4B). Overall, maturation in the C098/99 lineage conferred both potency and resilience 

to individual spike mutations and appeared to impose a requirement for 2 or more mutations for 

high-level resistance. 

 

Acquisition of potency and resilience to escape in class 3 antibody lineages  

We next analyzed two pairs of class 3 antibodies, which do not directly compete for ACE2 

binding to the SARS-CoV-2 RBD (Barnes et al., 2020b; Weisblum et al., 2020), yet exhibit 

potent neutralizing activity. Some antibodies in this class, while having very low IC50 values, also 

exhibit incomplete neutralization in pseudotype assays; i.e., a ‘non-neutralizable’ fraction. 

 

C132 and C512 

The VH4-4/VL2-14 encoded C132 antibody, isolated at 1.3m, had weak neutralizing activity 

against the spike variants in the HIV-1 pseudotype assay while its 6.2m clonal derivative, C512, 

was quite potent, (IC50 ~100ng/ml, Figure 3A). Substitutions at R346, K444 and G446 conferred 

C512 resistance (Figure 3A, B). Despite its poor potency, rVSV/SARS-2/EGFP replication with 

C132 generated viral populations enriched for R346 substitutions, and a  plaque purified 

rVSV/SARS-2/EGFP (R346K) mutant that was resistant to the weak activity of C132 (Fig 3B, C, 

D). In contrast, and despite the fact that R346, K444 and G446 substitutions all conferred 

resistance in the HIV-1 assay, C512 selected resistant rVSV/SARS-2/EGFP variants with K444 

substitutions only (Figure 3C, D). Thus, maturation of the C132/C512 antibody lineage yielded a 

marked increase in potency, and a concurrent change in the selected resistance mutations. 

  

C032 and C080 

For a second clonally-related pair of class 3 antibodies, encoded by VH5-51/VL1-40, the 

antibody isolated at 1.3m (C032) was only ~2-fold less potent than a derivative isolated at 6.2m 

(C080). However, mutations at positions R346, N439, N440, K444, V445 and G446 all 
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conferred resistance to C032, but not to C080 (Figure 3B, E). Like some other class 3 

antibodies, C032 and C080 exhibited incomplete neutralization complicating selection of 

rVSV/SARS-CoV-2 resistant variants. Nevertheless, C032 enriched N440 and L441 

substitutions, both of which conferred C032 resistance (Figure 3G). Under identical 

rVSV/SARS-CoV-2 selection conditions, no mutations were enriched in the presence of C080. 

Therefore, a key property acquired by C080 was resilience to mutations that conferred 

resistance to its C032 progenitor. 

 

Neutralizing activity of matured antibodies against RBD ‘variants of concern’ 

Selection for rVSV/SARS-CoV-2 resistance to class 1, 2 and 3 antibodies in cell culture has 

repeatedly identified K417, E484 and N501 substitutions, with E484K giving the most pervasive 

effects against polyclonal plasma (Baum et al., 2020; Greaney et al., 2021; Liu et al., 2021; 

Wang et al., 2021; Weisblum et al., 2020). We compared the ability of the antibodies studied 

herein to neutralize pseudotypes with a E484K substitution alone, or in combination with K417N 

and N501Y substitutions that naturally occur in variants of concern (Fujino et al., 2021; Wibmer 

et al., 2021) or in combination with L455R, a mutation that affected neutralization by multiple 

class 1 and class 2 antibodies (Figure 1, Figure 2). The activity of the C144/C051/C052 and 

C143/C162/C055 class 2 lineages was diminished by the E484K substitution, and there was 

little scope for additional mutations to further reduce potency (Figure 4A, B). Conversely, while 

the 1.3m class 2 antibody C548 was inactive against the E484K mutant, its descendent C549 

retained partial activity (Figure 4C). C549 activity was modestly further reduced by the 

K417N/E484K/N501Y combination and abolished by the L455R/E484K combination (Figure 

4C), consistent with the notion that 2 substitutions were required to confer maximal C549 

escape (Figure 2E, F, Figure S3). The C098/C099 class 1 antibodies were not affected by the 

E484K mutation or the K417N/E484K/N501Y combination (Figure 4D). The partial loss of 

potency against the L455R/E484K combination was largely consistent with that seen for the 
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L455R single mutant (Figure S4B). As expected, K417/E484K/N501Y and L455R/E484K 

mutations did not confer resistance to the class 3 antibodies. In fact, unexpectedly, these 

mutations sensitized the pseudotypes to neutralization by some class 3 antibodies (Figure 4D). 

Thus, the E484K substitution, generally undermines the activity of class 2 antibodies, but 

substitutions found in variants of concern did not impact the activity of the matured class 1 and 

class 3 antibodies tested herein. 

 

Neutralization activity of matured antibodies against sarbecoviruses other than SARS-

CoV-2. 

We next determined whether any of the antibodies could neutralize more divergent 

sarbecoviruses. SARS-CoV-2 is closely related to the horseshoe bat (Rinolophus affinis) 

coronavirus bCoV-RaTG13 (97.4% amino acid identity in spike) (Zhou et al., 2020), but the 

SARS-CoV-2 RBD diverges from bCoV-RaTG13 (89.3% identity) and is more closely related 

(97.4% identity) to pangolin (Manis javanica) coronavirus from Guandong, China (pCoV-GD). 

The RBD of a second pangolin coronavirus found in Guangxi (pCoV-GX) shares 87% amino 

acid identity with SARS-CoV-2 (Lam et al., 2020; Zhang et al., 2020). The SARS-CoV spike 

protein is more closely related to coronaviruses found in Rinolophus Sinicus, including bCoV-

WIV16 with which it shares 94.3% RBD amino acid identity. The SARS-CoV and bat-CoV-

WIV16 RBDs share 73-75.4% identity with the SARS-CoV-2 RBD (Li et al., 2005).  

None of the antibodies neutralized bCoV-WIV16 pseudotypes (Figure 5A-F). In contrast, all of 

the antibodies except C512 neutralized pCoV-GD pseudotypes. Some matured antibodies 

isolated at 6.2m (C055, C549, C099 and C080) neutralized pCoV-GD pseudotypes more 

potently than their 1.3m clonal predecessors (Figure 5B, C, D, F), recapitulating observations 

with SARS-CoV-2 pseudotypes.  Additionally, C099, unlike its clonally-related predecessor 

C098, potently neutralized the more distantly related pCoV-GX pseudotype (IC50 =16ng/ml, 

Figure 5D). Finally, the 6.2m class 3 antibody, C080, neutralized SARS-CoV (IC50= 71ng/ml). 
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Thus, antibody evolution in SARS-CoV-2 convalescents increased breadth, in some cases 

enabling neutralization of heterologous pandemic-threat sarbecoviruses. 

 

Structural analyses of somatic hypermutations in antibody clonal pairs  

We investigated the effects of somatic mutations on antibody-antigen interactions by solving 

structures of 1.3m and 6.2m pairs of class 1 (C098/C099) and class 2 (C144/C051) antibody 

Fab fragments bound to SARS-CoV-2 spike trimers or monomeric RBDs (Figure S5 and Tables 

S2,3). We also determined structures of 1.3m class 2 (C548) and 1.3m class 3 (C032) Fabs 

bound to S, allowing modeling of RBD interactions for their 6.2m counterparts (C549 and C080, 

respectively). Across these structures, most substitutions found at 6.2m post-infection occurred 

in CDR loops, in or adjacent to antibody paratopes (Figure 6,7, Figure S6,7).  

To derive global properties of Fab-antigen interactions, we calculated shape complementarity 

(Sc) indices, which vary from 0 (not complementary) to 1 (a perfect fit) and are typically 0.64-

0.68 for antibody-antigen interfaces (Lawrence and Colman, 1993). For antibody pairs for which 

we had determined both 1.3m and 6.2m structures, Sc values for 6.2m antibodies were 

modestly increased compared with their 1.3m counterparts: 0.56 versus 0.52 for C051 and 

C144 complexes with Spike, respectively (Sc values calculated for a Fab complexed with two 

adjacent RBDs), and 0.73 and 0.68 for C099 and C098 Fab complexes with RBD, respectively. 

Similarly, buried surface area (BSA) calculations did not reveal large increases in Fab-antigen 

interface areas upon antibody maturation: total BSAs for C051 and C144 interfaces were ~2520 

Å2 and ~2350 Å2, respectively, and ~2540 Å2 and ~2590 Å2 for C099 and C098, respectively.  

To understand the influence of individual mutations on potency and viral escape, we aligned 

RBD-bound Fab complexes from clonally-related 1.3m and 6.2m antibodies and inspected 

residue-level antibody-antigen interactions (Figure 6 and Figure S6). For the class 1 C098/C099 

lineage, we compared 2.0 Å and 2.6 Å X-ray structures of the C098-RBD and C099-CR3022-

RBD complexes, respectively (Figure S5H,I; Table S2). After superimposing the RBDs, the Fab 
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VH-VL domains adopted the same binding pose such that the CDR loops at the Fab-RBD 

interface were aligned equivalently (Figure 6A,B). Overall, the footprints of the epitope on the 

RBD and the paratope on the Fab were conserved (Figure S6A-C), consistent with the highly 

similar binding orientations of class 1 anti-RBD neutralizing antibodies (Figure S6D).  

For C098 and C099, the majority of RBD contacts are mediated by CDR1 and CDR2 V gene-

encoded regions (Figure S6A-C). Given that the C098 VH and VL gene segment sequences 

contained no somatic hypermutations (Figure S6A), our structures provided the opportunity to 

analyze the effects of affinity maturation on the increased potency of the 6.2m C099 antibody. 

Somatic mutations in C099 occurred in V gene-encoded CDR loops and FWRs, while the CDR3 

loops remained unchanged from the germline (C098) antibody (Figure S6A,E). As previously 

noted for class 1 anti-RBD neutralizing antibodies (Hurlburt et al., 2020; Tan et al., 2021)  

somatic mutations in C099’s CDRH1 and CDRH2 appeared to drive improved binding and 

neutralizing characteristics. For example, the F27IHC mutation found in C099 introduces a 

smaller hydrophobic residue that likely makes the CDRH1 loop more flexible, facilitating 

increased polar contacts and van der Waals interactions in this region (Figure 6C,D). 

Interestingly, in CDRH2, somatic mutations S53AHC and Y58FHC remove polar contacts with 

backbone carbonyl and side chain atoms at the RBD interface (Figure 6E,F). Yet, these 

mutations (particularly Y58FHC) increase binding affinity and neutralizing activity of class 1 anti-

RBD antibodies (Tan et al., 2021), which can be partly explained by the introduction of stacking 

interactions with RBD residue T415 (Figure 6F). Thus, we conclude that a set of common 

somatic mutations found in C099 facilitates its improved neutralization potency. 

 

For the class 2 C144/C051 lineage, we compared our previously-reported 3.2 Å cryo-EM 

structure of a C144 Fab-S complex (Barnes et al., 2020b) with the 3.5 Å C051-S structure 

reported here (Figure 6G). The C144 and C051 Fabs associate with the RBD through a similar 

binding mode to bridge adjacent RBDs on the surface of the S trimer (Figure 6H). As with C144, 
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the C051 antibody heavy chain mediated the majority of RBD contacts (Figure S6F-H). 

Mutations at RBD positions L455, F456, E484, and Q493 conferred escape from C144, while 

only the E484K mutation conferred escape from C051 (Figure 1A). Viral escape at RBD 

positions L455 and Q493 is facilitated by an arginine substitution that would disrupt hydrogen-

bonding networks at the C144-RBD interface (Figure 6I). Somatic mutations in the C051 

CDRH1 (T28GHC and S30RHC) introduce new polar contacts with backbone carbonyl and side 

chain residues at the RBD interface, while allowing additional flexibility in CDRH1 (Figure 6J), 

similar to observations for class 1 antibodies (Figure 6D). In addition, the CDRH3 E97DHC 

somatic mutation in C051 introduces a smaller charged residue that may better accommodate 

an arginine side chain in this region (Figure 6J). Somatic hypermutations in CDRH1 for this 

lineage likely play an important role, as the clonally-related C054 antibody isolated at 6.2m is 

sensitive to the Q493R and L455R mutations (Gaebler et al., 2021). 

 

Structures of Spike trimer complexes with 1.3m class 2 and class 3 antibodies explain 

viral escape 

To further understand escape patterns of RBD-targeting antibodies, we determined cryo-EM 

structures of Fab-S complexes for 1.3m class 2 (C548) and class 3 (C032) neutralizing 

antibodies (Figure 7 and Figure S5) and derived homology models of the 6.2m counterparts: 

C549 and C080, respectively (Figure S7). In both experimentally-determined structures, Fabs 

recognized either “up” or “down” RBD conformations (Figure 7).  

The 3.4 Å cryo-EM structure of C548 Fabs bound to a closed S trimer (Figure 7A) revealed a 

quaternary epitope that spanned neighboring RBDs (Figure 7B,C). The antibody paratope 

involved five of six CDR loops, with the majority of contacts to RBD focused on residues 

involved in ACE2 recognition (Figure 7D and Figure S7). C548 is encoded by the VH1-69 VH 

gene segment, which encodes a hydrophobic sequence at the tip of CDRH2 that has been 

shown to facilitate broad neutralization against influenza, Hepatitis C, and HIV-1 (Chen et al., 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

2019). In C548, residues I53-F54HC target a hydrophobic patch in the neighboring RBD core that 

resides near the base of the N343-glycan and comprises RBD residues W436, N440, and L441 

(Figure 7D,E). These interactions are akin to those observed in the C144/C051 lineage, in which 

either Phe-Trp or Leu-Trp at the tip of CDRH3 is buried in a similar manner on the adjacent 

RBD (Figure S6G,H). These data demonstrate convergent evolution of mechanisms for anti-

RBD antibodies to target this hydrophobic patch on the RBD surface, with the potential to lock 

RBDs into the “down” position. 

Viral escape from C548 was mediated by substitutions at positions L455, E484, F490 and 

Q493, likely due to the disruption of polar contacts at the RBD interface and/or insertion of bulky 

sidechains into a sterically-restricted region (Figure 7F). However, unlike the C144/C051 

lineage, C549 (the 6.2m mature counterpart) shows resilience to all C548 viral escape mutants, 

including partial resilience to the E484K substitution (Figure 1D). C549 exhibits accumulated 

somatic mutations (9 HC residues and 11 LC residues changed compared to germline) in both 

FWR and CDR loops (Figure S7A). Using the C548-S structure, we made a homology model of 

the C549-RBD interactions (Figure S7B). Light chain somatic mutations are predicted to explain 

the increased resistance: 30YLC provides additional stacking interactions with RBD residue 

F490, while 27DLC and 92ELC increase polar contacts with RBD backbone carbonyl and side 

chain atoms (Figure S7C). Thus, we predict that C549 partial resilience to the E484K mutation 

is not the result in changes in direct interactions with the E484 sidechain, but rather a series of 

adjacent residue changes to accommodate the E484K substitution. 

 

To understand maturation in the C032/C080 class 3 antibody lineage, we determined a 3.3 Å 

cryo-EM structure of a C032-S trimer complex, revealing a Fab binding orientation that does not 

overlap with the ACE2 binding site (Figure 7G,H). C032 recognizes a glycopeptidic epitope 

focused on a short helical segment in the RBD core that spans RBD residues 437-442 near the 

N343-glycan (Figure 7I), with a paratope BSA (~810 Å2) equally distributed among the CDRH1, 
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CDRH2, CDRH3, and CDRL3 loops (Figure 7J and Figure S7A). At the tip of CDRH3, 

hydrophobic residues A97HC, V98HC, and W100HC bury into a pocket shaped by RBD loops 

comprising residues 344-348 and 443-450 (Figure 7K), providing sequence-independent van 

der Waals interactions with the RBD backbone. Mutation of residues comprising this RBD 

pocket confer C032-resistance (Figure 3E). To predict how the affinity matured 6.2m antibody, 

C080, avoids viral escape, we made a homology model of the C080-RBD structure. The 

majority of somatic mutations in C080 are positioned distal to the modeled Fab-RBD interface 

(Figure S7D). Thus, it is likely that C080 somatic mutations influence CDR loop conformation 

and flexibility at the antigen interface, as has been observed for neutralizing antibodies against 

the HIV-1 Envelope (Klein et al., 2013). Interestingly, C080 also acquired activity against SARS-

CoV (Figure 5F). Based on the homology model of C080-SARS-CoV RBD, CDRL3 mutations 

are predicted to facilitate recognition of the SARS-CoV RBD (Figure S7E). 

 

DISCUSSION 

Herein we describe properties of SARS-CoV-2 neutralizing antibodies that change as a 

consequence accumulated somatic mutations in convalescent individuals (Gaebler et al., 2021; 

Sokal et al., 2021). Persistent somatic mutation is associated with continued availability of 

antigen (Victora and Nussenzweig, 2012). For example, during chronic HIV-1 infection, 

antibodies develop exceptionally large numbers of mutations compared to infections of limited 

duration (Klein et al., 2013; Scheid et al., 2009). In SARS-CoV-2 convalescent individuals, viral 

proteins and nucleic acids can persist in the gut for months, providing a source of antigen to fuel 

germinal centers (Gaebler et al., 2021). Whether current vaccination schemes will afford a 

sufficient antigen persistence to elicit continued antibody maturation remains to be determined.  

 

While each antibody lineage had unique characteristics that were impacted by somatic 

mutations, general themes were evident. Typically, antibodies isolated at 6.2m had increased 
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potency compared to their clonal relatives isolated at 1.3m. An exception to this was C144, a 

particularly potent antibody, isolated at 1.3m, (Robbiani et al., 2020). Structural analysis 

suggests that the high potency of C144 is related to its ability to lock the S trimer in a prefusion, 

closed state (Barnes et al., 2020b).  

 

Whereas antibody producing plasma cells are selected based on their affinity for antigen, 

memory B-cells are heterogeneous and encode a far more diverse set of antibodies with varying 

levels of affinity for the immunogen (Viant et al., 2020). One of the consequences of 

accumulating a diverse group of closely related antibody-producing cells in the memory 

compartment is the ability to recognize and respond to closely related pathogens (Viant et al., 

2020). Consistent with this observation, an important property that was recurrently evident in the 

antibody lineages described herein was a change in the mutations that were selected and 

conferred resistance to 6.2m antibodies as compared to 1.3m antibodies. Striking features of 

some of the 6.2m antibodies included restriction of the range of options for viral escape and the 

resilience of neutralization activity in the face of point mutations that conferred resistance to 

1.3m antibodies. Indeed, the neutralization potency of certain matured antibodies, such as 

C549, C099 and C080, was maintained for all of the naturally circulating individual RBD 

substitutions tested, consistent with observation of antibody antigen structures or models. In 

some cases, rVSV/SARS-CoV-2 selection experiments indicated that somatic mutations 

elevated the genetic barrier to antibody resistance, imposing a requirement for two substitutions 

for high level antibody resistance. 

 

The naturally circulating RBD triple mutant K417N/E484K/N501Y did not generally confer 

resistance to antibodies that were not already affected by the E484K mutation. This finding 

suggests that separate antibodies may be generally responsible for the application of selection 

pressure at K417, E484 and N501. Nevertheless, the E484K mutation undermined the activity of 
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several class 2 antibodies. While a number of naturally circulating substitutions at E484 

conferred resistance to some class 2 antibodies (e.g., C144, C055, C548), naturally occurring 

variants of concern typically encode E484K (West et al., 2021), consistent with our finding that 

only the E484K substitution conferred more pervasive class 2 antibody resistance, including to 

some matured antibodies (e.g., C051, C052). 

 

In two cases, antibody maturation enabled neutralization of heterologous sarbecoviruses, 

suggesting that development of pan-sarbecovirus vaccines may be possible (Cohen et al., 

2021b). Indeed, the greater neutralization potency, resilience to viral mutation, and breadth of 

SARS-CoV-2 RBD-specific antibodies that have undergone greater degrees of somatic mutation 

suggests that immunization schemes that elicit higher levels of antibody mutation and 

diversification are desirable. Indeed, antibody maturation may be especially important as SARS-

CoV-2 diversifies and adapts to the range of human antibodies in vaccinated and previously 

infected individuals. Moreover, a diverse set of broadly neutralizing SARS-CoV-2 spike-elicited 

antibodies that exhibit some activity against divergent sarbecoviruses may mitigate the threat 

posed by this group of pandemic-threat agents. 
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Figure 1. Effects of somatic mutation of class 2 antibodies on potency and viral escape  
(A) Neutralization potency (IC50) of C144, C051 and C052 measured using HIV-1-based SARS-
CoV-2 variant pseudotypes and HT1080/ACE2cl.14 cells. The E484K substitution was 
constructed in an R683G (furin cleavage site mutant) background to increase infectivity. Mean 
of two independent experiments.  
(B) RBD structure indicating positions of substitutions that affect sensitivity to neutralization by 
class 2 and C144/C05/C052, C143/C164/C055 and C548/549 lineage antibodies. 
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(C) Decimal fraction (color gradient; white = 0, red = 1) of Illumina sequence reads encoding the 
indicated RBD substitutions following rVSV/SARS-CoV-2 replication (1D7 and 2E1 virus 
isolates) in the presence of the indicated amounts of antibodies for the indicated number of 
passages.  
(D) As in A for antibodies C548 and C549.  
(E) As in C for antibodies C548 and C549. Reduced antibody concentrations were required for 
C549 escape.  
(F,G) C548 (F) and C549 (G) neutralization of rVSV/SARS-CoV-2 1D7, 2E1 or plaque purified 
mutants thereof isolated following antibody selection, in 293T/ACE2cl.22 cells. Infected 
(%GFP+) cells relative to no antibody controls, mean and range of two independent 
experiments is plotted. 
See also Figure S1, S2, S3 
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Figure 2. Somatic mutation in a class 1 antibody lineage confers potency and resilience 
to viral escape  
(A) Neutralization potency (IC50) of C098 and C099 measured using HIV-1-based SARS-CoV-2 
variant pseudotypes and HT1080/ACE2cl.14 cells. The E484K substitution was constructed in 
an R683G (furin cleavage site mutant) background to increase infectivity. Mean of two 
independent experiments.   
(B) RBD structure indicating positions of substitutions that affect sensitivity to neutralization by 
class 1 and C098 and C099 lineage antibodies. 
(C) Decimal fraction (color gradient; white = 0, red = 1) of Illumina sequence reads encoding the 
indicated RBD substitutions following rVSV/SARS-CoV-2 replication (1D7 and 2E1 virus 
isolates) in the presence of the indicated amounts of antibodies for the indicated number of 
passages.  
(D, E, F) C098 (D) and C099 (E, F) neutralization of rVSV/SARS-CoV-2 1D7, 2E1 or plaque 
purified mutants thereof, isolated following antibody selection, in 293T/ACE2cl.22 cells. Infected 
(%GFP+) cells relative to no antibody controls, mean and range of two independent 
experiments is plotted. 
See also Figure S4 
 

A B

C D

E F

10-2 10-1 100 101 102 103 104 105
0.0

0.5

1.0

1.5

Antibody concentration (ng/ml)
R

el
at

iv
e 

in
fe

ct
io

n

C098

WT2E1

N460Y2E1

10-2 10-1 100 101 102 103 104 105
0.0

0.5

1.0

1.5

Antibody concentration (ng/ml)

R
el

at
iv

e 
in

fe
ct

io
n

C099

WT1D7

D420Y/N460H1D7

D420Y1D7

10-2 10-1 100 101 102 103 104 105
0.0

0.5

1.0

1.5

Antibody concentration (ng/ml)

R
el

at
iv

e 
in

fe
ct

io
n

C099

WT2E1

N460Y2E1

L455R/Y453H2E1

L455R2E1

rVSV/SARS-CoV2
(passage) D420Y Y453H L455R N460H N460Y

10μg/ml 1D7 (p1) 0 0 0 0 0
10μg/ml 1D7 (p2) 0 0 0 0.103 0
10μg/ml 2E1 (p1) 0 0 0 0 0
10μg/ml 2E1 (p2) 0 0 0 0 0.211
10μg/ml 1D7 (p1) 0 0 0 0 0
1.25μg/ml 1D7 (p4) 0.722 0 0 0 0.024
2.5μg/ml 1D7 (p4) 0 0 0 0 0
10μg/ml 2E1 (p1) 0 0 0 0 0
1.25μg/ml 2E1 (p4) 0 0.356 0.674 0.036 0
2.5μg/ml 2E1 (p4) 0 0.476 0.758 0.136 0

C098

C099

W
T

R
34

6S
V

36
7F

R
40

3K
K

41
7N

N
43

9K
N

44
0K

K
44

4R
K

44
4Q

V
44

5E
V

44
5I

G
44

6S
G

44
6V

Y
45

3F
L4

55
F

L4
55

I
L4

55
R

F4
56

V
Y

45
9F

A
47

5D
A

47
5V

G
47

6A
G

47
6S

S
47

7G
S

47
7R

T4
78

I
T4

78
K

V
48

3A
V

48
3F

V
48

3I
E

48
4A

E
48

4D
E

48
4G

E
48

4Q
G

48
5R

F4
86

L
Y

48
9H

F4
90

L
F4

90
S

Q
49

3L
Q

49
3R

S
49

4L
S

49
4P

T5
00

I
N

50
1Y

V
50

3F
G

50
4D

Y
50

5W
D

61
4G

R
68

3G
+E

48
4K

1

10

100

1000
>2500

C098
C099

1.3 months
6.2 months

IC
50

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

  
 
Figure 3. Effects of somatic mutation of class 3 antibodies on potency and viral escape  
(A) Neutralization potency (IC50) of C132 and C512 measured using HIV-1-based SARS-CoV-2 
variant pseudotypes and HT1080/ACE2cl.14 cells. The E484K substitution was constructed in 
an R683G (furin cleavage site mutant) background to increase infectivity. Mean of two 
independent experiments.  
(B) RBD structure indicating positions of substitutions that affect sensitivity to neutralization by 
class 3 and C132/C512 and C032/C080 lineage antibodies. 
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(C) Decimal fraction (color gradient; white = 0, red = 1) of Illumina sequence reads encoding the 
indicated RBD substitutions following rVSV/SARS-CoV-2 replication (1D7 and 2E1 virus 
isolates) in the presence of the indicated amounts of antibodies for the indicated number of 
passages.  
(D) C132 and C512 neutralization of rVSV/SARS-CoV-2 1D7, 2E1 or plaque purified mutants 
thereof, isolated following antibody selection, in 293T/ACE2cl.22 cells. Infected (%GFP+) cells 
relative to no antibody controls, mean and range of two independent experiments is plotted. 
(E) As in A for C032 and C080.  
(F) As in C for C032 and C080. 
(G) As in D for C032. 
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Figure 4. Effect of the E484K substitution alone or in combination with K417N/N501Y or 
L455R on matured class 1, 2 and 3 antibody sensitivity.  
(A-F) Neutralization of HIV-1-based SARS-CoV-2 variant pseudotypes by C144/C051/C052 (A), 
C143/C164/C055 (B), C548/C549 (C), C098/C099 (D), C132/C512 (E) and C032/C080 (F) 
lineage antibodies in HT1080/ACE2cl.14 cells. Each of these variants was constructed in an 
R683G (furin cleavage site mutant) background to increase infectivity. Mean and range of two 
independent experiments.  
 
  

A

B

C

E

WT

E484K

L455R/E484K

K417N/E484K/N501Y

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C032

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C548

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C549

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C098

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C144

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C051

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C052

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C143

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C164

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C055

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C132
F

D

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)
Re

la
tiv

e 
in

fe
ct

io
n

C080

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C099

10-1 100 101 102 103 104
0.0

0.5

1.0

antibody concentration (ng/ml)

Re
la

tiv
e 

in
fe

ct
io

n

C512

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

  
 
Figure 5. Neutralization of heterologous sarbecoviruses by SARS-CoV-2 elicited 
antibodies and effects of somatic mutation on breadth. 
(A-F) Neutralization of HIV-1-based SARS-CoV, bat coronavirus (bCoV WIV16), or pangolin 
coronaviruses (pCov-GD and pCoV-GX) pseudotypes by C144/C051/C052 (A), 
C143/C164/C055 (B), C548/C549 (C), C098/C099 (D), C132/C512 (E) and C032/C080 (F) 
lineage antibodies in HT1080/ACE2cl.14 cells. Mean and range of two independent 
experiments. 
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Figure 6. Structures of class 1 and class 2 anti-RBD antibody 1.3m and 6.2m pairs 
(A) Overlay of VH-VL domains of class 1 C098 and C099 Fabs bound to RBD from 2.0 Å and 2.6 
Å crystal structures, respectively.  
(B) CDR loops of C098 and C099 mapped onto the RBD surface. Fab epitopes are colored on 
the RBD surface.  
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(C,D) Interactions of C098 (panel C) and C099 (panel D) CDRH1 residues with RBD. Residues 
changed by somatic hypermutation indicated by an asterisk and enclosed in a red box. 
(E,F) Interactions of C098 (panel E) and C099 (panel F) CDRH2 residues with RBD. Residues 
changed by somatic hypermutation indicated by an asterisk and enclosed in a red box. 
(G) 3.5 Å cryo-EM density for class 2 C051-S complex structure (only the VH-VL domains of 
C051 are shown).  
(H) Overlay of VH-VL domains of C051 and C144 Fabs bound to S trimer. Both Fabs bridge 
between adjacent “down” RBDs, shown in inset as dark and light gray surfaces.  
(I,J) Interactions between RBD and C144 (panel I) and C051 (panel J) with a subset of 
interacting residues highlighted as sticks. Potential hydrogen bonds shown as dotted lines. 
Residues changed by somatic hypermutation indicated by an asterisk and enclosed in a red 
box. 
See also Figure S5, S6 
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Figure 7 Structures of class 2 and class 3 anti-RBD 1.3m antibodies 
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(A) 3.4 Å cryo-EM density for class 2 C548-S complex (only the VH-VL domains of C548 are 
shown). 
(B) Close-up view of quaternary epitope involving bridging interactions between adjacent RBDs. 
(C) CDR loops mapped onto adjacent RBD surfaces.  
(D) Epitope of C548 highlighted on adjacent RBDs.  
(E) C548 paratope mapped onto adjacent RBDs.  
(F) Interactions between RBD and C548 with a subset of interacting residues highlighted as 
sticks. Potential hydrogen bonds shown as dotted lines. 
(G) 3.4 Å cryo-EM density for class 3 C032-S complex (only the VH-VL domains of C032 are 
shown). 
(H) Overlay of C032–RBD portion of the C032-S complex structure with an ACE2-RBD structure 
(from PDB 6VW1). 
(I) Epitope of C032 highlighted on the RBD surface.  
(J) C032 paratope mapped onto RBD surface.  
(K) Interactions between RBD and C032 CDRH1 and CDRH3 loops, with a subset of interacting 
residues highlighted as sticks. Potential hydrogen bonds shown as dotted lines. 
See also Figure S5, S7 
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LEAD CONTACT AND MATERIALS AVAILABILITY 

Requests for further information and or reagents may be addressed to the Lead Contact Paul D. 

Bieniasz (pbieniasz@rockefeller.edu). 

 

METHODS DETAILS 

SARS-CoV-2 pseudotyped reporter virus 

We have previously described a panel of plasmids expressing RBD-mutant SAR-CoV-2 spike 

proteins in the context of pSARS-CoV-2-SΔ19 (Weisblum et al., 2020). Additional substitutions 

to expend the panel were introduced using synthetic gene fragments (IDT) or overlap extension 

PCR mediated mutagenesis and Gibson assembly. E484K was originally excluded from our 

panel because HIV-1-based pseudotypes generated with the E484K substitution in our standard 

assay were poorly infectious. However, when the E484K substitution was incorporated into a 

spike protein that also includes that the R683G substitution, which disrupts the furin cleavage 

site, pseudotyped particle infectivity was preserved. The R683G substitution itself increased 

pseudovirus sensitivity to some antibodies, including C055, C099, C549 and C512, and 

antibodies from the C144 and C032 groups. Thus, the E484K, L455R+E484K and KEN 

(K417N+E484K+N501Y) mutants were used in the context of a pSARS-CoV-2-S Δ19 variant 

with an inactivated furin cleavage site (R683G). The potencies with which the antibodies 

neutralized members of the mutant pseudotype panel were compared with potencies against a 

“wildtype” SARS-CoV-2 (NC_045512) spike sequence, carrying R683G where appropriate. The 

SARS-CoV-2 pseudotyped HIV-1 particles were generated as previously described (Schmidt et 

al., 2020). Specifically, virus stocks were harvested 48 hours after transfection of 293T cells with 

pNL4-3ΔEnv-nanoluc and pSARS-CoV-2 SΔ19 and filtered and stored at -80oC. 

 

SARS-CoV-2 pseudotype neutralization assays 
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Monoclonal antibodies were four-fold serially diluted and then incubated with SARS-CoV-2 

pseudotyped HIV-1 reporter virus for 1 h at 37 °C. The antibody/pseudotyped virus mixture was 

then added to HT1080/ACE2.cl14 cells. After 48 h, cells were washed with PBS, lysed with 

Luciferase Cell Culture Lysis reagent (Promega) and Nanoluc Luciferase activity in lysates was 

measured using the Nano-Glo Luciferase Assay System (Promega) and a Glomax Navigator 

luminometer (Promega). The relative luminescence units were normalized to those derived from 

cells infected with SARS-CoV-2 pseudotyped virus in the absence of monoclonal antibodies. 

The half-maximal inhibitory concentrations for monoclonal antibodies (IC50) were determined 

using four-parameter nonlinear regression (least squares regression method without weighting) 

(GraphPad Prism). 

 

Selection of antibody resistant rVSV/SARS-CoV-2 variants 

To select monoclonal antibody-resistant S variants, rVSV/SARS-CoV-2/GFP1D7 and 

rVSV/SARS-CoV-2/GFP2E1 were passaged to generate diversity, and populations containing 106 

PFU were incubated with monoclonal antibodies (0.5µg/ml to 10µg/ml) for 1h at 37˚C before 

inoculation of 2x105 293T/ACE2cl.22 cells in 6-well plates. The following day the medium was 

replaced with fresh medium containing the same concentrations of antibody. Supernatant from 

the wells containing the highest concentration of monoclonal antibodies that showed evidence 

of rVSV/SARS-CoV-2/GFP replication (large numbers of GFP positive cells or GFP positive foci) 

was harvested 24h later. Where necessary, aliquots (100 µl) of the cleared supernatant from the 

first passage (p1) were incubated with the same concentration of monoclonal antibody and then 

used to infect 2x105 293T/ACE2cl.22 cells in 6-well plates, as before (p2). We repeated this 

process until escape reduced neutralization potency for the antibody was evident, as indicated 

by increasing numbers of GFP positive cells.  

To isolate individual mutant viruses by limiting dilution, the selected rVSV/SARS-CoV-

2/GFP1D7 and rVSV/SARS-CoV-2/GFP2E1 populations were serially diluted in the absence of 
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monoclonal antibodies and aliquots of each dilution added to individual wells of 96-well plates 

containing 1x104 293T/ACE2cl.22 cells. Individual viral variants were identified by observing 

single GFP-positive plaques at limiting dilutions. The plaque-purified viruses were expanded, 

RNA extracted and S sequences determined, and sensitivity to the selecting monoclonal 

antibody measured. 

 

rVSV/SARS-CoV-2 Neutralization assays 

Monoclonal antibodies were five-fold serially diluted and then incubated with rVSV/SARS-CoV-

2/GFP1D7 and rVSV/SARS-CoV-2/GFP2E1 or plaque purified selected variants for 1 h at 37 °C. 

The antibody/recombinant virus mixture was then added to 293T/ACE2.cl22 cells. After 16h, 

cells were harvested, and infected cells were quantified by flow cytometry. The percentage of 

infected cells was normalized to that derived from cells infected with rVSV/SARS-CoV-2 in the 

absence of monoclonal antibodies. The half-maximal inhibitory concentrations for monoclonal 

antibodies (IC50) were determined using four-parameter nonlinear regression (least squares 

regression method without weighting) (GraphPad Prism). 

 

 

Sequence analyses 

To identify putative antibody resistance mutations, RNA was isolated from aliquots of 

supernatant containing selected viral populations or individual plaque purified variants using 

NucleoSpin 96 Virus Core Kit (Macherey-Nagel). The purified RNA was subjected to reverse 

transcription using random hexamer primers and SuperScript VILO cDNA Synthesis Kit 

(Thermo Fisher Scientific). The cDNA was amplified using KOD Xtreme Hot Start DNA 

396 Polymerase (Millipore Sigma) flanking the S encoding sequences. Alternatively, a fragment 

including the entire S-encoding sequence was amplified using primers targeting VSV-M and 

VSV-L. The PCR products were gel-purified and sequenced either using Sanger-sequencing or 
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Illumina sequencing as previously described (Gaebler et al., 2019). For illumina sequencing, 1 

µl of diluted DNA was used with 0.25 µl Nextera TDE1 Tagment DNA enzyme (catalog no. 

15027865), and 1.25 µl TD Tagment DNA buffer (catalog no. 15027866; Illumina). Then, the 

DNA was ligated to i5/i7 barcoded primers using the Illumina Nextera XT Index Kit v2 and KAPA 

HiFi HotStart ReadyMix (2X; KAPA Biosystems). Next the DNA was purified using AmPure 

Beads XP (Agencourt), pooled, sequenced (paired end) using Illumina MiSeq Nano 300 V2 

cycle kits (Illumina) at a concentration of 12pM. 

 For analysis of the Illumina sequencing data, adapter sequences were removed from the raw 

reads and low-quality reads (Phred quality score <20) using BBDuk. Filtered reads were 

mapped to the codon-optimized SARS-CoV-2 S sequence in rVSV/SARS-CoV-2/GFP and 

mutations were annotated using using Geneious Prime (Version 2020.1.2), using a P-value 

cutoff of 10-6. RBD-specific variant frequencies, P-values, and read depth were compiled using 

Python running pandas (1.0.5), numpy (1.18.5), and matplotlib (3.2.2). 

 

Protein expression and purification 

Expression and purification of SARS-CoV-2 6P stabilized S trimers (Hsieh et al., 2020) and 

SARS-CoV-2 RBD were conducted as previously described (Cohen et al., 2021a). We purified 

proteins from supernatants of transiently-transfected Expi293F cells (Gibco) by Ni2+-NTA affinity 

and size exclusion chromatography (SEC). Peak fractions from SEC were identified by SDS-

PAGE, pooled, and stored at 4˚C. Fabs were generated by papain digestion from purified IgGs 

using crystallized papain (Sigma-Aldrich) in 50 mM sodium phosphate, 2 mM EDTA, 10 mM L-

cysteine, pH 7.4 for 30-60 min at 37˚C at a 1:100 enzyme:IgG ratio. To remove Fc fragments 

and undigested IgGs, digested products were applied to a 1-mL HiTrap MabSelect SuRe 

column (GE Healthcare Life Sciences) and the flow-through containing cleaved Fabs was 

collected. Fabs were further purified by SEC using a Superdex 200 Increase 10/300 column 

(GE Healthcare Life Sciences) in TBS before concentrating and storing at 4˚C. 
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Cryo-EM structure determinations 

We incubated purified Fab and S 6P trimer at a 1.1:1 molar ratio per protomer on ice for 30 

minutes prior to deposition on a freshly glow-discharged 300 mesh, 1.2/1.3 UltrAuFoil grid or 

1.2/1.3 QuantiFoil Cu grid. Fluorinated octyl-maltoside was added to the Fab-S complex to a 

final detergent concentration of 0.02% w/v, resulting in a final complex concentration of 3 mg/ml, 

immediately before 3 µl of complex was applied to the grid. Samples were then vitrified in 100% 

liquid ethane using a Mark IV Vitrobot after blotting for 3 s with Whatman No. 1 filter paper at 

22˚C, 100% humidity. 

 

We followed previously-described cryo-EM data collection and processing protocols for Fab-S 

complexes (Barnes et al., 2020a). Briefly, for all Fab-S complexes, we collected micrographs on 

a Talos Arctica transmission electron microscope (Thermo Fisher) operating at 200 kV using 

SerialEM automated data collection software (Mastronarde, 2005). Movies were recorded using 

a 3x3 beam image shift pattern with a K3 camera (Gatan). Data collection parameters are 

reported in Table S3. Cryo-EM movies were patch motion corrected for beam-induced motion 

including dose-weighting within cryoSPARC v2.15 (Punjani et al., 2017) after binning super 

resolution movies for all data sets. Non-dose-weighted images were used to estimate CTF 

parameters using a cryoSPARC implementation of the Patch CTF job, and all datasets were 

processed similarly. Briefly, after picking an initial set of particles based on templates from 2D 

classification of blob picked particles on a small sub-set of images, this set was pared down 

through several rounds of 3D classification. Ab initio cryoSPARC jobs on a small good subset of 

these particles revealed distinct states and junk particles. A full set of particles was 

heterogeneously refined against distinct conformational states and a junk class acting as a trap 

for bad particles. Particles from each class were separately refined using non-uniform 

refinement using C1 (C032-S) or C3 symmetry (C051-S and C548-S). Particles from distinct 
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states were re-extracted without binning and were separately refined in rounds of 3D 

classification. Particles were further subdivided into groups based on beam-tilt and refined 

separately for CTF parameters and aberration correction. For the C032-S and C051-S data 

sets, a soft mask (3-pixel extension, 6-pixel soft edge) was generated for the spike S1 subunit 

and Fab variable domains to improve local resolutions at the Fab-RBD interface. Overall 

reported resolutions are based on gold standard FSC calculations (Scheres and Chen, 2012). 

 

Cryo-EM Structure Modeling and Refinement 

Initial complex coordinates were generated by docking individual chains from reference 

structures into cryo-EM densities using UCSF Chimera (Goddard et al., 2018). Models were 

refined into cryo-EM densities using rigid body and real space refinement with morphing in 

Phenix (Terwilliger et al., 2018). Models with updated sequences were built manually in Coot 

(Emsley et al., 2010) and then refined using iterative rounds of real-space refinement in Phenix 

and Coot. N-Glycans were modeled at potential N-linked glycosylation sites (PNGSs) in Coot 

using ‘blurred’ maps processed with B-factors generated in cryoSPARC v2.15. We validated 

model coordinates using MolProbity (Chen et al., 2010) (Table S3). 

 

X-ray structures 

To assemble C098-RBD or C099-CR3022-RBD complexes for crystallization, a 3:1 Fab:RBD 

molar ratio was incubated at RT for 1 h and complexes purified using size exclusion 

chromatography on a Superdex200 10/300 column (Cytiva) in 1x TBS. Crystallization trials for 

individual Fabs (C032, C080, C098, and C099), C098-RBD, and C099-CR3022-RBD 

complexes were carried out at room temperature using the sitting drop vapor diffusion method 

by mixing equal volumes of the Fab or Fab-RBD complex and reservoir using a TTP LabTech 

Mosquito robot and commercially-available screens (Hampton Research). C032 Fab crystals 

were grown using 0.2 µL of protein complex in TBS and 0.2 µL of mother liquor (0.1 M HEPES 
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pH 7.7, 58% 2-Methyl-2,4-pentanediol) and cryoprotected in mother liquor. C080 Fab crystals 

were grown using 0.2 µL of protein complex in TBS and 0.2 µL of mother liquor (10% 2-

Propanol, 0.1 M BICINE pH 8.5, 30% PEG 1,500) and cryoprotected using Fomblin® oil. C098 

Fab crystals were grown using 0.2 µL of protein complex in TBS and 0.2 µL of mother liquor 

(2.0 M ammonium sulfate, citric acid pH 3.5) and cryoprotected in mother liquor supplemented 

with 15% (v/v) glycerol. C099 Fab crystals were grown using 0.2 µL of protein complex in TBS 

and 0.2 µL of mother liquor (1.9 M ammonium sulfate, citric acid pH 3.8) and cryoprotected 

using Al’s oil. C098-RBD crystals were grown using 0.2 µL of protein complex in TBS and 0.2 

µL of mother liquor (0.05 M citric acid, 0.05M BIS-TRIS propane pH 5.0, 14% PEG 3,350) and 

cryoprotected in mother liquor supplemented with 30% (v/v) glycerol. C099-CR3022-RBD 

crystals were grown using 0.2 µL of protein complex in TBS and 0.2 µL of mother liquor (0.1M 

Sodium cacodylate, 40% 2-Methyl-2,4-pentanediol (MPD), and 5% PEG8000) and 

cryoprotected in mother liquor supplemented with 10% (v/v) glycerol.  

 

X-ray diffraction data were collected for individual Fabs or Fab-RBD complexes at the Stanford 

Synchrotron Radiation Lightsource (SSRL) beamline 12-2 on a Pilatus 6M pixel detector 

(Dectris). Data from single crystals were indexed and integrated in XDS (Kabsch, 2010) or 

iMosflm {Battye, 2011 #796} and merged using AIMLESS in CCP4 (Winn et al., 2011) (Table 

S2). Fab structures were solved by molecular replacement using a model of CC12.3 Fab (PDB 

6XC4) or HEPC46 Fab (PDB 6MEG). The C098-RBD complex structure was solved by 

molecular replacement using the C098 Fab (this paper) and RBD (PDB 7BZ5) structures as 

search models. The C099-CR3022-RBD complex structure was solved by molecular 

replacement using the C099 Fab (this paper), CR3022 Fabb (PDB 6W41) and RBD (PDB 7BZ5) 

structures as search models. Heavy chain and light chain CDR loops for the search model Fab 

were trimmed to make the search models. The structures were refined using an initial round of 

rigid body and individual B refinement in Phenix (Adams et al., 2010) followed by cycles of 
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manual building in Coot (Emsley et al., 2010) and real space refinement in Phenix with TLS 

(Table S2). 

 

Homology modeling of Fab-RBD structures 

Homology models of two of the RBD complexes were made for the Fabs of C549 (class 2) and 

C080 (class 3). Both complexes were modelled based on the cryo-EM structures of the related 

1.3 month Fab-S complexes; i.e., the C548-S and C032-S complexes. The Fab of C548 to C549 

involved 27 amino acid changes, whereas there were 16 changes for C032 to C080. Side 

chains of residues that were disordered in the density of the experimental structures were also 

modelled to their correct sequence. Homology models were generated by MODELLER (version 

9.23) (Sali and Blundell, 1993) and further optimized by Protein Preparation Wizard in Maestro 

Schrodinger (Sastry et al., 2013) including optimization of hydrogens. The system was fully 

solvated with SPC water and counter ions. Energy minimization using Brownian Dynamics in 

Desmond from Schrodinger (version 2020.1) (Bowers et al., 2006) which involved gradually 

reducing restraints in 100ps steps from the full protein, to the backbone and finally without 

restraints to avoid any steric clashes.    

 

Structural Analyses 

CDR definitions and Kabat numbering for antibody residues were based on IMGT definitions 

(Lefranc et al., 2015). Figures of structures were made with UCSF ChimeraX. Local resolution 

maps were calculated using cryoSPARC v 2.15. Areas buried in Fab-RBD interfaces (BSAs) 

were calculated using PDBePISA (Krissinel and Henrick, 2007) and a 1.4 Å probe. Sc analyses 

were conducted using Rosetta version 2020.08 (Leaver-Fay et al., 2011). Potential hydrogen 

bonds were assigned as interactions with A-D-H angle > 90˚ and between atoms that were 

<4.0Å. Potential van der Waals interactions were assigned as interactions that were <4.0Å. 
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Hydrogen bond and van der Waals interaction assignments are tentative in the cryo-EM 

structures due to resolution limitations. 

 

DATA AND SOFTWARE AVAILABILITY 

Coordinates and maps associated with data reported in this manuscript will be deposited in the 

Electron Microscopy Data Bank (EMDB: https://www.ebi.ac.uk/pdbe/emdb/) and Protein Data 

Bank (PDB: www.rcsb.org) with accession numbers … 
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Figure S1. Effect of E484K substitution on C144/C051/C052 lineage neutralizing potency, 
related to Figure 1. 
Neutralization of rVSV/SARS-CoV-2 2E1 or a plaque purified E484K mutant thereof, in 
293T/ACE2cl.22 cells. Infected (%GFP+) cells relative to no antibody controls, mean and range 
of two independent experiments is plotted. 
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Figure S2. Effects of somatic mutation on potency and viral escape in the 
C143/C164/C055 class 2 antibody lineage, related to Figure 1.  
(A) Neutralization potency (IC50) of C143, C164 and C055 measured using HIV-1-based SARS-
CoV-2 variant pseudotypes and HT1080/ACE2cl.14 cells. The E484K substitution was 
constructed in an R683G (furin cleavage site mutant) background to increase infectivity. Mean 
of two independent experiments.   
(B) Decimal fraction (color gradient; white = 0, red = 1) of Illumina sequence reads encoding the 
indicated RBD substitutions following rVSV/SARS-CoV-2 replication (1D7 and 2E1 virus 
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isolates) in the presence of the indicated amounts of antibodies for the indicated number of 
passages. 
(C) C164 neutralization of rVSV/SARS-CoV-2 1D7, 2E1 or plaque purified mutants thereof, 
isolated following antibody selection, in 293T/ACE2cl.22 cells. Infected (%GFP+) cells relative 
to no antibody controls, mean and range of two independent experiments is plotted.  
(D) As in C for antibody C055. 
 
 
 
 
 
 
 
 

 
 
Figure S3. Effect of viral substitutions on neutralization by C548 and C549, related to 
Figure 1 
(A) C548 neutralization of HIV-1-based SARS-CoV-2 pseudotypes harboring the indicated 
substitutions that were identified by selection experiments. Infection (NanoLuc luciferase 
activity) is normalized to that obtained in the absence of antibody, mean and range of two 
independent experiments is plotted. 
(B) As in A for antibody C549. 
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Figure S4. Effect of viral substitutions on neutralization by C098 and C099, related to 
Figure 2  
(A) C098 neutralization of HIV-1-based SARS-CoV-2 pseudotypes harboring the indicated 
substitutions that were identified by selection experiments. Infection (NanoLuc luciferase 
activity) is normalized to that obtained in the absence of antibody, mean and range of two 
independent experiments is plotted.  
(B) As in A for antibody C099. 
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Figure S5 Cryo-EM data processing and X-ray structures, related to Figures 6,7 
(A-C) Representative micrograph, 2D class averages, FSC plots calculated using the gold-
standard FSC criteria, and local resolution maps rendered in cryoSparc v2.15 for the cryo-EM 
structures of (A) C051-S, (B) C032-S, and (C) C548-S complexes. 
(D-G) Cartoon representations of crystal structures of (D) C098, (E) C099, (F) C032, and (G) 
C080 Fabs. 
(H) Cartoon representation of C098 Fab – SARS-CoV-2 RBD crystal structure. 
(I) Cartoon representation of C099-CR3022 – SARS-CoV-2 RBD crystal structure. 
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Figure S6. Class 1 and 2 antibody sequence alignments and interactions with RBD, 
related to Figure 6.  
(A) Sequence alignment between heavy and light chains of C098 and C099 relative to inferred 
germline sequences. Paratope residues highlighted in red.  
(B) C098 epitope (light green surface on RBD with paratope sidechains from C098 highlighted 
as sticks).  
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(C) C099 epitope (light cyan surface on RBD with paratope sidechains from C099 highlighted as 
sticks). Somatic hypermutations found in C099 are highlighted with a red box. 
(D) Overlay of VH-VL domains of class 1 Fabs bound to RBD (C098, green – this study; C099, 
blue – this study; C102, salmon – PDB 7K8M; CC12.3, cyan – PDB 6XC4; B38, gray – PDB 
7BZ5; CV30, yellow – PDB 6XE1).  
(E) Overlay of CDRH3 loops of class 1 Fabs described in panel D at the RBD interface. 
(F) Sequence alignment between heavy and light chains of C144 and C051 relative to inferred 
germline sequences. Paratope residues highlighted in red.  
(G) C144 epitope (light blue surface on RBD with paratope sidechains from C144 highlighted as 
sticks).  
(H) C051 epitope (light orange surface on RBD with paratope sidechains from C051 highlighted 
as sticks). 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434227
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S7. Class 2 and 3 antibody sequence alignments and homology models, related to 
Figure 7. 
(A) Sequence alignment between heavy and light chains of C548/C549 and C032/C080 
antibody pairs relative to inferred germline sequences. Paratope residues highlighted in red. 
(B) Homology model of C549-RBD complex. Antibody somatic mutations are shown as sticks. 
Residues changed by somatic hypermutation at the predicted RBD interface are indicated by an 
asterisk and enclosed in a red box. 
(C) Predicted interactions between RBD (light gray) and C549 homology model LC residues 
(violet). C548 residues (light green) are shown.  
(D) Homology model of the C080-RBD complex. Antibody somatic mutations are shown as 
sticks. Residues changed by somatic hypermutation at the predicted RBD interface are 
indicated by an asterisk and enclosed in a red box. 
(E) Homology model of the C080-SARS-CoV RBD complex. Predicted RBD epitope and Fab 
paratope are shown as colored surface and sticks, respectively. Residues changed by somatic 
hypermutation at the predicted RBD interface are indicated by an asterisk and enclosed in a red 
box. Sequence differences in SARS-RBD relative to SARS-CoV-2 RBD are indicated with 
italics.  
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Table S1 Clonally related antibody lineages in this study 

 
 
 
  

IGHV IGHD IGHJ CDRH3 IGLV IGLJ CDRL3
Germline IGHV3-53*01 IGHD3-3*01 IGHJ4*02 AR------YYDFWSG-----YYFDY IGLV2-14*01 IGLJ1*01 SSYTSSST-V

C144 (1.3 months) IGHV3-53*01 IGHD3-3*01 IGHJ4*02 ..EGEVEG.N.....YSRDR..... IGLV2-14*01 IGLJ1*01 ........R.
C051 (6.2 months) IGHV3-53*01 IGHD3-3*01 IGHJ4*02 ..EGDVEG.H.S...YSRDR..... IGLV2-14*01 IGLJ1*01 ....NNN.R.
C052 (6.2 months) IGHV3-53*01 IGHD3-3*01 IGHJ4*02 ..EGDVEG.......YSRDR..... IGLV2-14*01 IGLJ1*01 N....NN.R.
C053 (6.2 months) IGHV3-53*01 IGHD3-3*01 IGHJ4*02 ..EGDVEG.......YSRDR..... IGLV2-14*01 IGLJ1*01 .......AR.
C054 (6.2 months) IGHV3-53*01 IGHD3-3*01 IGHJ4*02 ..EGDVEGFS.L...YSRDR..... IGLV2-14*01 IGLJ1*01 ..F...N.R.

Germline IGHV1-69*01 IGHD3-10*01 IGHJ6*02 ----AYG---YYYYYGMDV IGLV9-49*01 IGLJ3*02 GADHGSGSNFV-V
C548 (1.3 months) IGHV1-69*01 IGHD3-10*01 IGHJ6*02 ARRE...PRD......... IGLV9-49*01 IGLJ3*02 ...Q.......G.
C549 (6.2 months) IGHV1-69*01 IGHD3-10*01 IGHJ6*02 ARREP..PRD...FF.... IGLV9-49*01 IGLJ3*02 ...E...GT..G.

Germline IGHV5-51*01 IGHD6-19*01 IGHJ2*01 AR--AVDWYFDL IGLV1-40*01 IGLJ1*01 QSYDSSLS--YV
C032 (1.3 months) IGHV5-51*01 IGHD6-19*01 IGHJ2*01 ..GV........ IGLV1-40*01 IGLJ1*01 ........AL..
C080 (6.2 months) IGHV5-51*01 IGHD6-19*01 IGHJ2*01 ..GV........ IGLV1-40*01 IGLJ1*01 ..SG.V..DL..

Germline IGHV3-53*01 IGHD6-19*01 IGHJ3*02 AR--YSSG--DI IGKV3-20*01 IGKJ1*01 QQYGSSP-T
C098 (1.3 months) IGHV3-53*01 IGHD6-19*01 IGHJ3*02 ..DL....GT.. IGKV3-20*01 IGKJ1*01 .......G.
C099 (6.2 months) IGHV3-53*01 IGHD6-19*01 IGHJ3*02 ..DL....GT.. IGKV3-20*01 IGKJ1*01 .......G.

Germline IGHV3-66*01 IGHD4-23*01 IGHJ3*02 AR----------------VAFDI IGLV2-23*03 IGLJ3*02 CSYAGSSTFV
C143 (1.3 months) IGHV3-66*01 IGHD4-23*01 IGHJ3*02 ..DSSEVRDHPGHPGRSVG.... IGLV2-23*03 IGLJ3*02 .....A....
C164 (1.3 months) IGHV3-66*01 IGHD4-23*01 IGHJ3*02 ..DSSEVRDHPGHPGRSVG.... IGLV2-23*02 IGLJ3*02 .....A....
C055 (6.2 months) IGHV3-66*01 IGHD4-23*01 IGHJ3*02 ..DSSEVRDHPGHPGRSVG.... IGLV2-23*01 IGLJ3*02 ......H...

Germline IGHV4-4*02 IGHD5-18*01 IGHJ4*02 AR--DTAM---YFDY IGLV2-14*01 IGLJ3*02 SSYTSSSTL-
C132 (1.3 months) IGHV4-4*02 IGHD5-18*01 IGHJ4*02 ..GG....GPE.... IGLV2-14*01 IGLJ3*02 .........L
C512 (6.2 months) IGHV4-4*02 IGHD5-18*01 IGHJ4*02 .KGG.R..GPE...S IGLV2-14*01 IGLJ3*02 ..FA.....L

mAb ID Heavy Light

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
  

Table S2. X-ray data collection and refinement statistics.

C098 Fab
SARS-CoV-2 RBD

C099 Fab
CR3022 Fab

SARS-CoV-2 RBD C032 Fab C080 Fab C098 Fab C099 Fab

Data collectiona,b
Space group C2 P41212 C2 P212121 P6522 P212121

Cell Dimenstions

a, b, c (Å) 191.3, 87.8, 56.8 110, 110, 228.6 133.9, 61.7, 69.2 58.6, 67.4, 130.6 88.1, 88.1, 216.2 44.1, 92.6, 115.2

α, β, γ (°) 90, 99.8, 90 90, 90, 90 90, 97.3, 90 90, 90, 90 90, 90, 120 90, 90, 90

Resolution (Å) 40.7-2.0 (2.1-2.0) 39.6-2.6 (2.7-2.6) 36.0-2.1 (2.13-2.06) 36.6-1.9 (2.0-1.9) 43.2-1.4 (1.5-1.4) 43.0-1.3 (1.31-1.26)

Rmerge (%) 9.7 (79.4) 25.2 (405) 7.7 (95.0) 16.73 (175.9) 7.9 (185.9) 9.6 (152.4)

Rpim (%) 6.5 (53.6) 7.4 (121.9) 5.2 (66.0) 8.1 (85.9) 2.0 (46.2) 4.3 (70.4)

CC1/2 (%) 99.5 (57.7) 99.5 (35.1) 99.2 (52.1) 99.2 (39.9) 99.9 (67.2) 99.7 (48.5)

<I/σI> 6.8 (1.3) 8.9 (1.1) 5.9 (1.1) 7.9 (2.0) 17.4 (1.8) 8.3 (1.0)

Completeness (%) 95.7 (97.0) 100  (100) 94.3 (95.5) 98.8 (97.4) 99.4 (99.1) 90.5 (97.7)

Redundancy 3.0 (3.0) 12.9 (12.6) 2.9 (2.8) 5.2 (5.2) 16.5 (16.8) 5.6 (5.5)

Wilson B -factor 30.4 58.6 40.9 24.2 18.9 13.2

Refinement and Validation
Resolution (Å) 40.7-2.0 (2.1-2.0) 39.6-2.6 (2.66-2.6) 36.0-2.1 (2.13-2.06) 36.6-1.9 (2.0-1.9) 43.2-1.4 (1.5-1.4) 43.0-1.3 (1.31-1.26)

Unique Reflections 57,268 (5,762) 43,864 (2,600) 32,875 (3,295) 41,224 (4,044) 92,932 (9,042) 115,943 (12,409)

Number of atoms

Protein 4750 8,109 3244 3266 3352 3266

Ligand 14 14 - - - -

Waters 480 94 132 371 336 625

Rwork/Rfree (%) 17.9/20.8 18.9/23.7 20.0/22.7 18.6/22.3 18.6/20.5 18.0/20.1

R.m.s. deviations

Bond lengths (Å) 0.009 0.009 0.008 0.012 0.01 0.011

Bond angles (˚) 1.1 1.1 1.1 1.1 1.2 1.2

Poor rotamers (%) 0 0.82 0 0.55 1.0 1.10

Ramachandran plot

Favored (%) 97.4 95.9 96.5 97.9 98.6 98.1

Allowed (%) 2.1 3.8 3.5 2.1 1.4 1.7

Disallowed (%) 0.5 0.3 0 0 0 0.2

Average B -factor (Å) 40.6 59.7 55.4 31.2 31.0 19.9
aFor each structure reported, data were derived from a single crystal. 
bNumbers in parentheses correspond to the highest resolution shell

PDB ID
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Table S3. cryo-EM data collection and refinement statistics.
C032

SARS-CoV-2 S6P
C051

SARS-CoV-2 S 6P
C548

SARS-CoV-2 S 6P

PDB
EMD

Data collection conditions
Microscope Talos Arctica Talos Artica Talos Artica

Camera Gatan K3 Summit Gatan K3 Summit Gatan K3 Summit

Magnification 45,000x 45,000x 45,000x

Voltage (kV) 200 200 200

Recording mode counting counting counting

Dose rate (e
-
/pixel/s) 13.5 13.5 13.5

Electron dose (e
-
/Å
2
) 60 60 60

Defocus range (µm) 0.7 – 2.0 0.7 – 2.0 0.7 – 2.0

Pixel size (Å) 0.8689 0.8689 0.8689

Micrographs collected 3,480 3,402 1959

Micrographs used 2,683 2,927 1687

Total extracted particles 844,544 390,630 554,852

Refined particles 192,286 134,506 94,255

Symmetry imposed C1 C3 C3

Nominal Map Resolution (Å)

FSC 0.143 (unmasked/masked) 5.4/3.4 4.9/3.5 4.5/3.5

FSC 0.143 local (unmasked/masked) 6.7/4.4 5.8/4.1 N/A

Refinement and Validation
Initial model used 6XKL 7K90 7K43

Number of atoms

Protein 25,866 28,401 28136

Ligand 56 462 574

MapCC (global/local) 0.70/0.69 0.80/0.77 0.77/0.76

Map sharpening B-factor 69.3 64.5 110.1

R.m.s. deviations

Bond lengths (Å) 0.004 0.008 0.003

Bond angles (˚) 0.64 1.1 0.52

MolProbity score 2.18 2.29 2.48

Clashscore (all atom) 16.3 16.4 18.26

Poor rotamers (%) 0 0.2 0.38

Ramachandran plot

Favored (%) 92.4 93.8 97

Allowed (%) 7.5 6.9 2.7

Disallowed (%) 0 0.3 0.3
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