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Abstract 9 

Advances of single-cell technologies allow scrutinizing of heterogeneous cell states, 10 

however, analyzing transitions from snap-shot single-cell transcriptome data remains 11 

challenging. To investigate cells with transient properties or mixed identities, we 12 

present MuTrans, a method based on multiscale reduction technique for the underlying 13 

stochastic dynamical systems that prescribes cell-fate transitions. By iteratively 14 

unifying transition dynamics across multiple scales, MuTrans constructs the cell-fate 15 

dynamical manifold that depicts progression of cell-state transition, and distinguishes 16 

meta-stable and transition cells. In addition, MuTrans quantifies the likelihood of all 17 

possible transition trajectories between cell states using the coarse-grained transition 18 

path theory. Downstream analysis identifies distinct genes that mark the transient states 19 

or drive the transitions. Mathematical analysis reveals consistency of the method with 20 

the well-established Langevin equation and transition rate theory. Applying MuTrans 21 

to datasets collected from five different single-cell experimental platforms and 22 

benchmarking with seven existing tools, we show its capability and scalability to 23 

robustly unravel complex cell fate dynamics induced by transition cells in systems such 24 

as tumor EMT, iPSC differentiation and blood cell differentiation. Overall, our method 25 

bridges data-driven and model-based approaches on cell-fate transitions at single-cell 26 

resolution. 27 

28 
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 2 

Introduction 29 

Advances in single-cell transcriptome techniques allow us to inspect cell states and cell-30 

state transitions at fine resolution (1), and the notion of transition cells (aka. hybrid 31 

state, or intermediate state cells) starts to draw increasing attention (2-4). Transition 32 

cells are characterized by their transient dynamics during cell-fate switch (3), or their 33 

mixed identities from multiple cell states (5), different from the well-defined meta-34 

stable cells (6, 7) that usually express marker genes with distinct biological functions. 35 

Transition cells are conceived vital in many important biological processes, such as 36 

tissue development, blood cell generation, cancer metastasis or drug resistance (8). 37 

 38 

Despite the rapid algorithmic progress in single-cell data analysis (9), it remains 39 

challenging to probe transition cells accurately and robustly from single-cell 40 

transcriptome datasets. Often, the transition cells are rare and dynamic, and herein 41 

difficult to be captured by static dimension-reduction methods (10). High-accuracy 42 

clustering methods (e.g. SC3 (11) and SIMLR (12)) tend to enforce distinct cell states, 43 

placing transient cells into different clusters, therefore only applicable to the cases of 44 

sharp cell-state transition (Figure 1a, top). While popular pseudotime ordering 45 

methods (13), such as DPT (7), Slingshot (14) and Monocle (15), presumes either 46 

discrete (Figure 1a, top) or continuous cell-state transition (Figure 1a, middle), 47 

quantitative discrimination between meta-stable and transition cells is lacking (7). 48 

Recently, soft-clustering techniques provides a way to estimate the level of “mixture” 49 
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of multiple cell states (16), however, the linear or static models embedded in such 50 

approach make it difficult to capture dynamical properties of cells.  51 

 52 

Dynamic modeling provides a natural way to characterize transition cells (3), allowing 53 

multiscale description of cell-fate transition (Figure 1a, bottom and S1). Such models 54 

analogize cells undergoing transition to particles confined in multiple potential wells 55 

with randomness (17, 18), for which the transient states correspond to saddle points and 56 

the metastable states correspond to attractor basins of the underlying dynamical system 57 

(Figure 1b). In such description, the stochastic gene dynamics at individual cell scale 58 

can induce cell-state switch at macroscopic cell cluster or phenotype scale, and the 59 

transition cells form “bridges” between meta-stable states (Figure 1c). Despite widely 60 

use of dynamical systems concepts to illustrate cell-fate decision (4), direct inference 61 

via dynamical models for transitions from single-cell transcriptome data is lacking.  62 

    63 

Here we employ noise-perturbed dynamical systems (19) with a multiscale approach 64 

on cell-fate conversion (20) to analyze single-cell transcriptome data. By characterizing 65 

meta-stable cells in attractor basins and placing the transition cells along transition 66 

paths connecting the meta-stable states through saddle points, our multiscale method 67 

for transient cells (MuTrans) prescribes a stochastic dynamical system for a given 68 

dataset (Figure 1b). Using the single-cell expression matrix as input, through 69 

iteratively constructing and integrating cellular random walks across three scales 70 
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(Figure 1d and S2), MuTrans finds most probable path tree (MPPT) for cell transitions 71 

in a reconstructed cell-fate dynamical manifold (Figure 1e). Such manifold, similar to 72 

the classical Waddington landscape (21) often used to highlight transitions, provides an 73 

intuitive visualization of cell dynamics compared to commonly adopted low-dimension 74 

geometrical manifold. In the dynamical manifold, the barrier height naturally quantifies 75 

the likelihood of cell-fate switch, and a Transition Cell Score (TCS) allows us to 76 

distinguish meta-stable and transition cells (Figure 1e). We then illustrate the complex 77 

cell transition trajectories on dynamical manifold using the dominant transition paths 78 

obtained for the coarse-grained dynamics. With such quantification, we are able to 79 

identify critical genes that are transition drivers (TD genes), mark the 80 

intermediate/hybrid states (IH genes) or meta-stable cells (MS genes) (Figure 1e and 81 

S3). To speed up calculations for datasets consisting of large number of cells (22, 23), 82 

MuTrans provides an additional (and optional) aggregation module in pre-processing. 83 

This module aggregates cells into many small groups that share similar dynamical 84 

properties, thus MuTrans can take the transition probabilities among these coarse-85 

grained “cells” as the input, instead of the random walk on original cells, in order to 86 

reduce the computational cost (Method and SM Section 2.6). 87 

 88 

We demonstrate the effectiveness and robustness of MuTrans in seven single-cell 89 

transcriptome datasets, including simulation data and sequencing data generated by five 90 

different experimental platforms. Benchmarking and comparisons with seven existing 91 
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single-cell lineage inference tools validates the capability and scalability of MuTrans 92 

in probing complex, sometimes subtle, cell-fate transition dynamics. We also perform 93 

mathematical analysis to show consistency of MuTrans with the over-damped Langevin 94 

dynamics (24) -- a popular model for state transitions in physical or biochemical 95 

systems (19). 96 

 97 

Results 98 

Overview of MuTrans 99 

MuTrans depicts cells and their transitions in a given single-cell transcriptome dataset 100 

as a multiscale dynamical system (Figure 1a-c). Taking the input as pre-processed 101 

single-cell gene expression matrix, MuTrans first learns the cellular random walk 102 

transition probability matrix (rwTPM) on the cell-cell scale through the Gaussian-like 103 

kernel (Figure 1d and Methods), which yields the continuous limit of over-damped 104 

Langevin Equation to model cell-fate decision (Methods and Section 1 in SM). Next, 105 

the method performs coarse-graining on the cell-cell scale rwTPM to learn the 106 

dynamics on the cluster-cluster scale, and acquires attractor basins and their mutual 107 

conversion probabilities simultaneously (Figure 1d and Methods). Theoretically, this 108 

step is asymptotically consistent with the Kramers’ law of reaction rate for over-damped 109 

Langevin systems (Methods and Section 1.2 in SM). Finally, we specify the relative 110 

position of each cell in the attractor basins with the cell-cluster resolution view of 111 
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Langevin dynamics, which is constructed via optimizing a cell-cluster membership 112 

matrix (Figure 1d and Methods).  113 

 114 

In the downstream analysis (Transcendental Procedure, Figure 1e), we construct the 115 

most probable path tree (MPPT) to infer cell lineage based on the coarse-grained 116 

transition probabilities (Figure 1e and SM Section 2.4). To robustly depict the lineage 117 

relationships, we use the transition path theory to quantify the likelihood of all possible 118 

transition trajectories between cell states (Methods and Section 2.4 in SM). 119 

 120 

Combining the optimized cell-cluster membership matrix, MuTrans fits a dynamical 121 

manifold using mixture distribution to make meta-stable cells reside in the attractor 122 

basins while assign transition cells along the transition paths connecting different basins 123 

(Figure 1e and Methods), which is inspired by the Gaussian mixture approximation 124 

toward the steady-state distribution of the Fokker-Planck equation associated with the 125 

over-damped Langevin dynamics (Methods and Section 2.3 in SM).  126 

 127 

For each cell-state transition, we can calculate a transition cell score (TCS) ranging 128 

between one and zero to quantitatively distinguish meta-stable and transition cells 129 

(Figure 1e and Methods). Finally, we systematically classify three types of genes (MS, 130 

IH and TD) during the transition whose expression dynamics differ between meta-131 

stable and transition cells (Figure 1e and Methods). Specifically, the TD genes varies 132 
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 7 

accordingly with the TCS within transition cells, and the IH genes co-express in both 133 

metastable and transition cells, while MS genes express uniquely in the meta-stable 134 

states. 135 

 136 

To deal with the large-scale datasets, in addition to common strategies such as sub-137 

sampling cells, we provide an option to speed up calculation by introducing a pre-138 

processing aggregation module DECLARE (dynamics-preserving cells aggregation). 139 

This module assigns the original individual cells into many (e.g. hundreds or thousands) 140 

microscopic meta-stable states and computes the transition probabilities among them, 141 

and thus it can be used as an input to MuTrans instead of the cell-cell rwTPM (Methods 142 

and Section 2.6 in SM). Both theoretical and numerical analysis suggest that, 143 

compared to the common strategy of averaging of gene expression profiles of a small 144 

group of cells, DECLARE better preserves the structure of dynamical landscape with a 145 

good approximation to the transition paths probabilities calculated without using 146 

DECLARE (Figure 5, Methods and Section 2.6 in SM).  147 

 148 

Validation in two-state simulation data and three-state EMT system 149 

We first validated the performance of MuTrans on single-cell data generated from 150 

relatively simple cell-state transition dynamics. To test accuracy and robustness of our 151 

method, we simulated the stochastic state-transition process using a bifurcation model 152 

in the regime of intermediate noise level (25). The gene expression of each cell was 153 
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 8 

simulated with over-damped Langevin equation driven by an extrinsic signal and noise 154 

(Section 3.1 in SM). In certain parameter range, the model consists of two stable states 155 

and one unstable saddle states (Figure 2a). Noise in gene expression induced the switch 156 

prior to the bifurcation point, resulting in a thin layer of transition cells (Figure 2a). 157 

Applying MuTrans to the known transition cells and meta-stable cells in the model, we 158 

found the computed transition cell score (TCS) captured the underlying saddle-node 159 

bifurcation structure (Figure 2a). For cells fluctuating around the two stable branches, 160 

the TCS approaches one or zero respectively, indicating the meta-stability of cell states. 161 

The transition cells that surpasses the saddle point region in the trajectory yields a 162 

continuum of TCS between zero and one, with scores consistent with the relative 163 

positions of cells along the trajectory (Figure 2a). 164 

 165 

We then applied MuTrans to a single-cell RNA sequencing dataset (26) of tumor 166 

epithelial-to-mesenchymal transition (EMT) generated by Smart-Seq2 platform 167 

(Figure 2b and S4-S7). Three cell states were detected, including epithelial (E) state 168 

and mesenchymal (M) state, manifesting as the adjacent basins in the dynamical 169 

manifold, with identified EMT transition cells moving in-between (Figure 2b, Figure 170 

S4-S6). The transition cells were characterized by the groups of IH genes without 171 

observing significant TD genes (Figure 2b), agreeing well with the experimentally 172 

measured “hybrid genes” of EMT cells and the role of IH in transition (26). Compared 173 

with previous selected marker genes, we identified consistent MS markers such as 174 
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 9 

Epcam, Cdh1 and Mm9, and IH markers such as Trp63 and Pdgfra (Table S4 and S5). 175 

It is interesting to note that the previously identified hybrid gene Krt14 was assigned 176 

into the MS group (Table S4), however, with low statistical significance, indicating its 177 

potential resemblance with IH genes. This agrees well with an ATAC-seq analysis (26), 178 

showing the chromatin regions of Krt14 and Krt17 in transition cells, although 179 

remained open, were actually in reduced levels. The analysis also indicates that the 180 

trajectory from epithelial state to mesenchymal state mediated by transition cells has a 181 

larger probability flux than the path surpassing another low-expression state (Figure 182 

3c). 183 

 184 

Scrutinizing bifurcation dynamics during iPSC induction 185 

We next used MuTrans to investigate cell fate bifurcations (Figure 3a) in a single-cell 186 

dataset for induced pluripotent stem cells (iPSCs) toward cardiomyocytes (27). In the 187 

learned cellular random walk across different scales, the rwTPM on cell-cluster scale 188 

recovers finer resolution of rwTPM on the cell-cell scale than the cluster-cluster scale 189 

(Figure 3b, top). MuTrans identified nine attractor basins (Figure 3b, bottom left), 190 

and the constructed most probable path tree (MPPT, Figure S7) reveals a lineage with 191 

bifurcation into mesodermal (M) or endodermal (En) cell fates. Two previously 192 

unfound states, located prior to the bifurcation of primitive streak (PS) into 193 

differentiated mesodermal (M) or endodermal (En) cell fates in the MPPT, were 194 

denoted as Pre-M and Pre-En states (Figure 3b and S7). On the inferred dynamical 195 
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 10 

manifold (Figure 3c), the cells make transitions between two states, suggesting 196 

possible dynamic conversion between the two types of precursor cells that seem to be 197 

very plastic. In comparison, the transition between mature En and M states are rare, 198 

indicating the stability of En and M cells. Along the differentiation trajectory from PS 199 

to Pre-M, the coarse-grained transition probability, quantified by the heights of barrier, 200 

shows a stronger transition capability from PS to Pre-M than from Pre-M to PS (Figure 201 

3b and S7). In addition, the transition from Pre-M to M was found to be sharper than 202 

the one from PS to Pre-M. The transitions from PS to Pre-En and from Pre-En to En 203 

exhibit similar behavior.   204 

 205 

Downstream analysis on gene expression profiles indicates three transition stages from 206 

Pre-M to M (Figure 3d). The initial stage was characterized by downregulation of 207 

meta-stable (MS) genes from the Pre-M state markers (enriched in the pathways of 208 

endodermal development) and upregulation of intermediate-hybrid (IH) genes 209 

(enriched in pathways of MAPK cascade and metabolic process) from the M state 210 

markers (Table S6 in SM and Figure 3e). This process by first losing En identity 211 

enables a conversion of Pre-M meta-stable cells toward the transition cells. The second 212 

stage of the transition marked by the gradual down-regulation of TD genes mainly 213 

involves negative regulation of cardiac muscle cell differentiation and cardiac muscle 214 

tissue development (Table S6 in SM and Figure 3e). The final stage completes the 215 

transition process with the down-regulation of Pre-M state IH genes, along with up-216 
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 11 

regulation of MS genes (enriched in the cardiac muscle cell myoblast differentiation 217 

and outflow tract morphogenesis process) in the M state (Table S6 in SM and Figure 218 

3e), making transition cells to finally convert into the mesodermal cells and establish 219 

the meta-stable cell fate. The ordering of cells based on TCS has an overall increasing 220 

trend from Day 2 to Day 3 via the time point of Day 2.5 within the transition cells, 221 

corresponding to the noticed three-stage transition (Figure S8). Together, the transition 222 

cells locating near the saddle points connecting Pre-M (or Pre-En) and M (or En) reflect 223 

the temporal orderings of cell-fate conversion, which are well characterized by TD and 224 

IH genes in a system consisting of one pitchfork bifurcation.  225 

 226 

MuTrans robustly resolves complex lineage dynamics in blood cell differentiation  227 

The hematopoiesis has been conceived as a hierarchy of discrete binary state-transitions, 228 

while increasing evidence alternatively supports a continuous and heterogeneous view 229 

of such process (28). To investigate the complex dynamics in blood differentiation 230 

where transition cells likely play key roles, we applied MuTrans to three different 231 

single-cell datasets with different sequencing depths and sample sizes.  232 

 233 

We first analyzed the single-cell RNA data during myelopoiesis sequenced with 234 

Fluidigm C1 platform (29). Notably MuTrans highlights the hub states in the inferred 235 

MPPT cell lineage (Figure 4a and Figure S10), capable of becoming three types of 236 

blood cells through a shallow basin resided in the highest terrain of the entire dynamical 237 
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manifold (Figure S11). The low barriers between the multi-lineage basin and the 238 

downstream basins (granulocytic or monocytic states) suggest probable transitions 239 

from the multi-lineage state, consistent with the observed transition cells across the 240 

saddle point. Interestingly, the transition cells during Multi-lin to Gran conversion were 241 

previously identified as the multi-lineage cells in ICGS clustering (29) (Figure S11). 242 

Similarly, during the megakaryocytic cell differentiation, while the transition cells 243 

consist of both HSPC1 and Meg types in our analysis, they were previously identified 244 

as the hematopoietic progenitor cells by the ICGS criterion (Figure S11). Such 245 

discrepancy could be explained by the gene expression dynamics in gradual transition 246 

of cell states. For example, during transition from multi-lineage cells to granulocytic 247 

cells (Figure 4c), we observed the typical expression pattern of TD, MS and IH genes 248 

as conceptualized in Figure 1e. Despite the similarity between the transition cells and 249 

their departing multi-lin state as manifested in the co-expression of down-regulated IH 250 

genes (bottom panel in Figure 4c, yellow lines), we also detected the up-regulated IH 251 

genes (middle panel in Figure 4c, yellow lines), suggesting the resemblance of 252 

transition cells with their targeting gran cell state (Table S7). We observed a similar 253 

gene expression pattern in the transition from HSPC to Meg state (Figure S13 and 254 

Table S8). For this dataset, MuTrans is able to capture the established meta-stable states, 255 

in addition to finding transition cells that were classified in some meta-stable states by 256 

a previous study (29). 257 

 258 
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Focusing on the cell-fate bias toward lymphoid lineage, MuTrans resolves the complex 259 

lineage dynamics underlying single-cell RNA data of mouse hematopoietic progenitors 260 

differentiation sequenced from Cel-Seq2 platform (30). Consistent with the major 261 

finding of FateID algorithm, the constructed dynamical manifold reveals that lymphoid 262 

progenitor (LP) cells (red balls) give rise to both B cells (pink balls) and plasmacytoid 263 

dendritic cells (pDCs) (Figure 4b and S14). The inferred MPPT and dynamical 264 

manifold also suggests that certain transition cells in the attractors of pDCs originate 265 

directly from multi-potent progenitor (MPP) cells (yellow balls, Figure S14). 266 

Interestingly, MuTrans resolve the details in B cell differentiation, capturing the 267 

transition cells from Pro-B toward Pre-B basins (Figure S14 and Table S9). 268 

Downstream analysis validated the transition cells by the co-expressed IH genes 269 

(yellow lines, Figure 4c right) and the dynamically expressed TD genes (green lines, 270 

Figure 4c right). Overall, MuTrans provides a clear global cell-fate transition picture 271 

with marked transition cells in this dataset of highly complex lineages, in contrast to 272 

the local transition routes inferred by FateID (30). 273 

 274 

Application to large-scale datasets with complex trajectory 275 

To test the scalability of MuTrans, we studied on the single-cell hematopoietic 276 

differentiation data in human bone marrow generated by 10x Chromium platform (31) 277 

(Figure 5a). To make the comparison, we applied MuTrans to both the complete 278 
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(original) data, and the one after using the pre-processing module DECLARE. We 279 

found DECLARE could reduce the calculation time by one magnitude for this dataset.  280 

 281 

For both cases MuTrans identified the expected bifurcations from hematopoietic stem 282 

progenitor cells (HSPC) into the monocytic precursors and erythroid cells, as well as 283 

the differentiation from precursor cells into monocytic and dendritic cells. The 284 

constructed dynamical manifold (Figure 5bc, Figure S15) shows a continuous stream 285 

of transition cells among different basins (such as those moving between dendritic and 286 

monocytic potential wells) suggesting the hematopoietic differentiation may be a 287 

continuous process. The transition trajectories obtained with the large-scale pre-288 

processing step are consistent with the complete dataset analysis (Figure 5bc). This 289 

indicates the major transition trajectories toward dendritic cell fate not only consist of 290 

the path mediated by monocytic precursor states but also include a considerable flux of 291 

transition cells from differentiated monocytic cells. Interestingly, the existence of both 292 

meta-stable states and transition cells reconciles a previously noted discrepancy (31) 293 

caused by treating the underlying cellular transition dynamics as either a purely 294 

continuous processing (e.g. using Palantir) or a discrete process (using other clustering-295 

based lineage inference methods such as Slingshot (14) and PAGA (32)).  296 

 297 

Next, we analyzed another dataset containing over 15,000 cells collected during blood 298 

emergence in mouse gastrulation (33) (Figure 6a). Consistent with the PAGA (32) 299 
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representation of the data (Figure 6b), the constructed dynamical manifold (Figure 6c) 300 

and derived most probable flow tree (MPFT) suggest three major transition branches 301 

from haemato-endothelial (Haem) cells into endothelial cells (EC), mesoderm cells 302 

(Mes) or erythroid cells (Ery). Specifically, the transition path analysis indicates that 303 

the endothelial cells and erythroid cells are originated through discrete trajectories from 304 

haemogenic endothelium (Figure 6e), and such trajectories are mediated by the 305 

intermediate state of blood progenitor (BP) cells (Figure 6f). These results are 306 

consistent with the experimental findings on endothelial and erythroid cells (33). 307 

 308 

Comparison with other Methods 309 

MuTrans is designed specifically to identify transition cells, with its associated 310 

dynamical manifold to allow easy visualization of the cell state transitions. Next we 311 

compared it with other intuitive approaches, including pseudotime ordering and cell-312 

fate bias probability, for the detection of transition cells. We also benchmarked with 313 

seven existing methods for their capacity to unravel complex cell lineages during 314 

differentiation (SM Section 4).  315 

 316 

In iPSC data, we found only MuTrans, PAGA and VarID recovered the bifurcation 317 

dynamics toward En and M states (Figure S16). However, the cell lineage graphs of 318 

PAGA and VarID include false-positive links that are unlikely to exist between cells 319 

collected at different time in experiments. While the projected lineage tree of StemID2 320 
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shows transition cells between precursor and mature En/M states (Figure S16), the 321 

reconstructed spanning tree does not reveal the overall bifurcation structure.  322 

 323 

For myelopoiesis dataset, we found that only MuTrans and VarID constructed the 324 

bifurcations toward granulocytic or monocytic states (Figure S17), despite that VarID 325 

cannot distinguish the megakaryocytic and erythrocytic cells. FateID faithfully captures 326 

the differentiation paths toward monocytic states, while lacking accuracy of revealing 327 

the transitions into the granulocytic lineage (Figure S17). 328 

 329 

Close inspection into the transition from precursors to mature En/M states in iPSC 330 

dataset suggests that the intuitive approaches (such as tracking the changes along 331 

pseudotime or fate bias probability) could not distinguish the transition cells from meta-332 

stable cells as accurately and reliably as MuTrans. Both Monocle3 and DPT have a 333 

sharp increase in the pseudotime during the transitions (Figure S18), therefore lacking 334 

resolution in probing the transition cells linking multiple meta-stable states. Fate ID 335 

suggests a gradual change of En/M fate probability in precursor cells (Figure S18), not 336 

discriminating the transition cells within Pre-En and Pre-M states. Such problem was 337 

also observed when using Palantir, which depicts the entire cell-state transition as a 338 

highly continuous and gradual process (Figure S18). 339 

 340 

 341 
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Discussion 342 

Overall, MuTrans provides a unified approach to inspect cellular dynamics and to 343 

identify transition cells directly from single-cell transcriptome data across multiple 344 

scales. Central to the method is an underlying stochastic dynamic system that naturally 345 

connects attractor basins with meta-stable states, saddle points with transient states, and 346 

most probable paths with cell lineages. Instead of the widely used low-dimensional 347 

geometrical manifold approximation for the high-dimensional single-cell data, our 348 

method constructs a novel cell-fate dynamical manifold to visualize dynamics of cells 349 

development, allowing direct characterization of transition cells that move across 350 

barriers amid different meta-stable basins. Adopting the transition path theory to the 351 

multiscale dynamical system, we quantify the relative likelihoods of various transition 352 

trajectories that connect a chosen root state and the target meta-stable states. In addition, 353 

we provide a quantitative methodology to detect critical genes that drive transitions or 354 

mark meta-stable cells.  355 

 356 

In this study a key theoretical assumption for modeling cell-state transition is a barrier-357 

crossing picture in multi-stable dynamical systems, a concept which has been adopted  358 

previously (3, 34, 35). Indeed, the “barriers”, “saddles” and “potential landscape” 359 

underlying the actual biological process are the emergent properties of the complex 360 

interactions, such as gene expression regulation and signal transduction during a 361 

developmental process (36). The driving force that overcomes the barrier and induces 362 

the transition may arise from both the extrinsic environment and the fluctuations within 363 

the cells (37). Multi-scale reductions used by MuTrans naturally capture the transition 364 

cells, allowing inference of the corresponding transition processes.  365 
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 366 

Methods such as Palantir (31), Population Balance Analysis (PBA) (38) and 367 

Topographer (39) also treat cell-fate transition as the Markov random walk process. 368 

Unlike MuTrans, these methods only depict the dynamics at the individual cell level, 369 

lacking the capability of MuTrans to 1) resolve the intrinsic multiscale features of the 370 

system, 2) distinguish between meta-stable and transition cells, and 3) quantify the 371 

complex routes of development paths. Several other methods (2, 40) define the 372 

transition probability between clusters based on entropy difference or cell-cell 373 

transition probabilities. In comparison, the cluster-cluster scale transition probability in 374 

MuTrans is an emergent multiscale quantity derived from coarse-graining procedure, 375 

quantitatively consistent with Kramers’ reaction rate theory for over-damped Langevin 376 

dynamics (Methods and SM). By using such approach on transition cells, we are able 377 

to reconcile previously noted discrepancies in blood differentiation via analyzing three 378 

different datasets collected by different sequencing technologies.  379 

 380 

Pseudotime ordering may serve as an intuitive tool to trace the progression of cell state 381 

transitions by comparing similarity of the gene expression among cells. Such 382 

approaches often adopt the deterministic point of view on cell-fate transitions, failing 383 

to distinguish between transition and meta-stable cells (Figure 1a and S19). In contrast, 384 

MuTrans embraces the stochastic model of cell-state transition. While cells reside and 385 

fluctuate within meta-stable states for the majority of time, it is the temporal ordering 386 
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of transient transition cells, rather than meta-stable cells, reflect the actual process of 387 

cell transitions (Figure 1c and Figure S19).  388 

 389 

To describe the smooth state transitions, several other methods (41, 42) adopt the soft-390 

clustering strategy based on the soft K-means or factor decomposition for gene 391 

expression matrix. In comparison, the soft cell assignment of MuTrans is obtained from 392 

multiscale learning of cell-cluster rwTPM, which can be more robust against technical 393 

noise than using gene expression matrix directly for clustering (7). Such robustness is 394 

critical to detecting transition cells in datasets with lower sequencing depth, such as 395 

10X data. Beyond interpreting the soft membership function as the indicator of cell 396 

locations in attractor basins, it remains an interesting problem to derive its continuous 397 

limit in the embedded over-damped Langevin dynamical systems. 398 

 399 

To deal with the emerging large-scale scRNA-seq datasets, MuTrans introduces a pre-400 

processing method (DECLARE) to aggregate the cells and speed up computation. The 401 

aggregation method uses the coarse-grain approach consistent with MuTrans, and it is 402 

different from other methods often used for large scRNA-seq datasets, such as down-403 

sampling convolution (43) or kNN partition (44) that is based on the averaging or 404 

summation of cells with similar gene expression profiles. As a result, DECLARE can 405 

be naturally integrated with dynamical manifold construction and transition trajectory 406 

inference.  407 
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 408 

Admittedly, the physical picture of MuTrans cannot explain all the possible cell 409 

transition scenarios. For instance, the barrier-crossing mechanism is not sufficient to 410 

capture the oscillatory processes such as cell cycle (38). Instead of constructing cell-411 

cell scale random walk with a pure diffusion-like kernel on transcriptome data, such 412 

non-equilibrium process might be accounted for by single-cell RNA velocity (18, 45, 413 

46), thereafter a multi-scale reduction approach can naturally apply (47). Effective 414 

ways in root cell states detection (e.g. through entropy methods (48) or RNA velocity 415 

(46)) can also enhance the robustness of our method. 416 

 417 

In the meantime, the back and forth stochastic transitions among meta-stable states may 418 

need to be combined with deterministic processes in order to better understand the cell-419 

fate decision (49). The local fluctuations of microscopic cell states in gene expression 420 

can be prevalent in the dynamics, and the cell-cell scale random walk becomes a natural 421 

assumption. In theory, the stochastic transition model is consistent with the uni-422 

direction process if the transition probabilities in one direction are dominant or when 423 

the noise amplitude of system is relatively small.  424 

 425 

In addition to infer complex cellular dynamics induced by transition cells from single-426 

cell transcriptome data, MuTrans along with its computational or theoretical 427 

components can be used for development of other approaches for dissecting cell-fate 428 

transitions from both data-driven and model-based perspectives. 429 

430 
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Methods 431 

MuTrans performs three major tasks in order to reveal the dynamics underneath single-432 

cell transcriptome data (Figure 1): 1) assigning each cell in the attractor basins of an 433 

underlining dynamical system, 2) quantifying the barrier heights across the attractor 434 

basins, and 3) identifying relative positions of the cells within each attractor. The first 435 

two tasks are executed simultaneously through the coarse-graining of multi-scale 436 

cellular random walks, an alternative approach to the traditional clustering of cells and 437 

inference of cell lineage. The third task is achieved by refining the coarse-grained 438 

dynamics via soft clustering, and serves as a critical procedure to identifying the 439 

transition cells during cell-fate conversion. 440 

 441 

Multi-scale analysis of the random-walk transition probability matrix (rwTPM)  442 

We assume the underlying stochastic dynamics during cell-fate conversion be modeled 443 

by random walks among individual cells through the random-walk transition 444 

probability matrix (rwTPM). Dependent on the choices of either cell-level or cluster-445 

level, the rwTPM can be constructed in different resolutions, exhibiting multi-scale 446 

property and leading the identification of transition cells from the meta-stable cells.  447 

In describing the method, we use the indices	𝑥, 𝑦, 𝑧 to denote individual cells and 448 

𝑖, 𝑗, 𝑘	to represents the clusters (or cell states) for the simplicity of notations.  449 

 450 

The rwTPM in the cell-cell resolution   451 
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The rwTPM 𝑝 of cellular stochastic transition can be directly constructed from the 452 

gene expression matrix in cell-cell resolution, with the form 453 

𝑝(𝑥, 𝑦) = !(#,%)
'(#)

, 𝑑(𝑥) = ∑ 𝑤(𝑥, 𝑧).(   (1) 454 

where the weight 𝑤(𝑥, 𝑦) denotes the affinity of gene expression profile in cell x and 455 

y (Section 2.1 in SM). Such microscopic random walk yields an equilibrium probability 456 

distribution 	𝜇(𝑥) = '(#)
∑ '(()!

, satisfying the detailed-balance condition 	𝜇(𝑥)𝑝(𝑥, 𝑦) =457 

𝜇(𝑦)𝑝(𝑦, 𝑥). The rwTPM captures the cellular transition in the cell-cell resolution 458 

(Figures 1d).  459 

The rwTPM in the cluster-cluster resolution        460 

The cellular transition rwTPM can be lifted in the cluster-cluster resolution by adopting 461 

a macroscopic perspective. For example, the cell-to-cell rwTPM can be generated from 462 

certain coarse-grained dynamics, by assigning each cell in different clusters 	S =463 

⋃ 𝑆*+
*,- , and model the transitions as the Markov Chain among clusters with the 464 

transition probability matrix 𝑃6 = (𝑃6./)+×+ . Here 𝑃6./ 	denote the probability that the 465 

cells reside in the state of cluster 𝑆. switch to the state of cluster 𝑆/ . Denote 11"(𝑧) 466 

as the indicator function of cluster 𝑆* 	such that 11"(𝑧) = 1  for cell 𝑧 ∈ 𝑆*  and 467 

11"(𝑧) = 0 otherwise. The cluster-cluster transition based on probability matrix 𝑃6	can 468 

naturally induce another rwTPM 𝑝̂ with the form 469 

                   𝑝̂(𝑥, 𝑦) = ∑ 11#(𝑥).,/ 𝑃6./11$(𝑦)
2(%)
23$
,     (2) 470 

where 𝜇̂/ = ∑ 11$(𝑦)𝜇(𝑦)%  is the stationary probability distribution of cluster 𝑆/ . 471 

Intuitively, the stochastic transition from cell 𝑥 ∈ 𝑆.  to 𝑦 ∈ 𝑆/  can be decomposed 472 
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into a two-stage process: a cell switches cellular state from cluster 𝑆.  to 𝑆/  with 473 

probability 𝑃6./ , and then becomes the cell 𝑦 in cluster 𝑆/ 	according to its relative 474 

portion at equilibrium 2(%)
23$

. The rwTPM captures the cellular transition in the cluster-475 

cluster resolution (Figures 1d). 476 

The rwTPM in the cell-cluster resolution         477 

Because some cells, for example the transition cells, may not be characterized by their 478 

locations in one basin, we introduce a membership function 𝜌(𝑥) =479 

(𝜌-(𝑥), 𝜌4(𝑥), … , 𝜌+(𝑥))5  for each cell 𝑥  to quantify its uncertainty in clustering. 480 

The element 𝜌*(x) represents the probability that the cell 𝑥 belongs to cluster 𝑆*∗ 481 

with ∑ 𝜌*(𝑥) = 1* . For the cell possessing mixed cluster identities, its membership 482 

function 𝜌(𝑥)  might have several significant positive components, suggesting its 483 

potential origin and destination during the transition process. In terms of dynamical 484 

system interpretation, the membership function captures the finite-noise effect in over-485 

damped Langevin equation, which introduces the uncertainty of transition paths across 486 

saddle points (50), revealing that cells near saddle points and stable points may exhibit 487 

different behaviors in the state-transition dynamics. 488 

From the coarse-grained dynamics >{𝑆*}*,-+ , {𝑃6./}.,/,-+ A and the measurement of cell 489 

identity uncertainty	𝜌*(𝑥) in the clusters, one can reinterpret the induced microscopic 490 

random walk 𝑝B in a cell-cluster resolution as 491 

𝑝B(𝑥, 𝑦) = ∑ 𝜌.(𝑥).,/ 𝑃6./𝜌/(𝑦)
2(%)
27$

, 𝜇B/ = ∑ 𝜌/(𝑥)𝜇(𝑥),#   (3) 492 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434281doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434281
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

in parallel to Equation (2). Now the transition from cell 𝑥 to 𝑦 is realized in all the 493 

possible channels from attractor basin 𝑆. to 𝑆/ with the probability	𝜌.(𝑥)𝜌/(𝑦). The 494 

underlying rationale is that the transition can be decomposed in a three-stage process: 495 

First we pick up cell starting in attractor basin with membership probability, then 496 

conduct the transition with coarse-grained probability between attractor basins, and 497 

finalize the process by picking the target cell with membership probability in the target 498 

attractor basin. Now the rwTPM captures cellular transition in the cell-cluster resolution 499 

(Figures 1d).  500 

Integrating the rwTPM at three levels        501 

To integrate the rwTPM from different resolutions, we next optimize the rwTPM on 502 

cluster-cluster and cell-cluster level through approximating the original rwTPM in the 503 

cell-cell resolution. First, we seek an optimal coarse-grained reduction that minimizes 504 

the distance between 𝑝̂C𝑆* , 𝑃6./D and 𝑝 by solving an optimization problem:  505 

min
1",89#$

𝒥C𝑆* , 𝑃6./D 	 = I	𝑝̂C𝑆* , 𝑃6./D − 𝑝	I2
4 ,  (4) 506 

where 𝜇 is the stationary distribution of original cell-cell random walk 𝑝, and ‖	‖2 507 

is the Hilbert-Schmidt norm (51) for transition probability matrix 𝒫 , defined as 508 

‖𝒫‖24 = ∑ 2(#)
2(%)#,: 𝒫(𝑥, 𝑦)4. The optimization problem is solved via an iteration scheme 509 

for 𝑆*  and 𝑃6./  respectively (Section 2 in SM). The optimal coarse-grained 510 

approximation >𝑆*∗, 𝑃6./∗ A  indicates the distinct clusters of cells and their mutual 511 

conversion probability. Provided with the starting state, we can infer the cell lineage 512 
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from the Most Probable Path Tree (MPPT) approach or Maximum Probability Flow 513 

Tree (MPFT) approach (Section 2 in SM). 514 

Next, we optimize the membership 𝜌*(𝑥) such that the distance between the cell-515 

cluster rwTPM 𝑝B and the original 𝑝 is minimized, i.e. 516 

min
;"

ℰ[𝜌*] 	 = ‖	𝑝B[𝜌<] − 𝑝	‖24 	  (5) 517 

s. t.			R𝜌*(𝑥) = 1,
*

	𝜌*(𝑥) ≥ 0		for		𝑘 = 1, . . , 𝐾	and	𝑥 ∈ 𝑆 518 

with the initial condition 𝜌.=(𝑥) = 11#∗(𝑥), and 𝑝B[𝜌<] is defined from (3) by plugging 519 

in the obtained 𝑃6./∗ . The optimization problem is solved by the quasi-Newton method 520 

(Section 2.2 in SM). The obtained membership function 𝜌∗(𝑥) specifies the relative 521 

position of the cells within each attractor basin and is optimal in the sense that it 522 

guarantees the closest approximation of cell-cluster level rwTPM toward the cell-cell 523 

level transition dynamics. 524 

 525 

Transition Paths Quantification and Comparison 526 

To quantify the cell lineages we use the transition path theory based on coarse-grained 527 

dynamics >{𝑆*}*,-+ , {𝑃6./}.,/,-+ A  to compare the likelihood of all possible transition 528 

trajectories. Given the set of starting states 𝐴 and the targeting state 𝐵, we calculate 529 

the effective current 𝑓./> of transition paths surpassing from state 𝑆. to 𝑆/ (Section 530 

2.4.1 in SM), and specify the capacity of given development route 𝑤'? =531 

(𝑆.& , 𝑆.' , . . , 𝑆.()  connecting sets 𝐴  and 𝐵  as 𝑐(𝑤'?) = min
=@*@AB-

𝑓.".")'
> . The 532 

likelihood of transition trajectory 𝑤'? is defined as the proportion of its capacity to 533 
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the sum of all possible trajectory capacities. In the python package of MuTrans, we use 534 

the functions in PyEMMA (52) for the computations. 535 

 536 

Pre-processing by DECLARE and Scalability to Large Datasets 537 

To reduce the computational cost for the large datasets (for instance, greater than 10K 538 

cells), we introduce a pre-processing module DECLARE (dynamics-preserving cell 539 

aggregation). The module first detects the hundreds/thousands of microscopic meta-540 

stable states by clustering (e.g. using K-means or kNN partition) and then derive the 541 

coarse-grained transition probabilities among these microscopic meta-stable states. 542 

Based on such transition probabilities, we then follow the standard multiscale reduction 543 

procedure of MuTrans to find macroscopic meta-stable states, construct dynamical 544 

manifold, quantify the transition trajectories and highlight the transition states (Section 545 

2.5 in SM). 546 

  547 

Transition Cells and Genes Analysis through Transcendental  548 

Based on the soft clustering results, MuTrans performs the Transcendental 549 

(transition cells and relevant analysis) procedure to identify the transition cells from 550 

the meta-stable cells, and reveal the relevant marker genes.  551 

For the given transition process from cluster 𝑆.∗ to 	𝑆/∗ on the MPPT tree, we first 552 

selected the cells relevant to the transition, based on the membership function 𝜌∗(𝑥) 553 
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(Section 2.4 in SM). Then for each relevant cell 𝑥, we define the transition cell score 554 

(TCS) 555 

𝜏./(𝑥) =
;#
∗(#)

;#
∗(#)>;$

∗(#)
,   (6) 556 

to measure the relative position of cell 𝑥 in different clusters. Here the TCS 𝜏./ takes 557 

the values near zero or one when a cell resides around the attractor in 𝑆.∗ or	𝑆/∗ (i.e. 558 

the cells are in the meta-stable states), whereas yields the intermediate value between 559 

zero and one for the cell that possesses a hybrid or transient identity of two or more 560 

clusters. Next we arrange all the relevant cells in state 𝑆.∗ and	𝑆/∗ according to 𝜏./ in 561 

descending order, and the reordered 𝜏./ indicates a sharp transition (Figure 1a) or a 562 

smooth transition (Figure 1a) from the value one to zero. For the smooth transition, 563 

there is a group of cells whose value of 𝜏./  decreases gradually from one to zero 564 

(Figure 1e). This group of cells in the transition layer are called the transition cells 565 

from state 𝑆.∗ to state 𝑆/∗, and their order reflects the details of the state-transition 566 

process. To quantify the transition steepness, we use logistic functions to model the 567 

transition and estimate the relative abundance of transition cells (Section 2.4 in SM). 568 

Differentially expressed genes analysis is usually applicable when the clusters are 569 

distinct and the state-transition is sharp (Figure 1a). However, to characterize the 570 

dynamical and hybrid gene expression profiles in transition cells, merely comparing the 571 

average gene expression in different clusters is insufficient. Here we define three kinds 572 

of genes relevant to the state transition of cells: a) the transition-driver (TD) genes 573 

that vary accordingly with the transition dynamics, b) the intermediate-hybrid (IH) 574 
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genes marking the hybrid features from multiple cell states that are expressed in the 575 

intermediate transition cells, and c) the meta-stable (MS) genes that represent cells in 576 

the meta-stable states.  577 

The expression of TD genes varies accordingly to the transition, revealing the driving 578 

mechanism of the cell-state conversion. To probe TD genes, we calculate the 579 

correlation between the gene expression values and 𝜏./ in the ordered transition cells. 580 

The genes with larger correlation values (larger than a given threshold value) are 581 

identified as TD genes. The IH genes express eminently both in the transition cells and 582 

in the meta-stable cells from one specific cluster, reflecting the hybrid state of the 583 

transition cells, while the MS genes express exclusively in the meta-stable cells from 584 

certain cluster. To distinguish IH and MS genes from all the differentially expressed 585 

genes, we compare the gene expression values between the meta-stable cells and the 586 

transition cells, respectively, within each cluster. The significantly up-regulated genes 587 

in the meta-stable cells are defined as the MS genes, and the rest differentially 588 

expressed genes are identified as the IH genes that express simultaneously both in 589 

meta-stable and transition cells (Section 2.4 in SM).   590 

 591 

Constructing the cell-fate dynamical manifold  592 

To better visualize the transition process and their connections with cell states, MuTrans 593 

introduces the dynamical manifold concept. The construction of the dynamical 594 

manifold consists of two steps: 1) locating the center positions of cell clusters 595 
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(corresponding to the attractors) in low dimensional space, 2) assigning the position of 596 

each individual cells according to soft-clustering membership function.  597 

The initial center-determination step starts with an appropriate two-dimensional 598 

representation, denoted as 𝓍4C for each cell	𝑥 (details in Section 2.3 in SM). Instead 599 

of directly utilizing 𝓍4C as the cell coordinate, we calculate the center 𝓎* of each 600 

cluster	{𝑆*∗}*,-+  by taking the average of 𝓍4C over cells within certain range of cluster 601 

membership function 𝜌*∗(𝑥). Having determined the position of attractors, we define a 602 

two-dimensional embedding 𝜉(𝑥) for each cell according to the membership function 603 

𝜌∗(𝑥), such that 𝜉(𝑥) = ∑ 𝜌*∗(𝑥)* 𝓎* ∈ 𝑅4. For the cell possessing mixed identities 604 

of state 𝑆.∗ and	𝑆/∗, its transition coordinate then lies in a value between 𝓎. and 𝓎/ . 605 

For Fokker-Planck equation of the over-damped Langevin equation, the expansion of 606 

steady-state solution near stable points (attractors) indeed yields a Gaussian-mixture 607 

distribution (53). Motivated by this, to obtain the global dynamical manifold we fit a 608 

Gaussian mixture model with a mixture weight 𝜇̂∗ to obtain the stationary distribution 609 

of coarse-grained dynamics. The probability distribution function of the mixture model 610 

becomes 611 

𝓅(z) = ∑ 𝜇̂*∗* 𝒩(𝑧;𝓎* , Λ*),  (7) 612 

where 	𝒩(𝑧; 𝓎* , Λ*)  is a two-dimension Gaussian probability distribution density 613 

function with mean 𝓎*  and covariance Λ* . The landscape function of dynamical 614 

manifold is then naturally takes the form in two dimensions 	𝜑(𝑧) = 	− ln𝓅(𝑧) . 615 

Specifically, the “energy” of individual cell 𝑥  is calculated as 	𝜑>𝜉(𝑥)A . The 616 
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constructed landscape function captures the multi-scale stochastic dynamics of cell-fate 617 

transition, by allowing typical cells that are distinctive to certain cell states positioned 618 

in the basin around corresponding attractors, while the transition cells laid along the 619 

connecting path between attractors across the saddle point. Moreover, the relative depth 620 

of the attractor basin reflects the stationary distribution of coarse-grained dynamics, 621 

depicting the relative stability of the cell states. The flatness of the attractor basin also 622 

reveals the abundance and distribution of transition cells, indicating the sharpness of 623 

cell fate switch. 624 

 625 

Mathematical Analysis of MuTrans 626 

With the assumption that the single-cell data is collected from the probability 627 

distribution 𝜈(𝑥) with density of Boltzmann-Gibbs form, i.e., 𝜈(𝑥) ∝ 𝑒B
*(,)
. , we can 628 

prove (Section 1 in SM) that the microscopic random walk constructed by MuTrans 629 

approximates the dynamics of over-damped Langevin Equation (OLE)  630 

dXD = −∇𝑈(XD)𝑑𝑡 + √2𝜀𝑑𝑊D (8) 631 

in the limiting scheme, and the coarse-graining of MuTrans (𝑆* , 𝑃6./) is equivalent to 632 

the model reduction of OLE by Kramers’ rate formula in the small noise regime, i.e. 633 

k./ ∝ 𝑒
B∆*.  as ε → 0,where k./  is the switch rate from attractor 𝑆.  to 𝑆/ , and ∆𝑈 634 

denotes the corresponding barrier height of transition -- the energy difference between 635 

saddle point and the departing attractor. 636 
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Therefore, if the cell transition dynamics can be well-modelled by the OLE dynamics 637 

of Equation (8), MuTrans is indeed the multi-scale model reduction of (8) via the data-638 

driven approach. In addition, the dynamical manifold constructed by MuTrans can be 639 

viewed as the data realization of potential landscape (34) for diffusion process in 640 

biochemical modelling, which incorporates the dynamical clues about the underlying 641 

stochastic system regarding the stationary distribution and transition barrier heights. 642 

 643 

Data availability 644 

All the datasets used in this paper are publicly available. The mouse cancer EMT data 645 

(Smart-Seq2) is from GSE110357, mouse myelopoiesis data (Fluidigm C1) from 646 

GSE7024, mouse hematopoietic progenitors data (Cel-Seq2) from GSE100037, human 647 

hematopoietic progenitors data (10X Chromium) from the data link in original 648 

publication (31), blood differentiation data (10X Chromium) in mouse gastrulation 649 

from https://github.com/MarioniLab/EmbryoTimecourse2018, and iPSC 650 

differentiation data (single-cell RT-qPCR) downloaded from 651 

https://www.pnas.org/highwire/filestream/29285/field_highwire_adjunct_files/1/pnas.652 

1621412114.sd02.xlsx. The codes and trajectories for simulation data, the processed 653 

single-cell data expression matrix, the MuTrans package and scripts to reproduce the 654 

figures and results in main text and repeat the detailed analysis in SI are also available 655 

at Github (https://github.com/cliffzhou92/MuTrans-release).  656 

 657 
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Code availability 658 

The Matlab implementation of MuTrans and affiliated Transcendental packages are 659 

available from GitHub (https://github.com/cliffzhou92/MuTrans-release). The Python 660 

package for MuTrans (pyMuTrans) compatible with AnnData object is also available 661 

in the repository. 662 

 663 
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Figure Legends 

 
Figure 1. Brief introduction to MuTrans. (a-c) Theoretical foundation of MuTrans -- 
the multi-scale stochastic dynamics approach to model cell-fate transitions. (a) Three 
possible perspectives to describe cell-fate transition, as either entirely discrete (top) or 
continuous (middle) process, or as the multi-scale switch process between meta-stable 
states mediated by transition cells (bottom). The first two perspectives correspond to 
clustering or pseudotime ordering commonly adopted in single-cell analysis. (b) 
Biophysical foundation of the multi-scale perspective to treat cell-fate transition as 
over-damped Langevin dynamics in the multi-stable potential wells. The meta-stable 
states correspond to the attractor basins while the transition states are modelled by the 
saddle points of underlying dynamical system. (c) A typical gene expression trajectory 
of multi-scale dynamics. The expression of driver genes fluctuates within the meta-
stable cells, while witnesses the continuous yet temporary change within transition cells, 
forming a transition layer in trajectory. (d-e) The procedure and downstream analysis 
of MuTrans. (d) The procedure of iterative multi-scale learning. The input is the pre-
processed single-cell gene expression matrix. The three major steps (indicated by the 
number on arrow) for iterative learning of the stochastic dynamics across three different 
scales: (1) learning the cell-cell scale random walk transition probability matrix 
(rwTPM) from expression data, (2) learning the cluster-cluster scale rwTPM by coarse-
graining the cell-cell scale rwTPM, and (3) learning the cell-cluster scale rwTPM by 
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soft-clustering the cluster-cluster scale rwTPM. The output of iterative multi-scale 
learning includes the cell attractor basins and their mutual transition probabilities, as 
well as the membership matrix indicating relative cell positions in different attractors. 
(e) Downstream analysis (Transcendental Procedure). Given the output of iterative 
multi-scale learning, MuTrans constructs the cell lineage, dynamical manifold and 
transition paths manifesting the underlying transition dynamics of cell-fate (top). For 
each state-transition process, MuTrans explicitly distinguishes between meta-stable and 
transition cells via TCS (middle). The transition cells are marked with dashed squares. 
Based on the TCS ordering of cells, MuTrans identifies three types of genes (MS, IH 
and TD) during the transition whose expression dynamics differ in meta-stable and 
transition cells (bottom).     
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Figure 2. Validation of MuTrans in two-state transition simulation data and three-state 
EMT single-cell RNA-seq data. (a) MuTrans distinguishes the meta-stable and 
transition cells simulated using a stochastic saddle-bifurcation model. (top, left) The 
data generated by the model. (Blue lines) The simulated trajectories as the input data. 
(Black Lines) Bifurcation plot of the underlying dynamical system. (Red Lines) The 
trajectory points corresponding to the transition cells that are switching between two 
states. (top, right) The zoomed-in trajectory of the transition cell region. (bottom) The 
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TCS values for transition cells. The meta-stable cells have TCS of value 0 or 1, while 
the TCS of transition cells decrease from 1 to 0 during transition. (b) MuTrans 
distinguishes between MS and IH genes, and resolves dynamics during epithelial-
mesenchymal transition (EMT) mediated by transition cells. (top) The constructed 
dynamical manifold reveals the existence and transitions among three cell states. 
(bottom) The Transcendental analysis of EMT, with the genes (rows) grouped by IH or 
MS, is consistent with previous findings (exact names and details shown in Table S2 
and S3), cells (columns) ordered by TCS, and transition cells marked by the black 
dashed rectangles. No significant TD genes are detected during the transition. The 
color-map from blue to red represents low to high gene expression values. (c) The 
transition path analysis by setting E as start state and M as target state, overlaid on the 
two-dimensional dynamical manifold. The numbers are the relative likelihood of each 
transition path. The direct transition from E to M across the barrier of transition is the 
dominant path with larger transition path flux. 
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Figure 3. MuTrans scrutinizes the cellular bifurcation and gene expression dynamics 
during iPSC differentiation. (a) The schematic development landscape during iPSCs 
differentiation, with cell states and lineage relationship inferred by MuTrans. (b) The 
multi-scale quantities learned by MuTrans. (top) The learned cellular random walk 
transition probability matrix (rwTPM). Elements in red circle indicate that cell-cluster 
scale rwTPM recovers the finer resolution of cell-cell scale rwTPM than the cluster-
cluster scale rwTPM. (bottom) The cell-cluster assignment (left), cluster-cluster 
transition probability (middle) and cell-cluster membership matrix (right) learned by 
MuTrans. (c) The constructed dynamical manifold (Methods and Section 2.3 in SM) 
reflects the dynamics from initial epiblast cells toward the final mesodermal (the 
desired cell fate in iPSC induction) or endodermal cells. The color of each individual 
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cell is computed based on the value of its soft clustering membership. (d) The 
Transcendental analysis of the transition from Pre-M state to M-state (details in Section 
3.3 of SM). (top) The TCS of transition, with transition cells marked by dashed 
rectangles. Transition cells are marked by dashed squares. (middle) The average gene 
expression of top 5 down-regulated MS (blue) and IH (yellow) genes. The full gene 
name list is shown in Table S6. The thin lines represent the raw normalized expression 
value and thick lines denote the smoothed data. IH genes are up-regulated in both 
transition and metastable M cells, while the expression of MS genes is inhibited in 
transition cells. (bottom) The average gene expression of top 5 down-regulated MS 
(blue), IH (yellow) and TD (green) genes. The full gene name list is shown in Table S6. 
(e) GO enrichment analysis of MS, IH and TD genes during Pre-M to M state transition 
indicates a gradual loss of endodermal property and gain of mesodermal property in the 
cell-fate switch.     
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Figure 4. MuTrans can robustly reveal the underlying complex dynamics in single-cell 
blood differentiation datasets. (a-b) The constructed dynamical manifold by MuTrans 
are shown for the two datasets. The color of each individual cell in dynamical manifold 
is based on its soft-clustering membership. In mouse HPC dataset (left), MuTrans 
highlights the multi-lineage cells in a shallow pit on dynamical manifold. In the HPC 
dataset toward lymphoid lineages (right), MuTrans discovers plenty of transition cells 
exist between meta-stable PreB and B cell attractors (marked by dashed squares). (c) 
The TCS of transition and average gene expression of the top 5 TD (green), MS (blue) 
and IH (yellow) genes for the two interested transition paths marked with dash in (a). 
The full gene lists are shown in Table S7-9. 
 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434281doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434281
http://creativecommons.org/licenses/by-nc-nd/4.0/


 41 

 
Figure 5. Application to a large dataset using multiscale reduction approach. (a) The 
tSNE plot and marker gene expression of datasets from early human HSC 
differentiation in bone marrow. (b) The dynamical manifold constructed from complete 
dataset (left, N=4,142 cells) and with DECLARE pre-processing (right, K=1,200 
micro-states) with cells colored by soft clustering membership in MuTrans attractors. 
Left panel: each ball represents one cell; right panel: each ball represents one micro-
state. The reduced model preserves the overall structure of dynamical manifold. (c) The 
transition paths analysis conducted on complete data (left) and with DECLARE pre-
processing (right), where HSC are picked as the start and dendritic cells as the target. 
The numbers indicate the relative likelihood of each transition path, suggesting the 
quantitative consistency of reduced model with the analysis on whole dataset. 
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Figure 6. Application to a dataset on blood cell differentiation in mouse gastrulation 
(N=15,875 cells) . (a) The UMAP plot with cells colored by experimental collection 
time (left) and the cell annotations in original publication (right). (b) The cell lineage 
inferred by PAGA, however, with the coarse-grained states colored by experimental 
collection time (left) and the cell annotations in the original study (right). (c) The 
dynamical manifold constructed by MuTrans with DECLARE pre-processing 
(K=1,500 micro-states), with cells colored by soft clustering membership in MuTrans 
attractors. (d) The global cell lineage inferred by MuTrans MPFT (most probable flow 
tree) algorithm. (e) Zoom-in of the dominant transition paths from Haem cells to 
endothelial cells. (f) Zoom-in of the dominant transition paths from Haem cells to 
erythrocytic cells. 
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