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ABSTRACT 31 

Alterations in metabolism, sleep patterns, body composition, and hormone status are all key 32 

features of aging. The hypothalamus is a well-conserved brain region that controls these 33 

homeostatic and survival-related behaviors. Despite the importance of this brain region in 34 

healthy aging, little is known about the intrinsic features of hypothalamic aging. Here, we utilize 35 

single nuclei RNA-sequencing to assess the transcriptomes of 22,718 hypothalamic nuclei from 36 

young and aged female mice. We identify cell type-specific signatures of aging in neurons, 37 

astrocytes, and microglia, as well as among the diverse collection of neuronal subtypes in this 38 

region. We uncover key changes in cell types critical for metabolic regulation and body 39 

composition, as well as in an area of the hypothalamus linked to cognition. In addition, our 40 

analysis reveals female-specific changes in sex chromosome regulation in the aging brain. This 41 

study identifies critical cell-specific features of the aging hypothalamus in mammals. 42 
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INTRODUCTION 43 

While human lifespan has increased dramatically in recent years, improvements in 44 

healthspan, the period of life in which a person is disease-free, have been more modest1. 45 

Susceptibility to a host of diseases increases with aging, including diabetes, stroke2, cancer3, and 46 

neurodegenerative diseases4. Aging is accompanied by changes in body composition, including 47 

decreased lean muscle mass, loss of bone density, and increased abdominal fat1. Concomitant 48 

with these changes are alterations in endocrine states, such as decreased sex hormone production, 49 

and reduced growth hormone and insulin-like growth factor-I5. Endocrine function and 50 

homeostatic processes, such as energy homeostasis6 and release of sex hormones7, are controlled 51 

by neuropeptidergic neurons in the hypothalamus. 52 

 53 

Nutrient sensing is one of several functions of the hypothalamus that implicates this brain 54 

region in healthy aging. Specific neuronal subtypes in the hypothalamus respond to circulating 55 

cues to organize the response to dietary changes through regulation of energy balance, glucose 56 

homeostasis and growth factor secretion. Caloric restriction (CR) is one of the most well-57 

established behavioral interventions that improves lifespan and healthspan in many model 58 

organisms8. Genetic models that mimic the effects of CR via modulation of energy sensing 59 

pathways have revealed the mechanistic underpinnings of lifespan extension. For example, in C. 60 

elegans, the effects of dietary restriction are dependent on the function of neuropeptidergic 61 

energy sensing neurons; genetic manipulation of energy sensing genes in those neurons is 62 

sufficient to increase longevity9. Similarly, lifespan extension in the fruit fly Drosophila is 63 

dependent on specialized neurons called median neurosecretory cells10. In rodents, manipulations 64 

to the hypothalamus can also alter lifespan. Specifically, brain-specific over expression of Sirt1 65 
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leads to alterations in the dorsomedial and lateral hypothalamus and increases lifespan11. 66 

Similarly, alteration of immune signaling in the mediobasal hypothalamus affects longevity, 67 

where a reduction in immune signaling promotes longevity12.  68 

 69 

Epigenetic and transcriptional changes are widespread across tissues during aging, including in 70 

the brain13,14. Key transcriptional factors such as FOXO/DAF-16, NF-kB,, and MYC function as 71 

conserved regulators of these networks and have been implicated in aging12,15,16. However, 72 

despite a great interest in how changes in transcriptional programs affect aging, our 73 

understanding of how distinct cellular subtypes change transcriptionally with age remains 74 

limited. Investigation of how transcriptional programs change in a cell-type specific manner in 75 

the hypothalamus will provide important insight into the aging process across tissues. Recent 76 

advances in single-cell RNA-sequencing (RNA-seq) have expanded our understanding of the 77 

diverse cell types that comprise the hypothalamus17–21. This approach allows the investigation of 78 

previously unappreciated transcriptional and functional diversity of this brain region. Here, we 79 

use a single nuclei RNA-seq approach to identify aging-associated transcriptional changes across 80 

the mouse hypothalamus, thereby capturing the diversity of cell types in this brain region.  81 

  82 

RESULTS 83 

Single nuclei sequencing of the aging mouse hypothalamus 84 

We employed single nuclei RNA sequencing (snRNA-seq), which is currently the 85 

optimal method for single cell transcriptomic profiling of the diversity of cell types in the adult 86 

mammalian brain22,23. We isolated nuclei from the hypothalamus of young (3 month) and aged 87 

(24 month) mice, with replicate libraries for each age (Figure 1A). After quality filtering, we 88 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434282doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434282
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

obtained 22,718 high quality nuclei for analysis: 7862 and 14,856 nuclei from young and aged 89 

animals, respectively (Figure S1A). We observed a high correlation between replicates at each 90 

age (Figure S1B).    91 

 92 

Clustering analysis with the Louvain algorithm revealed distinct clusters representing the 93 

major cell types of the hypothalamus, which we identified based on expression of canonical 94 

markers (Figure 1B-D, S1C). For each individual cluster, we identified the top 10 genes that 95 

were differentially expressed using the Wilcoxon Rank Sum test (Supplementary Table 1). For 96 

example, neurons were defined by expression of Syt1, astrocytes defined by Agt and Gja1, 97 

oligodendrocytes by Olig1 and Plp1 expression, and OPCs were identified by expression of 98 

Pdgfra. The microglia/macrophage cluster was defined by expression of C1qa (Figure 1C). Less 99 

abundant cell types were also observed, including ependymocytes (ependymal cells; Ccdc153), 100 

and arachnoid barrier cells (ABC; Slc47a1), pericyte/endocytes (Flt1 and Clnd5I) and vascular 101 

and leptomeningeal cells (VLMC; Slc6a13). We also observed a distinct cluster of tanycytes, 102 

which are specific to the hypothalamus and defined by Rax expression. Nuclei in these broad 103 

categories expressed additional canonical markers associated with their cell type, for example, 104 

the astrocyte cluster expressed Gfap, further validating the identify of each cluster.  105 

 106 

Cell type diversity is achieved through expression of transcriptional regulators that 107 

orchestrate cell type-specific gene expression networks. To identify the regulators responsible for 108 

distinct expression networks across cell types in the hypothalamus, we used SCENIC, a 109 

regulatory network inference tool. This analysis revealed specific transcriptional regulators of 110 

cell identity in this region24 (Figure 2). Strong cell-type specific signatures emerged for each 111 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434282doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434282
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

cluster. Some regulons, such as Foxn2, are strongly enriched across all cell types, while others 112 

are unique to one or two cell types. For example, Atf2 is uniquely highly enriched in neurons. In 113 

tanycytes, a cell population unique to the hypothalamus, the regulons Foxo1 and Foxo3 are 114 

enriched. Tanycytes are considered to be neurogenic, and function in response diet25,26. FOXO 115 

factors are critical regulators of neural stem cell homeostasis, and FOXOs sit downstream of the 116 

insulin/IGF-1 pathway27. These data suggest that FOXO factors may be critical regulators of 117 

tanycyte response to organismal energy states.   118 

  119 

Major cell types of the hypothalamus acquire cell type-specific gene expression changes 120 

with age  121 

We next investigated the changes in gene expression that occur with age in the major cell 122 

types of the hypothalamus. As expected, aging was not associated with changes in composition 123 

of this brain region, and each major cell type was similarly represented in young and aged mice 124 

(Figure 3A). To control for differences in nuclei numbers obtained, we randomly downsampled 125 

the aged nuclei and performed differential expression analysis on identical numbers of aged and 126 

young nuclei (Figure S2A-C). To gain a global understanding of how gene expression is altered 127 

with age, we first performed differential expression analysis using the Model-based Analysis of 128 

Single-cell Transcriptomics (MAST)28,29, treating the data in bulk. Using this approach, we 129 

identified 216 and 326 genes that were upregulated and downregulated with age, respectively 130 

(padj < 0.05, fold change > 0.1) (Figure 3B, Supplementary Table 3). Intriguingly, highly 131 

downregulated genes included Pmch and Oxt, which encode Pro-melanocyte stimulating 132 

hormone and Oxytocin, respectively. Melanocyte stimulating hormone and oxytocin are heavily 133 

involved in regulating energy homeostasis6, which is altered with age30. Interestingly, the most 134 
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upregulated genes included Xist and Tsix, which are both long non-coding RNAs involved in X 135 

chromosome inactivation31,32.  136 

 137 

Next, we investigated the impact of age on gene expression in each major cell type. 138 

Neurons, astrocytes, oligodendrocytes, and microglia showed the greatest numbers of 139 

differentially expressed genes with age (Figure 3C, Supplementary Table 4). Analysis of most 140 

other cell types also revealed differential expression, though the ability to discern differentially 141 

expressed genes was related to the number of nuclei per cluster (Figure S2D). We also performed 142 

coefficient of variation analysis on the major cell types and, interestingly, we observed a 143 

significant difference between ages, with nearly all types showing in increase with age (p < 144 

0.001; Wilcoxen test) (Figure 3D). This finding suggests that variability in gene expression 145 

increases with age in each cell type, which likely contributes to cellular dysfunction with age. 146 

 147 

To investigate the cellular processes that are altered with age in the different cell types in 148 

the hypothalamus, we performed Gene Set Enrichment Analysis (GSEA) using the hallmark 149 

gene set33 (Figure 3E). Interestingly, the neuron sub-cluster had the greatest number of gene sets 150 

represented, which included a number of known aging-associated pathways. For example, 151 

metabolic pathways such as PI3K/AKT/mTOR, adipogenesis, glycolysis and OxPhos were all 152 

under-enriched with age (negative normalized enrichment score). In addition, DNA damage and 153 

repair pathways, p53 signaling, and proteostasis were all downregulated in the aged neurons. 154 

This analysis also revealed a number of cell type-specific changes with age. For example, among 155 

the pathways that were altered with age in astrocytes, some overlapped with the neuronal 156 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434282doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434282
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

changes (e.g unfolded protein response and mTORC1 signaling) while others were specific to 157 

glia (e.g. coagulation factors, the inflammatory response and NFKB activity).  158 

 159 

Aged hypothalamic microglia are heterogeneous, representing a progressive aging 160 

trajectory   161 

Microglia are macrophage-like cells found throughout the brain, and are critical for the 162 

immune response, including release of cytokines and chemokines, antigen presentation, and 163 

phagocytosis of debris34. Recent studies have revealed gene expression changes and microglial 164 

activation in the aged brain, which likely contribute to neurodegeneration34. Due to the lower 165 

frequency of microglia in our dataset, we sought additional strategies to uncover changes with 166 

age in these cells. Using Monocle335, we performed pseudotemporal ordering of the 167 

microglia/macrophage nuclei. The trajectory accurately captures the transition from young to 168 

aged nuclei, suggesting a gradual progression toward aging in this cell type (Figure 4A). To 169 

identify the gene expression changes across the aging trajectory, we performed Moran’s I test 170 

(Figure 4B, Supplementary Table 5, Supplementary Table 6). This approach revealed four 171 

modules (1, 2, 3, and 7) that have decreased expression along the pseudotime trajectory, and 172 

three modules (4-6) with increased expression (Figure 4B-C). We named modules after their 173 

most enriched GO term. The modules decreasing in expression along the pseudotime trajectory 174 

include terms related to neurotransmitter release, cell migration, cell projection and cytoskeleton 175 

makeup, and myelination (Supplementary Table 6). In contrast, the modules increasing with 176 

expression across pseudotime include immune response, regulation of cell-cell signaling, and 177 

response to immune signals (Supplementary Table 6). 178 

 179 
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To gain a deeper understanding of the heterogeneity of microglial aging in the 180 

hypothalamus, we examined the top 20 most significant genes for each cluster (q value < 0.05). 181 

We visualized expression of genes with high significance in the module and plotted gene 182 

expression as a function of pseudotime, and directly comparing young and aged populations 183 

(real-time; Figure 4D). This approach reveals that while the young microglia are clustered early 184 

in pseudotime (pseudotime 0.0, 0.5 and 1.0), microglial nuclei from aged animals are dispersed 185 

throughout pseudotime. Indeed, pseudotime 1.5 and 2.0 are comprised almost entirely of nuclei 186 

from aged animals, and expression in these cells varies strongly compared to expression in cells 187 

in pseudotime 0.0. Thus, hypothalamic microglia from aged animals have increased 188 

heterogeneity representing a progressive aging trajectory, with a subset of microglia retaining a 189 

youthful gene expression signature.  190 

 191 

Age-associated changes in X-inactivation genes is a sexually dimorphic feature of aging  192 

 Sex differences in lifespan have been documented in many species, including mice36. In 193 

addition, interventions that extend life span do so in a sex-specific manner.  For example, caloric 194 

restriction (CR) is one of the most robustly studied interventions and its effects have been 195 

observed from yeast to non-human primates8. Like many interventions, CR has sex-specific 196 

effects, with restricted females generally living longer than males on the same diet37,38. Similarly, 197 

the brain-specific Sirt1 overexpression model results in a larger lifespan increase for females 198 

when compared to males11. To understand how the female hypothalamus may be uniquely 199 

affected by aging, we used female animals in our study. 200 

 201 
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Our initial differential expression analysis revealed the unexpected finding that the long 202 

non-coding RNA Xist is the most highly upregulated gene in the female hypothalamus with age 203 

(Figure 3B). Differential expression analysis of each major cell type indicated upregulation of 204 

Xist with age in astrocytes, neurons, oligodendrocytes, as well as tanycytes (Figure 5A). Xist is 205 

involved in X chromosome inactivation in females and is encoded on the X-inactivation center 206 

(XIC), which harbors additional non-coding RNA genes involved in the same process39. 207 

Intriguingly, we observed age-related upregulation of two of these RNAs in some cell types: Tsix 208 

and Ftx40 (Figure 5A). We validated the upregulation of Xist using whole cell RNA preps from 209 

the hypothalamus and investigated other brain regions as well (cerebellum, cortex and olfactory 210 

bulb). All regions trended toward increased expression of Xist with age, but the strongest 211 

upregulation was observed in the hypothalamus (Figure 5B). As expected, we did not detect Xist 212 

expression in adult male mice, and there was no upregulation of this gene with age in males 213 

(Figure 5B). 214 

 215 

The age-associated dysregulation of XIC genes lead us to investigate whether there was 216 

an enrichment for expression changes among genes on the X chromosome. Because all three 217 

XIC genes assessed were differentially expressed with age in the neuronal cluster (Figure 5A), 218 

we focused on neurons. Interestingly, a chi-square analysis indicated that the proportion of 219 

upregulated and downregulated genes was not distributed as expected between the X 220 

chromosome and autosomes (X2 = 8.7548, df = 2, p-value = 0.01256). There were more 221 

downregulated genes arising from the X chromosome than expected (24 observed, 13.732428 222 

expected, standardized residual = 2.9107035). Additionally, there were fewer nonsignificant 223 

genes than expected (198 observed, 209.292371 expected, standardized residual =  -2.6499813) 224 
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(Figure 5C). Since the function of Xist is to silence gene expression in cis on the X, this 225 

observation suggests that increased Xist with age may contribute to the repression of expression 226 

with age across the chromosome.  227 

 228 

 Although most genes on the inactive X chromosome are not expressed in females, a small 229 

number of genes are well-known to “escape” inactivation, and are expressed from both X 230 

chromosomes. In the mouse brain, 14 genes are considered to be X escape genes not silenced by 231 

the XIC41. This list includes both Xist and Ftx, which have increased expression with age in our 232 

dataset. To determine if increased XIC gene expression with age might be affecting escape 233 

genes, we interrogated expression of the other 12 genes in this category. We found that most 234 

escape genes were not significantly altered with age in our dataset. In contrast, the X escape 235 

genes Syp and Plp1 have decreased expression with age in neurons and oligodendrocytes, 236 

respectively. Ddx3x, a gene involved in neurodevelopment, showed significantly increased 237 

expression with age in astrocytes, although it appears to be expressed at low levels overall 238 

(Figure 5D). Together, these data indicate the effect of XIC gene alterations with age may be 239 

cell-type specific, and that increased Xist expression does not exclusively correlate with the X 240 

escape network.  241 

 242 

Neuronal subtype specific changes during aging 243 

 Hypothalamic neurons are highly diverse and function to orchestrate a wide range of 244 

processes and behaviors necessary for organismal survival42. This diversity of function is 245 

accomplished by cell type-specific gene expression programs, with each area of the 246 

hypothalamus containing a range of transcriptionally dissimilar neuronal subtypes17,18,21. Indeed, 247 
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even neurons expressing the same neuropeptide gene may comprise functionally distinct 248 

subpopulations43. To address this complexity, we sub-clustered the neuronal nuclei to identify 249 

transcriptionally distinct populations. This analysis revealed 34 transcriptionally distinct clusters 250 

(Figure 6A), and broadly separated the nuclei into inhibitory (Gad1 expressing GABAergic) or 251 

excitatory (Slc17a6 expressing glutamatergic) identity (Figure 6B). The 34 clusters represent 252 

both known and undefined neuronal subtypes (see Supplementary Table 7 for markers of cluster 253 

identity). To discern the relationship between the clusters, we organized them according to 254 

transcriptional similarity using a Cluster Tree analysis (Figure 6C). Neuronal subpopulations 255 

from the same hypothalamic nucleus were not necessarily transcriptional neighbors on the cluster 256 

tree. For example, even though some AgRP/NPY neurons and POMC neurons may arise from 257 

common progenitors43, the Npy/Agrp (23) and Pomc/Tac2 (25) clusters are not most closely 258 

related to one another.  259 

  260 

We next investigated expression of specific neuropeptide genes across the clusters in 261 

order to functionally define the distinct neuronal subpopulations (Figure 6D). These clusters 262 

generally correspond to known cell types expressing one or two hallmark neuropeptides. As 263 

additional insight into neuronal subtype identity, we utilized the SCENIC pipeline to uncover 264 

regulons enriched in each cluster24 (Figure 6E, Supplementary Table 8). For example, Tbx3 is a 265 

known regulator of  Npy/Agrp cluster (23), and the Tbx3 regulon is active in this cluster in our 266 

dataset44. Similarly, both POMC and AgRP/NPY neurons are leptin-responsive, and Stat3, the 267 

transcriptional regulator of leptin response, is active in both these populations.  268 

 269 
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Using this approach, we were able to associate many of these clusters with a known 270 

function and location in the hypothalamus, as well as specific changes with age. Similar to our 271 

analysis of the whole hypothalamus, we did not detect major changes in neuronal composition 272 

with age (Figure 7A). We next performed differential expression on clusters in which there were 273 

at least 20 nuclei per condition (Figure 7B, Supplementary Table 9). The number of differentially 274 

expressed genes appears to be a function of the number of nuclei per cluster, for example, the 275 

Npas3/Gpc cluster (12) which has a large number of nuclei (1923) shows 224 genes 276 

downregulated in age and 70 genes upregulated in age. For each cluster, we also performed 277 

GSEA using the Hallmark gene set. Interestingly, several neuronal subtypes involved in feeding 278 

and energy homeostasis were altered with age. For example, Ralyl and Tenm2 were upregulated 279 

in the Npy/Agrp cluster (23). In the Pomc/Tac2 cluster (25), Plod1 and Cxcl12 were 280 

downregulated, and Epha6, Xist, B3galt1, Lingo2, and Sgcz were upregulated. Pathways altered 281 

in this cluster with age include adipogenesis, DNA repair, oxidative phosphorylation, the 282 

unfolded protein response, and UV response down (Figure 7C). Thus, for the first time, our 283 

dataset links neuron-specific gene expression changes in the hypothalamus with key features of 284 

organismal aging, such as weight and metabolic changes. 285 

 286 

Based on expression of specific peptides and transcription factors, the 287 

Dgkb/B230323A14Rik cluster (7) is likely made up of cells of the medial mammillary nucleus. 288 

This region is notable because unlike most areas of the hypothalamus, this region is involved in 289 

memory via connections with the hippocampus45. Strikingly, this cluster is highly dysregulated 290 

with age, with 65 downregulated and 31 upregulated genes. This gene set is enriched for changes 291 

in adipogenesis, mTORC1 signaling, OxPhos, DNA damage (UV response down), and 292 
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xenobiotic metabolism. The identification of changes in this brain region is significant, as they 293 

may contribute to cognitive impairments with age. 294 

DISCUSSION 295 

In this work, we used single nuclei RNA-seq to identify the age-associated transcriptional 296 

changes in the mouse hypothalamus. This brain region is critical for the regulation of 297 

physiological homeostasis, including sleep, circadian rhythms, feeding, and metabolism. These 298 

functions are well known to be disrupted during aging, and our findings implicate widespread 299 

transcriptional changes concomitant with physiological changes. 300 

 301 

Our approach successfully captured the major cell types in the brain, as well as 302 

hypothalamus-specific cell-types such as tanycytes. We found that cellular subtypes in this 303 

region acquire distinct aging signatures, and discovered that increased transcriptional 304 

heterogeneity is a common feature across all cell types with age. Consistent with our findings, 305 

age-related transcriptional alterations have been observed in aging human brains46, and increased 306 

transcriptional noise is thought to be a hallmark of aging47. Our finding that different neuronal 307 

subtypes have distinct aging signatures is consistent with recent reports identifying differential 308 

susceptibility to neurodegeneration48. Identification of the transcriptional signatures involved 309 

may pave the way for therapeutics targeted at subpopulations most susceptible to dysregulation 310 

with age. In addition, analysis of cell types arising from the arcuate nucleus illustrate intriguing 311 

cell-type specific differences in populations responsible for nutrient sensing. For example, 312 

despite the importance of AgRP/NPY neurons in initiating feeding in steady state animals49, the 313 

Npy/Agrp cluster (23) is relatively unaffected by age. In contrast, the Pomc/Tac2 cluster (25) 314 

gene set is enriched for changes in DNA repair and the unfolded protein response, among others. 315 
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While these two cell populations have complementary functions in steady state, POMC neurons 316 

seem to be uniquely affected by aging. Interestingly, upregulation of the unfolded protein 317 

response has been linked to improved protection against diet-induced obesity50. Thus, the 318 

downregulation of the unfolded protein response pathway with age in these cells may represent a 319 

mechanism underlying body composition changes that occur with age. 320 

 321 

We observed striking changes in the microglial population with age. Microglia are 322 

resident immune cells in the brain, and previous research has shown that microglia-mediated 323 

inflammation in the hypothalamus can affect lifespan12. By utilizing trajectory inference 324 

analysis, we uncovered an aging trajectory among microglia in the aged brain. While some 325 

microglia retain features of young cells, the population shows a progression toward an aged 326 

phenotype based on distinct gene expression modules. Interestingly, modules of immune genes 327 

were some of the most changed throughout pseudotime. Module 2, which contains GO 328 

categories related to leukocyte migration, cell chemotaxis, and cell-cell adhesion, was among the 329 

most downregulated with pesudeotime. In contrast, Module 4, which also contains GO categories 330 

related to immune function, was highly upregulated with pseudotime. Together, these data 331 

indicate that the aged hypothalamus harbors a heterogeneous population of microglia comprising 332 

an aging trajectory.  333 

 334 

 Sex differences in aging have been observed across taxa, including in mice51,52. In 335 

mammals, females generally live longer than males53, and many aging interventions such as CR, 336 

are more effective in females11,37. In addition, the sexually dimorphic response to aging 337 

interventions appears to be a conserved phenomenon, with female Drosophila  responding more 338 
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strongly to dietary restriction paradigms than males54, and hermaphroditic C. elegans responding 339 

more strongly to DR than males55. In mice, males and females differ in regards to sex 340 

chromosome content (males are XY and females are XX) and the presence of gonadal hormones 341 

such as higher androgens in males and estrogens in females. Interestingly, X chromosome 342 

content has been linked to longevity, and the presence of two X chromosome contributes to 343 

increased longevity regardless of hormonal status56. This work was performed in the four core 344 

genomes mouse line, in which the Sry gene (which induced testes development) exists on an 345 

autosome rather than the Y chromosome, allowing for chromosomal sex to be disambiguated 346 

from gonadal sex/hormone status. In our study, we uncover a potential mechanism by which the 347 

X chromosome affects aging. We observed widespread upregulation of Xist in aged female 348 

animals, as well as upregulation of other XIC genes including Tsix and Ftx. Intriguingly, this 349 

increased expression was highly prominent in neurons, although upregulation of Xist in was 350 

observed in oligodendrocytes, astrocytes, and tanycytes as well. Together, our findings reveal a 351 

novel feature of aging in females. Moreover, this work suggests that that understanding the 352 

mechanisms and consequences of Xist upregulation in aging may provide novel insight into sex 353 

differences in aging.  354 

 355 

 In summary, our study reveals the major transcriptional features of hypothalamic aging. 356 

We observed transcriptional variation across cell types, cell-type specific aging signatures, and 357 

novel features of aging in females. Understanding how individual populations of cells in this 358 

region contribute to overall loss of homeostasis with age will be vital to identifying treatments 359 

for aging and age-related disease.  360 

  361 
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 362 

METHODS 363 

Animals 364 

Young (3 month) and aged (24 month) C57/Bl6 female mice were obtained from the 365 

National Institute on Aging. Mice were housed and used according to protocols approved by 366 

Brown University and in accordance with institutional and national guidelines. 367 

 368 

Single-cell RNA sequencing 369 

Two whole hypothalamuses were pooled into each biological replicate, for a total of two 370 

replicates for the young and aged conditions. Nuclei extraction was performing using the Nuclei 371 

Isolation Kit: Nuclei PURE Prep Kit (Millipore Sigma) according to the manufacturer’s 372 

instructions with the following modifications: for each sample, two hypothalamuses were 373 

dissected out of the animals and rinsed in cold PBS. Tissue was transferred using a transfer 374 

pipette into a refrigerated Dounce homogenizer with 5 mL of lysis solution following kit 375 

instructions. Tissue was homogenized with the Dounce B and the lysate was transferred into a 15 376 

mL falcon tube through a 40-micron filter. The sucrose purification step was performed with the 377 

following modifications: half the volume of all reagents was used to account for the small tissue 378 

sample sizes, an SW34 rotor was used, and samples were spun for 45 minutes at 30,000 X g 379 

(13,000 rpm) at 4 °C. Nuclei were counted using a hemocytometer, and 5000 cells per sample 380 

were loaded onto the Chromium Single Cell 3′ Chip (10x Genomics) and processed with the 381 

Chromium Controller (10x Genomics). Libraries were prepared using the Chromium Single Cell 382 

3′ Library & Gel Bead kit v2 according to manufacturer’s instructions. Samples were sequenced 383 

at GENEWIZ, Inc on an Illumina HiSeq, with a target of 50,000 reads per sample. The Aged 1 384 
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and Young 2 samples underwent an additional round of sequencing to obtain sufficient read 385 

depth.  386 

 387 

Quality control, data processing and analysis 388 

Demultiplexing and sequence alignment to a custom pre-mRNA transcriptome (mm10-389 

3.0.0) were performed using the CellRanger (version 3.0.2) software from 10x Genomics. The 390 

resulting feature-barcode matrices were read into R, excluding any nuclei expressing fewer than 391 

200 genes, and any gene expressed in fewer than three nuclei. 392 

 393 

Filtering and visualization were performed using Seurat_3.2.3 in R (4.0.3). For quality 394 

control, cells with fewer than 200 or more than 3000 features were filtered out. Similarly, cells 395 

with more than 10% mitochondrial mapping were removed, resulting in 14,856 nuclei in the 396 

aged condition, and 7862 nuclei in the young condition. Integration of the datasets was 397 

performed using the IntegrateData function with default settings. The number of cells, unique 398 

molecular identifiers, and unique genes per cluster are reported in Supplementary Figure 1C. To 399 

assign identities to clusters, the FindAllMarkers() command with default parameters was used. 400 

This finds the top genes that define a cluster identity. We named each cluster using the top 2 401 

genes to come out of the FindAllMarkers() analysis. This function uses the Wilcoxon Rank Sum 402 

test identify the top 10 differentially expressed genes in cell-type specific clusters, with a log fold 403 

change threshold of 0.25. 404 

 405 

In order to ensure similar cell counts per condition, data were downsampled by randomly 406 

selecting cells from each cluster using the sample() function in R. Differential expression was 407 
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performed using MAST(1.16.0)28. Genes were considered significant if the adjusted p-value was 408 

less than 0.05, and the log2 fold change was greater than 0.1 or less than -0.1.  409 

 410 

Gene Set Enrichment Analysis 411 

Gene Set Enrichment Analysis was performed using the fgsea package (Release 3.12)57 412 

using the Hallmark gene set list (version 7.2.)33. Gene sets were considered to be enriched if the 413 

adjusted p value was less than 0.1. Conversions between mouse and human annotation was 414 

performed using biomaRt (2.46.0).  415 

 416 

Trajectory inference and analysis using Monocle3 417 

The trajectory inference tool Monocle335 (https://github.com/cole-trapnell-lab/monocle3) 418 

was used to infer the aging process for the microglia cluster (n = 761 cells) generated in Seurat.  419 

The microglia cluster was subsetted and the root of the trajectory was programmatically 420 

specified using the node that was most enriched with young cells. Spatially differential 421 

expression analysis along the trajectory was performed with Moran’s I test in Monocle3 using 422 

the downsampled microglia data (n = 448 cells), and selected genes with q < 0.05 as trajectory-423 

dependent genes. The set of genes were grouped into seven modules using find_gene_modules() 424 

to run UMAP on these genes and group them into modules by Louvain community analysis 425 

(Supplementary Table 6).  426 

 427 

Functional enrichment analysis 428 

The g:Profiler g:GOSt tool was applied to perform the functional enrichment analysis of  429 

939 genes in individual microglia modules, and to identify statistically significant enriched terms 430 
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(adjusted p < 0.05 with Benjamini-Hochberg correction) for individual modules (Supplementary 431 

Table 5). Seven modules were identified: Module 1 (19 terms), module 2 (25 terms), module 3 432 

(26 terms), module 4 (202 terms), module 5 (11 terms), module 6 (13 terms), module 7 (6 terms). 433 

The 939 genes were treated as unordered queries, and statistical tests were applied in a domain 434 

scope of annotated genes, choosing terms sized from 4 to 500 genes in sources including GO 435 

molecular function, GO cellular component, GO biological process, KEGG, Reactome, and 436 

WikiPathways. The top GO biological process term was used to name individual modules. 437 

 438 
Single-cell gene regulatory network analysis using pySCENIC 439 
 440 

We performed GRN analysis with pySCENIC v0.10.424 using the Singularity v3.6.1 image. 441 

We first converted the Seurat object (DefaultAssay: RNA, i.e. raw counts without normalization) 442 

with loomR v0.2.1.9 and export into a loom file for the GRN inference. In the GRN 443 

inference, for the downsampled all-cell data (n=15445 cells), we filtered out genes that are 444 

detected in less than 300 cells with Scanpy v1.4.4, resulting in 11574 genes in total; for the 445 

downsampled neuron data (n= 8846 cells), we used all genes (22054 genes). We performed 100 446 

runs on both datasets. Only regulons that recurred at least 80% were retained, along with target 447 

genes that were predicted to recur at least 80% if the regulon recurred 100 times, and all target 448 

genes for regulons that recurred between 80 and 100 times58. After filtering, we identified 216 449 

motif regulons for all-cell dataset, and 285 motif regulons for neurons. The regulon activity was 450 

quantified by AUCell with AUCell_calcAUC in AUCell R package v1.8.0, R/3.6.3. To 451 

understand if a regulon is active or not in a specific cell type, we created a binary regulon 452 

activity matrix of the filtered regulons with binarize function in pyscenic.binarization and 453 

visualized in R. For the regulon specificity score (RSS), we use the regulon_specificity_scores 454 
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from pyscenic.rss59. The RSS is calculated for each cell type separately, and top 5 regions for 455 

each cell type are shown in red.ref. 456 

  457 
Data and code availability 458 

 Raw single nuclei RNA sequencing deposited at GEO accession XYZ. Code available at 459 

https://github.com/Webb-Laboratory/single_cell_analysis.  460 

 461 

RT-qPCR 462 

Hypothalamus, olfactory bulb, cerebellum, and cortex were dissected in cold PBS from 463 

the brains of 3 month old and 24 month old C57Bl/6 mice (n=6, 3 male and 3 female for each 464 

age) and snap frozen in liquid nitrogen. RNA was purified using the Qiagen RNeasy Lipid 465 

Tissue Mini Kit (Qiagen #74804). cDNA was generated using 500 ng of RNA and the High-466 

Capacity Reverse Transcription Kit (Applied Biosystems #4374966). A negative control (-RT) 467 

for each sample was also generated by excluding the Multiscribe Reverse Transcriptase 468 

component of the reaction. qPCR reactions were completed using the PowerUpTM SYBR TM 469 

Green Master Mix (Invitrogen #A25918). Stock primers were diluted to 10 µM in sterile water, 470 

and cDNA was diluted 1:5 in sterile water. Expression levels of the genes of interest (see table 471 

below) were quantified using a ViiA 7 Real Time PCR System with QuantStudio software. Actin 472 

was used as a housekeeping gene for normalization. Each sample, water control, and -RT control 473 

sample was run in triplicate for each primer set. CT values were normalized to Actin, and ΔCT 474 

values were plotted as 2- ΔCT. Technical replicates were averaged per biological replicate. 475 

 476 

Gene F sequence R sequence 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434282doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434282
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

Actin  TGTTACCAACTGGGACGACA CTCTCAGCTGTGGTGGTGAA 

Xist GGTTCTCTCTCCAGAAGCTAGGAAG TGGTAGATGGCATTGTGTATTATATGG 

 477 

 478 

SUPPLEMENTARY MATERIAL 479 

Supplementary Table 1. Markers for hypothalamic cell clusters. 480 
Supplementary Table 2. Binarized regulons for hypothalamic cell clusters.  481 
Supplementary Table 3. Results of differential expression analysis for all nuclei. 482 
Supplementary Table 4. Differential expression analysis of individual cell types. 483 
Supplementary Table 5. Results of Moran’s I Test. 484 
Supplementary Table 6. Gene modules from monocle analysis. 485 
Supplementary Table 7. Cluster markers for neuronal subtypes. 486 
Supplementary Table 8. Regulon specificity scores for each neuronal cluster. 487 
Supplementary Table 9. Results of differential expression for neuronal subtypes. 488 

 489 

 490 

 491 

 492 

  493 
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FIGURE LEGENDS 630 

Figure 1. Single-nuclei analysis of the hypothalamus. A) Schematic detailing the experimental 631 

workflow from dissection through analysis. n = 2 replicated per age. B) Uniform Manifold 632 

Approximation and Projection (UMAP) plot of all 22,718 nuclei used for analysis. Clustering 633 

analysis revealed 10 broad categories of cell type identity. C) UMAP plots of all nuclei labeled 634 

for expression of cell type-specific markers. Syt1, neurons; Agt, astrocytes; Plp1, 635 

oligodendrocytes; C1qa, microglia/macrophages. Color scale indicates level of gene expression. 636 

D) Heatmap highlighting expression of cell type markers in each cluster, a maximum of 500 637 

nuclei per cluster are displayed. E) RSS scores for representative subclusters. Top 5 regulons in 638 

red.  639 

 640 

 641 

 642 

 643 
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 650 

 651 
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Figure 2.  Gene regulatory network reconstruction for cellular subtypes. A) Binarized 652 

regulon activity for each regulon in a given cell. Top 20 most expressed regulons per cluster 653 

shown. Maximum 500 cells per cluster shown. Color indicates a regulon is “on” in a given cell.   654 
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Figure 3. The aging hypothalamus harbors cell type-specific transcriptional changes. A) 674 

UMAP of the 22,718 nuclei analyzed, color indicates age. B) Volcano plot showing overall 675 

differential expression of genes between all young and aged nuclei. Significant genes in purple 676 

(adjusted p value < 0.05, FC > 0.1). C) Strip plot showing DE genes per cell type. Significant 677 

genes (adjusted p value < 0.05, FC > 0.1, MAST analysis) in color, nonsignificant genes are in 678 

gray. D) Coefficient of variation analysis for each cellular subtype. In all subtypes the CV is 679 

significantly higher in the aged condition (two sided Wilcoxen Test with Bonferonni correction, 680 

***adjusted p value < 0.001). E) Heatmap showing GSEA enrichment analysis for Hallmark 681 

terms. Color indicates normalized enrichment score. Significant gene sets calculated as adjusted 682 

p value < 0.1.  683 
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Figure 4. Trajectory analysis of aging hypothalamic microglia. A) Monocle3 pseudotemporal 697 

ordering of the microglia/macrophage cluster (n = 761 cells). Cells are colored by age (top) and 698 

pseudotime (bottom). The number in the circle indicates the pseudotime start point. B) Heatmap 699 

showing modules of spatially restricted genes in the microglia cluster after downsampling (n = 700 

448 cells). In total, 939 genes were clustered by hierarchical clustering. The genes were grouped 701 

into seven modules after dimension reduction and community detection. Modules are named by 702 

the most significantly enriched Gene Ontology (GO) terms, biological process, for module-703 

specific genes using g:Profiler (adjusted p < 0.05 with Benjamini-Hochberg correction). C) 704 

Projection of modules’ aggregate expression onto the UMAP plot for microglia cluster (n = 761 705 

cells). Genes in modules 1-3 have decreased expression along the pseudotime trajectory. Genes 706 

in modules 4-6 have increased expression along the pseudotime trajectory. D)  Left: kinetics plot 707 

showing the relative expression of representative genes for modules 1-6. The lines approximate 708 

expression along the trajectory using polynomial regressions. Right: violin plots of gene 709 

expression using Seurat. Differential expression performed using MAST on non-downsampled 710 

data (* , adjusted p value < 0.05, ***, adjusted p value < 0.001). 711 
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Figure 5.  Xist upregulation is a feature of the aged female hypothalamus. A) Expression of 719 

genes involved in X chromosome inactivation by age and cell type. Differential expression 720 

between young and aged samples was calculated using MAST (* , adjusted p value < 0.05, ***, 721 

adjusted p value < 0.001). B) RT-qPCR of Xist expression in specific brain regions. Xist 722 

expression is significantly higher in the hypothalamus (two sided t test, t = 7.06, df = 3.25, n = 3 723 

per age group, *p adjusted = 0.0179, Bonferroni correction). C) Comparison of the number of 724 

upregulated, downregulated, and non-significant genes arising from the X chromosome or 725 

autosomes in (X2 = 8.7548, df = 2, p-value = 0.01256). D) Violin plots of known X escape genes. 726 

Differential expression between young and aged samples was calculated using MAST (* , 727 

adjusted p value < 0.05, **, adjusted p value < 0.01,  ***, adjusted p value < 0.001). 728 
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Figure 6. Identification of transcriptionally distinct neuronal subtypes. A) UMAP of all 741 

neuronal nuclei. Distinct clusters are identified by color, with identities listed in (C). B) 742 

FeaturePlots highlighting glutamatergic (Slc17a6) and GABAergic (Gad1) cell neuronal clusters. 743 

Color scale indicates expression level. C) Neuronal clusters are labeled according to the top 2 744 

marker genes and ordered based on overall transcriptional similarity. D) Expression of 745 

neuropeptide genes in each cluster. Dot size indicates percent of nuclei expressing the gene, 746 

color indicates intensity of expression.  747 
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Figure 7. Neuronal subtypes exhibit distinct transcriptional changes with age. A) UMAP 763 

plot of young and aged nuclei. B) Strip plot showing DE genes per cluster. Significant genes (FC 764 

> 0.1, padj < 0.05) are colored, non-significant genes in gray. C) Heatmap of GSEA results for 765 

each neuronal cluster. Significantly enriched terms (padj <0.1) are colored according to the 766 

normalized enrichment score.  767 
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Supplementary Figure 1. Quality control metrics for single nuclei data. A) Number of nuclei 785 

per sample. B) Correlation of gene expression (scaled) between each sample. Color reports 786 

Spearman’s correlation. C) Violin plots showing the number of UMIs per nuclei per cluster (left) 787 

and the number of genes nuclei per cluster (right). Number of nuclei per cluster are listed in 788 

parentheses. 789 
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Supplementary Figure 2. Downsampling and quality control for downsampled clusters. A) 807 

Number of nuclei per cell type before (top) and after (bottom) down sampling. B) Quality control 808 

data for the nuclei used for analysis after down sampling. C) Quality control data after down 809 

sampling split by age. D) Relationship between number of nuclei per cluster and the number of 810 

differentially expressed genes. (R2 =0.510 , p < 0.05).  811 
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