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ABSTRACT 
Alterations in metabolism, sleep patterns, body composition, and hormone status are all key 
features of aging. The hypothalamus is a well-conserved brain region that controls these 
homeostatic and survival-related behaviors. Despite the importance of this brain region in 
healthy aging, little is known about the intrinsic features of hypothalamic aging. Here, we utilize 
single nuclei RNA-sequencing to assess the transcriptomes of 40,064 hypothalamic nuclei from 
young and aged female mice. We identify cell type-specific signatures of aging in neurons, 
astrocytes, and microglia, as well as among the diverse collection of neuronal subtypes in this 
region. We uncover key changes in cell types critical for metabolic regulation and body 
composition, as well as in an area of the hypothalamus linked to cognition. In addition, our 
analysis reveals an unexpected female-specific feature of hypothalamic aging. Specifically, we 
discover that the master regulator of X-inactivation, Xist, is elevated with age, particularly in 
hypothalamic neurons. Moreover, using machine learning, we show that levels of X- 
chromosome genes, and Xist itself, are the best predictors of cellular age. Together, this study 
identifies critical cell-specific changes of the aging hypothalamus in mammals, and uncovers a 
novel marker of neuronal aging in females.     
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INTRODUCTION 
While human lifespan has increased dramatically in recent years, improvements in 

healthspan, the period of life in which a person is disease-free, have been more modest1. 

Susceptibility to a host of diseases increases with aging, including diabetes, stroke2, cancer3, and 

neurodegenerative diseases4. Aging is accompanied by changes in body composition, including 

decreased lean muscle mass, loss of bone density, and increased abdominal fat1. Concomitant 

with these changes are alterations in endocrine states, such as decreased sex hormone production, 

and reduced growth hormone and insulin-like growth factor-I5. Endocrine function and 

homeostatic processes, such as energy homeostasis6 and release of sex hormones5, are controlled 

by neuropeptidergic neurons in the hypothalamus. 

 

Nutrient sensing is one of several functions of the hypothalamus that implicates this brain 

region in healthy aging. Specific neuronal subtypes in the hypothalamus respond to circulating 

cues to organize the response to dietary changes through regulation of energy balance, glucose 

homeostasis and growth factor secretion6. Caloric restriction (CR) is one of the most well-

established behavioral interventions that improves lifespan and healthspan in many model 

organisms7. Genetic models that mimic the effects of CR via modulation of energy sensing 

pathways have revealed the mechanistic underpinnings of lifespan extension. For example, in C. 

elegans, the effects of dietary restriction are dependent on the function of neuropeptidergic 

energy sensing neurons; genetic manipulation of energy sensing genes in those neurons is 

sufficient to increase longevity8. Similarly, lifespan extension in the fruit fly Drosophila is 

dependent on specialized neurons called median neurosecretory cells9. In rodents, manipulations 

to the hypothalamus can also alter lifespan. Specifically, brain-specific over expression of Sirt1 

leads to alterations in the dorsomedial and lateral hypothalamus and increases lifespan10. In 

addition, alteration of immune signaling in the mediobasal hypothalamus affects longevity, with 

a reduction in immune signaling promoting longevity11.  

 

Sex differences in lifespan have been documented in many species, including mice12. In 

humans, there is a robust difference in female and male lifespan across countries, with females 

living an average of 4-10 years longer than males13. Intriguingly, interventions that extend life 

span in model organisms do so in a sex-specific manner. For example, caloric restriction (CR) is 
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one of the most robustly studied interventions and its effects have been observed from yeast to 

non-human primates7 Like many interventions, CR has sex-specific effects, with restricted 

females generally living longer than males on the same diet14. Similarly, the brain-specific Sirt1 

overexpression model results in a larger lifespan increase for females when compared to males15. 

However, the aging female brain remains critically understudied, and we know little 

about how areas involved in healthy aging, such as the hypothalamus, change with age in 

females.  

Epigenetic and transcriptional changes are widespread across tissues during aging, 

including in the brain16,17. Key transcriptional factors such as FOXO/DAF-16, NF-kB, and MYC 

function as conserved regulators of these networks and have been implicated in aging11,16,18. 

However, despite a great interest in how changes in transcriptional programs affect aging, our 

understanding of how distinct cellular subtypes change transcriptionally with age remains 

limited. Investigation of how transcriptional programs change in a cell-type specific manner in 

the hypothalamus will provide important insight into the aging process across tissues. Recent 

advances in single-cell RNA-sequencing (RNA-seq) have expanded our understanding of the 

diverse cell types that comprise the hypothalamus19–26. This approach allows the investigation of 

previously unappreciated transcriptional and functional diversity of this brain region. Here, we 

use a single nuclei RNA-seq approach to identify aging-associated transcriptional changes across 

the mouse hypothalamus, thereby capturing the diversity of cell types in this brain region.  

  

RESULTS 

Single nuclei sequencing of the aging mouse hypothalamus 

We employed single nuclei RNA sequencing (snRNA-seq), which is currently the 

optimal method for single cell transcriptomic profiling of the diversity of cell types in the adult 

mammalian brain27,28. We isolated nuclei from the hypothalamus of young (3 month) and aged 

(19-24 month) female mice, with four replicate libraries for each age (Figure 1A). After quality 

filtering, we obtained 40,064 high quality nuclei for analysis: 16,256 and 23,808 nuclei from 

young and aged animals, respectively (Figure S1A). Cellular composition and data quality were 

similar across replicates (Figure S1B-D).  
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Clustering analysis with the Louvain algorithm revealed distinct clusters representing the 

major cell types of the hypothalamus, which we identified based on expression of canonical 

markers (Figure 1B-D). For each individual cluster, we identified the top 10 genes that were 

differentially expressed using the Wilcoxon Rank Sum test (Supplementary Table 1). For 

example, neurons were defined by expression of Syt1, astrocytes defined by Agt and Gja1, 

oligodendrocytes by Olig1 and Plp1 expression, and oligodendrocyte precursor cells (OPCs) 

were identified by expression of Pdgfra. The microglia and macrophage clusters were defined by 

expression of C1qa and distinguished by higher expression of Tmem119 and P2ry12 in the 

microglia cluster (Figure 1C). Less abundant cell types were also observed, including 

ependymocytes (ependymal cells; Ccdc153), pericytes (Flt1), endothelial cells (Clnd5), and 

vascular and leptomeningeal cells (VLMC; Slc6a13). We also observed a distinct cluster of 

tanycytes, which are specific to the hypothalamus and defined by Rax expression. Nuclei in these 

broad categories expressed additional canonical markers associated with their cell type, for 

example, the astrocyte cluster expressed Gfap, further validating the identify of each cluster.  

Cell type diversity is achieved through expression of transcriptional regulators that 

orchestrate cell type-specific gene expression networks. To identify the regulators responsible for 

distinct expression networks across cell types in the hypothalamus, we used SCENIC, a 

regulatory network inference tool29. SCENIC identifies regulons, defined as a transcription factor 

and the genes it regulates, and scores the activity of the regulons in individual cells. Further, it 

provides a regulon specificity score, which indicates whether a given regulon is specific to an 

individual cell type or shared among clusters. In our analysis, we observed strong shared and 

cell-type specific signatures for each cluster. For example, the Dbx2 regulon is strongly enriched 

in the astrocyte cluster (RSS = 0.348), with almost all astrocytes expressing the regulon, 

whereas, the Atf2 and Creb3l1 regulons are enriched in neurons (Figure Supplementary 2A-B, 

Supplementary Table 2) (RSS = 0.639 and 0.626, respectively). Together, this analysis identifies 

the distinct gene expression signatures in the major cell types in the hypothalamus that are 

orchestrated by specific combinations of transcriptional regulators associated with cell type 

identity. 

  

Major cell types of the hypothalamus acquire cell type-specific gene expression changes 

with age  
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We next investigated the changes in gene expression that occur with age in the major cell 

types of the hypothalamus. As expected, aging was not associated with changes in composition 

of this brain region, and each major cell type was similarly represented in young and aged mice 

(Figure S1C-D). To gain a global understanding of how gene expression is altered with age, we 

first performed differential expression analysis on all cells using the Model-based Analysis of 

Single-cell Transcriptomics (MAST)30,31, with a random effect for sample of origin. Using this 

approach, we identified 275 and 342 genes that were upregulated and downregulated with age, 

respectively (padj < 0.05, fold change > 0.1) (Figure 2A, Supplementary Table 3). As an initial 

validation, we cross-checked our results with publicly available bulk microarray data on the 

aging hypothalmus32. Although these data differ from ours in regard to strain and sex, this 

analysis confirmed several changes in our dataset, including downregulation of Gria1, Apoe, 

Camk2a, and Atp1b2 (Supplementary Table 3). Moreover, we confirmed a key finding from 

work on male rats showing that oxytocin binding is decreased in several brain regions with age, 

including the hypothalamus33. Here, we show a reduction in Oxt expression in aged female mice, 

suggesting a reduction of oxytocin signaling is a feature of both male and female aging. 

Interestingly, the most upregulated genes in the MAST analysis included Xist and Tsix, which are 

both long non-coding RNAs involved in X chromosome inactivation34,35, and are female specific.  

Next, we investigated the impact of age on gene expression in each major cell type. 

Neurons, astrocytes, oligodendrocytes, and microglia showed the greatest numbers of 

differentially expressed genes with age (Figure 2B, Supplementary Table 4). Additionally, we 

performed coefficient of variation analysis on the major cell types and observed a significant 

difference between ages, with nearly all types showing in increase with age (Figure 2C). This 

finding suggests that variability in gene expression increases with age in most cell types, which 

likely contributes to cellular dysfunction within the aged hypothalamus.  

To validate our findings and determine the extent to which the changes we observe are 

specific to the hypothalamus, we compared our dataset to a publicly available snRNA-seq dataset 

analyzing the female mouse hippocampus36. Astrocytes, oligodendrocytes, and microglia all 

showed high agreement between the hypothalamic and hippocampal datasets, for example, both 

datasets show significant upregulation of C4b in astrocytes, Apoe and Lyz2 in microglia, and 

Cdh8 and Neat1 in oligodendrocytes (Figure 3A). When we compared the relationship in log2 

fold change of significant (padj < 0.05) genes between the hypothalamus and hippocampus, a 
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statistically significant positive correlation emerges for astrocytes (ρ = 0.78, p < 0.001), 

oligodendrocytes (ρ = 0.61, p < 0.001), and microglia (ρ = 0.85, p < 0.001). Interestingly, in 

contrast to glia, there was less overlap in differentially expressed genes between the 

hypothalamic neurons and hippocampal neurons, and there was little correlation in gene 

expression changes between hypothalamic neurons and hippocampal (ρ = -0.07, p < 0.001). 

While some genes, such as Xist, are upregulated with age in both neuronal subsets, other genes 

are either unchanged or regulated in the opposing direction in the two sets (Figure 3B). For 

example, Phactr1 and Meis2 are among the most significant downregulated neuronal genes in 

the hypothalamic dataset but are not significantly changed with age in the hippocampal dataset 

(padj > 0.05). The genes Rsrp1, Gm26917, and Kcnip4 are upregulated with age in the 

hypothalamus, but downregulated in the hippocampus with age. Intriguingly, the gene Rps29 is 

upregulated in both datasets, in agreement with previously single cell RNA sequencing studies of 

the aged mouse brain37. Together these data suggest that glia share harbor general signatures of 

aging in distinct brain regions, whereas and region-specific signatures are predominant in 

neuronal aging.  

To investigate the cellular processes that are altered with age in the different cell types in 

the hypothalamus, we performed Gene Set Enrichment Analysis (GSEA) using the hallmark 

gene set38 (Figure 2D). We observed unique signatures of aging in each cell type, as well as 

some shared hallmarks of aging. For example, neurons and astrocytes share an under-enrichment 

(negative normalized enrichment score) for the mTORC1 signaling gene set. Astrocytes were 

also under-enriched in genes related to cholesterol homeostasis, which aligns with previous 

research showing a decrease in expression of cholesterol synthesis genes in aged hypothalamic 

astrocytes39. In contrast, neurons displayed alterations in G2M checkpoint genes, which is 

particularly interesting in light of evidence linking Alzheimer’s Disease to aberrant cell cycle 

entry driven through activation of mTORC140. Interestingly, mTORC1 activation in the arcuate 

nucleus of the hypothalamus is reduced in ovariectomized mice41. Thus, mTORC1 under-

enrichment in the aged female hypothalamus represents a key a target for further study into the 

intersection of sex, aging, and neurodegenerative disease.  

Microglia and macrophages function as immune cells in the brain, and both cell types 

show striking cell type-specific gene set enrichments with age (Figure 2D). Macrophages are 

enriched in IL2 STAT5 signaling, IL6 JAK STAT3 signaling, and inflammatory response gene 
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sets. Microglia are enriched in genes related to the interferon alpha response and interferon 

gamma response, and are under enriched in the oxidative phosphorylation gene set with age. 

These data suggest distinct changes in different subsets of immune cells in the aging 

hypothalamus.  

Glial cells, including microglia are critical regulators of neuronal function. To understand 

how the relationships between these cells and neurons are changed with age, we utilized the 

ligand-receptor repository CellPhoneDB42 to infer cell-cell interactions (Supplementary Figure 

3A). Interestingly, we found that loss of ligand-receptor interactions involving growth factors 

was a theme across the cell types studied. For example, in the young astrocyte-neuronal and 

tanycyte-neuronal cell pairs, TGFB2_TGFBR3 was enriched. Both cell pairs lose this 

enrichment with age. Similarly, there is a loss of enrichment in pathways involving FGF9. 

Specifically, while FGF9-FGFR3 and FGF9-FGFR1 are enriched in young astrocyte-neuronal 

and tanycte-neuronal cell pairs, this enrichment is lost with age. The astrocyte-neuronal and 

oligodendrocyte-neuronal pairs also lose enrichment of the FGF9-FGFR2 ligand-receptor 

interaction with age. These factors are involved in diverse processes such as repair, learning and 

memory, and neurogenesis43. Additionally, the aged astrocyte-neuron cell pair loses 

SEMA3A_NRP1 signaling with age, while the microglia-neuronal cell pair loses both SEMA3A-

NRP1 enrichment and SEMA3A-PlexinA4 enrichment. Semaphorin3a is a known player in 

synaptogenesis44. Taken together, the loss of these cell signaling pathways may represent a 

mechanism for alternations in synaptogenesis and neuronal homeostasis in the aged 

hypothalamus.  

 

Aged hypothalamic microglia are heterogeneous, representing a progressive aging 

trajectory   

Microglia are macrophage-like cells found throughout the brain, and are critical for the 

immune response, including release of cytokines and chemokines, antigen presentation, and 

phagocytosis of debris45. Recent studies have revealed gene expression changes and microglial 

activation in the aged brain, which likely contribute to neurodegeneration45. Based on our 

findings that microglial-neuronal interactions involving the Alzheimer’s associated gene APP, as 

well as MIF were enriched in age (Supplementary Figure 3A), we sought additional strategies to 

uncover changes in these cells over time. Using Monocle346, we performed pseudotemporal 
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ordering of nuclei from the microglia and macrophage clusters. The trajectory accurately 

captures the transition from young to aged nuclei, suggesting a gradual progression toward aging 

in this cell type, and a significant increase in the proportion of aged nuclei across pseudotime 

(Figure 4A-B). To confirm this analysis, we freshly isolated CD11b+ hypothalamic microglia 

from mice at three timepoints (3, 12, and 24 months) and performed qPCR for candidate genes 

discovered in the pseudotime analysis. This experiment recapitulated specific genes trajectories 

(Supplementary Figure 4A), validating this approach.  

Since changes in microglia have been implicated in both physiological aging and 

neurodegeneration, we examined how disease associated microglia genes (DAM genes) change 

as a function of pseudotime. We aggregated the expression of key genes from three microglia 

gene sets identified in the literature47,48: homeostatic microglia (homeostatic), TREM2 

independent stage 1 DAM (DAM 1), and TREM2 dependent stage 2 DAM (DAM 2), and plotted 

the aggregated expression as a module score along the pseudotime trajectory. Overall, there was 

a decrease in the module score for the homeostatic module over pseudotime suggesting a loss of 

maintenance of healthy microglia over time. In contrast, we observed an increase in the DAM 1 

disease module score near the end of pseudotime (Figure 4C). The DAM 2 module does not 

seem to play a role in steady-state hypothalamic aging, as the module score remains low 

throughout pseudotime.  

To further understand the role of these gene modules in aging hypothalamic microglia, 

we visualized gene expression across psuedotime and through real time (Figure 4D). While 

young microglia generally cluster earlier in pseudotime (pseudotime 0.0 through 1.5), aged 

microglia expressing these genes are distributed throughout pseudotime. Thus, hypothalamic 

microglia from aged animals have increased heterogeneity representing a progressive aging 

trajectory. While a subset of aged microglia retaining a youthful gene expression signature, many 

aged microglia highly express disease associated genes.  

 To fully capture gene expression changes along the trajectory, we performed Moran’s I 

test on microglia and macrophage genes, and found 2,112 statistically significant trajectory-

dependent genes (Supplementary Table 5). To characterize their expression dynamics along 

pseudotime, we applied RVAgene49, an autoencoder neural network framework to reconstruct 

and smooth the pseudotime-dependent genes expression. We then visualized the RVAE decoded 

expression along pseudotime in a heatmap, and manually grouped the genes into four modules 
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according to their pseudo-temporal expression patterns (Figure 4E). For example, genes in the 

module 1 are highly expressed in early pseudotime while genes in the module 4 are expressed in 

late pseudotime. To understand the biological processes enriched in each module, we performed 

GO analysis (Figure 4F). Interestingly, gene modules are transitioning through pseudotime from 

positive regulation of biological processes to immune responses, and finally to the amyloid-beta 

clearance and viral infection corresponding to known phenotypes of normal aging.   

 

Age-associated changes in X-inactivation genes is a sexually dimorphic feature of aging  

  

Our initial differential expression analysis revealed the unexpected finding that the long 

non-coding RNA Xist is one of most highly upregulated genes in the female hypothalamus with 

age (Figure 3A). Differential expression analysis of each major cell type indicated upregulation 

of Xist with age in astrocytes, macrophages, microglia, neurons, oligodendrocytes, as well as 

tanycytes (Figure 5A), and we observed upregulation of Xist in the aging hippocampus as well36 

(Figure 3A-B). Xist is a key player in X chromosome inactivation in females and is encoded on 

the X-inactivation center (XIC), which harbors additional non-coding RNA genes involved in the 

same process34,35,50. Intriguingly, we observed age-related upregulation of related RNAs in some 

cell types:  Ftx, Jpx, and, Tsix (Figure 5A). We validated the upregulation of Xist using RNA 

extracted from independent tissue samples of different brain regions (hypothalamus, cerebellum, 

cortex and olfactory bulb). Strikingly, although Xist trended up in all brain regions we tested, the 

upregulation only reached significance in the female hypothalamus, revealing a novel feature of 

female hypothalamic aging (Figure 5B). As expected, we did not detect Xist expression in adult 

male mice, and there was no upregulation of this gene with age in males (Figure 5B). We further 

confirmed this finding using RNAScope to detect the Xist transcript in situ in coronal sections 

through the mouse hypothalamus. The average intensity of Xist expression in aged female 

hypothalamus (25 months) was significantly higher than in young female hypothalamus (3 

months) using this method (Figure 5C).  

Although most genes on the inactive X chromosome are not expressed in females, a small 

number of genes are well-known to “escape” inactivation, and are expressed from both X 

chromosomes. These X escape genes are species and tissue specific51,52. In the mouse, 14 genes 

escape X inactivation in brain tissue51.This list includes both Xist, and, Ftx, which have increased 
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expression with age in our dataset. To determine if increased XIC gene expression with age 

might be affecting escape genes, we interrogated expression of genes known to escape X 

inactivation in mice. We compiled a list of genes that are both known to escape X inactivation in 

any tissue context in mice and are expressed in our dataset. We found that although changes to 

XIC genes seems to be uniform across cell types in our data, age-related changes to expression 

of X escape genes are cell type-specific (Figure 5D). For example, in astrocytes, Idh3g is 

downregulated with age, while Firre, Plp1, and Tmsb4x are upregulated. In neurons, Gprasp1 

and Huwe1 are downregulated with age, while 5530601H04Rik and Kdm5c are upregulated. Of 

the 39 X escape genes expressed in the dataset, 15 were differentially regulated with age in at 

least one cell type. These data suggest global changes to X chromosome regulation may be a 

feature of female hypothalamic aging.    

Finally, to understand whether the changes in Xist we observed in mouse aging might be 

related to age-associated pathologies humans, we assessed changes in XIST expression between 

control and Alzheimer’s Disease human brain samples across two brain regions using publicly 

available snRNA-seq datasets53,54. Using MAST with a random effect for sample of origin, we 

compared XIST expression across all cells from females in two independent datasets (Figure 5E). 

Strikingly, XIST is upregulated in human entorhinal cortex in women with Alzheimer’s, which is 

one of the earliest and most affected regions in this disease (log2 fold change = .574, padj < 

0.001, n = 3942 nuclei). In contrast, nuclei derived from human prefrontal cortex shows no 

changes in XIST expression between control and Alzheimer’s Disease samples (padj > 0.05, n = 

26212 nuclei). Thus, changes in XIST expression may be a brain-region specific feature of 

Alzheimer’s Disease in female patients.   

 

Neuronal subtype specific changes during aging 

 Hypothalamic neurons are highly diverse and function to orchestrate a wide range of 

processes and behaviors necessary for organismal survival55. This diversity of function is 

accomplished by cell type-specific gene expression programs, with each area of the 

hypothalamus containing a range of transcriptionally dissimilar neuronal subtypes19–26. Indeed, 

even neurons expressing the same neuropeptide gene may comprise functionally distinct 

subpopulations6. To address this complexity, we sub-clustered the neuronal nuclei to identify 

transcriptionally distinct populations. This analysis revealed 35 transcriptionally distinct clusters 
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(Figure 6A), and broadly separated the nuclei into inhibitory (Gad1 expressing GABAergic) or 

excitatory (Slc17a6/vGLUT2 expressing glutamatergic) identity (Figure 6B). The 35 clusters 

represent both known and undefined neuronal subtypes (see Supplementary Table 6 for markers 

of cluster identity). To discern the relationship between the clusters, we organized them 

according to transcriptional similarity using a Cluster Tree analysis (Figure 6C, left). Neurons 

with similar functions did cluster closely to one another. For example, some AgRP/NPY neurons 

and POMC neurons may arise from common progenitors6, and the Sst/Npy (29, expressing Agrp) 

and Pomc/Tac2 (31) clusters are near to one another on the cluster tree.   

 We next investigated expression of specific neuropeptide genes across the clusters to 

functionally define the distinct neuronal subpopulations (Figure 6C, right). These clusters 

generally correspond to known cell types expressing one or two hallmark neuropeptides. We 

were able to identify neuronal clusters expressing genes encoding neuropeptides controlling 

processes which are altered with age (Supplementary Table 7). For example, we observed 

significant changes in clusters associated with feeding and energy homeostasis56, including those 

expressing the peptides agouti-related peptide (Agrp), Cocaine and amphetamine related 

transcript (Cartpt), Cholecystokinin (Cck), neuropeptide Y (Npy), proopiomelanocortin (Pomc), 

galanin (Gal), and hypocretin/orexin (Hcrt). Based on neuropeptide gene expression, these 

clusters most likely represent known neuronal populations with defined functions. For example, 

cluster Sst/Npy (29) is most likely comprised of AgRP/NPY neurons from the arcuate nucleus of 

the hypothalamus.  

 To further confirm neuronal subtype identity, we compared our dataset with publicly 

available spatial transcriptomic data from cell2location57. While mRNA signatures from broad 

cluster categories such as astrocytes (Supplementary Figure 5) do not show restriction to one or 

more hypothalamic subnuclei, the mRNA signatures of specific neuronal subclusters are 

localized in discrete locations. (Figure 6D, S4A-B). For example, the Pomc/Tac2 (31) cluster 

localizes to the most ventral portion of the coronal section (Figure 6D). Interestingly, two 

clusters expressing Cartpt (15. Cartpt/Pmch and 26. Cartpt/Ebf1) show little spatial overlap 

despite their shared neuropeptide profile, highlighting the strength of this method to define cell 

types both spatially and transcriptionally. Thus, this spatial analysis further validates the identity 

and function of the identified neuronal subclusters.  
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 We next performed differential expression on clusters in which there were at least 20 

nuclei per condition (Figure 7A, Supplementary Table 8). For each cluster, we also performed 

GSEA using the KEGG gene set. Most clusters tested exhibited significant transcriptional 

changes with age, although the number of DE genes varied by subtype. We observed that 

clusters expressing peptides involved in feeding and energy homeostasis were particularly 

altered with age in this analysis (such as 15. Cartpt/Pmch, 34 DE genes; 29. Sst/Npy, 65 DE 

genes; and 31. Pomc/Tac2, 42 DE genes). Among the many transcriptional changes found in the 

Pomc/Tac2 cluster (31) there was an intriguing downregulation of Pcsk1n. Pcsk1n encodes 

Proprotein Convertase Subtilisin/Kexin Type 1 Inhibitor, also called proSAAS, a propeptide 

which inhibits processing of other neuropeptides such as POMC58. This gene was also 

downregulated in a cluster of neurons expressing Cartpt (Cartpt/Ebf1 (26)). Interestingly, in a 

different Cartpt expressing cluster (Cartpt/Pmch (15)), the gene is upregulated with age, 

suggesting that changes to neuropeptide processing pathways with age are cell-type specific.  

Changes to expression of neuropeptide genes was also evident, with upregulation of Agrp 

in cluster Sst/Npy (29), upregulation of Cartpt in Cartpt/Ebf1 (26), and downregulation of Cck in 

two Cck+ subclusters (Synpr/Tafa1 (23) and Rnf220/Ntng1 (2)). Thus, for the first time, our 

dataset links neuron-specific gene expression changes in the hypothalamus with key features of 

organismal aging, such as weight and metabolic changes. 

Based on expression of specific peptide genes (Adcyap1, Cartpt, Cck) and other 

established marker genes (Foxb1, Cpne9)59, we identified three clusters representing the medial 

mammillary nucleus of the hypothalamus: Rgs6/B230323A14Rik (3), Dgkb/B230323A14Rik 

(4), and Slc1a3/Apoe (5). This region is notable because unlike most areas of the hypothalamus, 

it is involved in memory via connections with the hippocampus60. While cluster Slc1a3/Apoe (5) 

had too few cells to meet our criteria for performing differential expression, both cluster 

Rgs6/B230323A14Rik (3) and Dgkb/B230323A14Rik (4) were significantly altered with age 

(Figure 7A). Gene set enrichment analysis using the KEGG gene set revealed enrichment for 

genes related to Alzheimer’s disease, cardiac muscle contraction, Huntington’s disease, oxidative 

phosphorylation, Parkinson’s disease, and the ribosome. There was an additional de-enrichment 

in genes related to glycosylphosphatidylinositol (GPI)-anchor biosynthesis and glyoxylate and 

dicarboxylate metabolism (Figure 7B).  The identification of changes in this brain region is 

significant, as they may contribute to cognitive impairments with age. 
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Through our gene set enrichment analysis, a shared aging signature emerged among 

many hypothalamic neuronal subtypes. This included enrichment in pathways related to 

Alzheimer’s Disease (14 clusters), Huntington’s Disease (11 clusters), oxidative phosphorylation 

(19 clusters), Parkinson’s Disease (17 clusters), and the ribosome (21 clusters) (Figure 7B). A 

notable exception to this signature is the cluster most likely representing corticotropin releasing 

hormone (CRH) neurons of the paraventricular nucleus of the hypothalamus (Crh/Gpc5 (27)). 

CRH neurons are an integral component of the hypothalamic-pituitary-adrenal axis in the stress 

response61. Decreased CRH has been studied for several decades as a potential hallmark of 

Alzheimer’s Disease62, and CRH itself has been shown to be neuroprotective against Aβ 

toxicity63. In cluster Crh/Gpc5 (27) of our dataset, gene sets related to Alzheimer’s Disease, 

Huntington’s Disease, Oxidative Phosphorylation, Parkinson’s Disease, Protein export, and 

Ribosome were all strongly under-enriched (Figure 7B), suggesting that this neuronal subtype 

has a distinct disease-associated expression signature compared to other neurons. Together, these 

data highlight for the first time the hypothalamic transcriptional changes unique to individual 

neuronal subtypes or common across neurons, which may contribute to age-related 

neurodegenerative disease.  

Finally, we sought to understand the role of Xist in defining the aged neuronal state. To 

do so, we tested whether expression of X chromosome genes was sufficient to predict neuronal 

age in our dataset (Figure 8A). We trained eight different supervised machine learning models to 

classify neurons as either young or aged. Based on the accuracy score (Figure 8B), the XGBoost 

classifier (xgbc64) outperformed others with 77.8 ± 0.6224% accuracy. We then fine-tuned the 

model to optimize hyperparameters and retrained it on new data splits across 50 random states to 

measure the uncertainties due to splitting and the non-deterministic model. The confusion matrix 

(Figure 8C) and the area under the ROC curve (ROC AUC) (Figure 8D) confirmed model 

performance. Interestingly, when we randomly shuffled the feature “Xist expression”, the model 

performance dropped dramatically down to the near-baseline level (Figure 8E). We then applied 

Shapley additive explanations (SHAP)65 to further interpret the predictions and rank the features 

by importance. Consistent with our findings, Xist was the most important feature in the 

prediction, followed by the sum of all genes detected in the dataset (Figure 8F). Local feature 

importance of two randomly selected individual neurons (young and aged) also showed that Xist 

had the most significant impact on driving the model prediction (Figure 8G). These data suggest 
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that Xist upregulation is a key feature of hypothalamic neuronal aging, and may predict female 

neuronal aging in the hypothalamus.  

While comparing our dataset to hippocampal data, we noted that Xist is highly 

upregulated with age in both brain regions. To understand the role of Xist and the X chromosome 

in aging across brain regions, we tested whether X chromosome genes were sufficient to predict 

cellular age in the hippocampus. We reran the xbgc model using snRNA-seq data from female 

mouse hippocampal neurons (Figure 3A-Neuron, Supplementary Figure 6). Although overall 

gene expression changes with age in the hypothalamus and hippocampus do not correlate (Figure 

2A), X chromosome gene expression is still sufficient to predict cellular age with 82.5 ± 0. 

7080% accuracy in hippocampal neurons. Interestingly, Xist was the second most important 

predictor of age, based on permutation importance and SHAP (Supplementary Figure 6C-D), 

confirming Xist upregulation as a shared feature of neuronal aging across two brain regions.  

 

DISCUSSION 

In this work, we used single nuclei RNA-seq to identify the age-associated transcriptional 

changes in the mouse hypothalamus. This brain region is critical for the regulation of 

physiological homeostasis, including sleep, circadian rhythms, feeding, and metabolism. These 

functions are well known to be disrupted during aging, and our findings implicate widespread 

transcriptional changes concomitant with physiological changes. 

 

Our approach successfully captured the major cell types in the brain, as well as 

hypothalamus-specific cell-types such as tanycytes. We found that cellular subtypes in this 

region acquire distinct aging signatures, and discovered that increased transcriptional 

heterogeneity is a common feature across all cell types with age. Consistent with our findings, 

age-related transcriptional alterations have been observed in aging human brains and increased 

transcriptional noise is thought to be a hallmark of aging. Our finding that different neuronal 

subtypes have distinct aging signatures is consistent with recent reports identifying differential 

susceptibility to neurodegeneration66. Identification of the transcriptional signatures involved 

may pave the way for therapeutics targeted at subpopulations most susceptible to dysregulation 

with age.  
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We observed striking changes in the microglial population with age. Microglia are 

resident immune cells in the brain, and previous research has shown that microglia-mediated 

inflammation in the hypothalamus can affect lifespan11. By utilizing trajectory inference 

analysis, we uncovered that while some aging microglia retain features of young cells, the 

population shows a progression toward an aged phenotype based on distinct gene expression 

modules. Interestingly, disease-associated microglia genes such as Apoe change throughout both 

age and pseudotime.  

 

 Sex differences in aging have been observed across taxa, including in mice12,13. In 

mammals, females generally live longer than males12, and many aging interventions such as CR, 

are more effective in females13,14. In addition, the sexually dimorphic response to aging 

interventions appears to be a conserved phenomenon, with female Drosophila responding more 

strongly to dietary restriction paradigms than males67, and hermaphroditic C. elegans responding 

more strongly to DR than males68. In mice, males and females differ in regard to sex 

chromosome content (males are XY and females are XX) and the presence of gonadal hormones 

such as higher androgens in males and estrogens in females. Interestingly, X chromosome 

content has been linked to longevity, and the presence of two X chromosome contributes to 

increased longevity regardless of hormonal status69. This study from the Dubal lab was 

performed using the four core genomes mouse line, in which the Sry gene (which induced testes 

development) exists on an autosome rather than the Y chromosome, allowing for chromosomal 

sex to be disambiguated from gonadal sex/hormone status. In our study, we uncover a potential 

mechanism by which the X chromosome affects aging. We observed widespread upregulation of 

Xist in aged female animals, as well as upregulation of other XIC genes including Tsix, Jpx, and 

Ftx. Intriguingly, this increased expression was highly prominent in neurons, although 

upregulation of Xist in was observed in oligodendrocytes, astrocytes, and tanycytes as well. 

Strikingly, in a machine learning algorithm, Xist expression was the most important variable in a 

model to classify whether a hypothalamic neuron was young or aged. Together, our findings 

reveal a novel feature of aging in the female brain. Moreover, recent research suggests a general 

role for long non-coding RNAs in the maintenance of chromatin structure70, and previous single 

cell RNA sequencing studies of the aged brain identify upregulation of long non-coding RNAs 

such as Malat1 as a feature of aging37. Together, this work suggests that that understanding the 
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mechanisms and consequences of Xist upregulation in aging may provide novel insight into sex 

differences in aging.  

 

 In summary, our study reveals the major transcriptional features of hypothalamic aging. 

We observed transcriptional variation across cell types, cell-type specific aging signatures, and 

novel features of aging in females. Understanding how individual populations of cells in this 

region contribute to overall loss of homeostasis with age will be vital to identifying treatments 

for aging and age-related disease.  

  

 
METHODS 
Animals 
Single nuclei isolation 

Young (3 month) and aged (19-24 month) C57/Bl6 female mice were obtained from the 
National Institute on Aging. Mice were housed and used according to protocols approved by 
Brown University and in accordance with institutional and national guidelines. Animals were 
exposed to male bedding 3 days before sacrifice to sync estrous cycle. Animals were sacrificed at 
Zeitgeiber time ZT2-ZT3.  
 
 
Single nuclei RNA-sequencing 

In order to reduce noise stemming from differences in estrous state, two whole 
hypothalamuses were pooled into each biological replicate, for a total of two replicates for the 
young and aged conditions. Nuclei extraction was performing using the Nuclei Isolation Kit: 
Nuclei PURE Prep Kit (Millipore Sigma) according to the manufacturer’s instructions with the 
following modifications: for each sample, two hypothalamuses were dissected out of the animals 
and rinsed in cold PBS. Tissue was transferred using a transfer pipette into a refrigerated Dounce 
homogenizer with 5 mL of lysis solution following kit instructions. Tissue was homogenized 
with the Dounce B and the lysate was transferred into a 15 mL falcon tube through a 40-micron 
filter. The sucrose purification step was performed with the following modifications: half the 
volume of all reagents was used to account for the small tissue sample sizes, an SW34 rotor was 
used, and samples were spun for 45 minutes at 30,000 X g (13,000 rpm) at 4 °C. Nuclei were 
counted using a hemocytometer, and 5000 cells per sample were loaded onto the Chromium 
Single Cell 3′ Chip (10x Genomics) and processed with the Chromium Controller (10x 
Genomics). Samples Young _1, Young_2, Aged_1 and Aged_2 were prepared using the 
Chromium Single Cell 3′ Library & Gel Bead kit v2 according to manufacturer’s instructions. 
Samples were sequenced at GENEWIZ, Inc on an Illumina HiSeq, with a target of 50,000 reads 
per sample. The Aged_1 and Young_2 samples underwent an additional round of sequencing to 
obtain sufficient read depth. Samples Young_3, Young_4, Aged_3, and Aged_4 were prepared 
with the Next GEM Single Cell 3ʹ Reagent kit (10x Genomics) and sequenced at Genewiz on an 
Illumina NovaSeq. 
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Quality control, data processing and analysis 
We performed sequence alignment to the mm10 genome (2020) using the CellRanger 

(cellranger/6.0.0) software from 10x Genomics with the –include introns flag. The resulting 
feature-barcode matrices were read into R version 4.1.0, excluding any nuclei expressing fewer 
than 200 genes, and any gene expressed in fewer than three nuclei. 
 

Filtering and visualization were performed using Seurat (4.0.3)71. For samples sequenced 
on an Illumina HiSeq, nuclei with fewer than 200 or more than 3000 features were filtered out. 
For samples sequenced on the NovaSeq, nuclei with fewer than 200 or more than 7500 features 
were filtered out. Similarly, nuclei with greater than 10% mitochondrial mapping were removed, 
resulting in 23,808 nuclei in the aged condition, and 16,256 nuclei in the young condition. 
Integration of the datasets was performed using the IntegrateData function on 5000 variable 
features. The number of nuclei, unique molecular identifiers, and unique genes per sample are 
reported in Supplementary Figure 1. To assign identities to clusters, the FindAllMarkers() 
command with default parameters was used. This finds the top genes that define a cluster 
identity. We named each cluster using the top 2 genes to come out of the FindAllMarkers() 
analysis.  

Differential expression was performed using MAST(1.18.0)30,31, with random effect for 
sequencing depth and sample of origin69. Genes were considered significant if the adjusted p-
value was less than 0.05, and the log2 fold change was greater than 0.1 or less than -0.1. For re-
analysis of publicly available data, raw cell/count matrices were downloaded, and data was 
reprocessed according to above workflow. MAST was performed with random effect for sample 
of origin.  
 
Gene Set Enrichment Analysis 

Gene Set Enrichment Analysis was performed using the fgsea package (1.18.0)38 using 
the Hallmark gene set list and KEGG gene set list from MSigDB (version 7.2.)72. For each 
cluster, genes were ranked by log2 fold change after MAST analysis, and the analysis was 
performed using the fgseaMultilevel command with default settings and seed set at 1000. Gene 
sets were considered to be enriched if the adjusted p value was less than 0.1. Conversions 
between mouse and human annotation was performed using biomaRt (2.48.2).  
 
Trajectory inference and analysis using Monocle3 

To infer the aging process for the microglia/macrophage clusters (n = 1121 
nuclei) generated in Seurat, we applied Monocle346,59. Monocle3 uses dimensionality reduction 
to place single cells in a 2D space, removes batch effects by mutual nearest neighbor alignment, 
and connects single cells to construct a trajectory in a semi-supervised way. For the 
microglia/macrophage cluster, we use the integrated Seurat object with no further batch 
correction or dimensionality reduction in Monocle3. We subsetted the microglia and macrophage 
cluster and programmatically specified the root of the trajectory by selecting the node most 
enriched for young cells. The trajectory and its direction calculated by Monocle3 are in 
agreement with the distribution of young and aged cells. Spatially differential expression 
analysis along the trajectory was performed with Moran’s I test in Monocle3, and selected genes 
with q < 0.05 as trajectory-dependent genes (2112 genes). The set of genes were grouped into 
four modules according to its RVAE decoded expression49 along the trajectory.  
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Functional enrichment analysis 
enrichR73 3.0 was applied to perform the functional enrichment analysis of 2112 genes in 

individual modules, resulting in lists (“4_modules_q_moranI”) of statistically significant 
enriched terms (adjusted p < 0.05 with Benjamini-Hochberg correction) for individual modules. 
We checked the gene sets database GO_Biological_Process_2018, 
GO_Cellular_Component_2018, and GO_Molecular_Function_2018. We kept GO terms with p 
< 0.05, and visualized the 10 most significant terms for each module and visualized in the 
dotplot. The python package RVAgene (version 1.0, in python version 3.9.6 with PyTorch 
version 1.9.0) recurrent variational autoencoder (RVAE) implementation was used to decode the 
trajectory-differentially expressed genes (t-DEGs, n=2112) along the pseudotime trajectory. 
Expression was averaged in individual time bins, and then rescaled to the value in [-1,1] and 
input to RVAgene. For the neural network, the following parameters were used: symmetrical 
architecture with two hidden layers (48 nodes per layer) and two latent variable dimensions. The 
output reconstructed trajectory for the t-DEGs was used to plot the heatmap.  
 
Single-Cell rEgulatory Network Inference and Clustering (SCENIC) 
 RNA counts from samples Young_3, Young_4, Aged_3 and Aged_4 were exported into 
a loom file using SCopeLoomR_0.11.0. The standard pySCENIC workflow was run using 
Brown University’s cloud computing resource. The workflow was completed 50 times, and the 
resulting loom files were loaded back into R. Only regulons and genes within the regulons 
appearing 10 out of 50 times or more were retained for further analysis. AUCell analysis was 
performed in R using SCENIC_1.2.4 and AUCell_1.14.0. Using the previously defined regulons, 
AUCell analysis was performed on all cells from the dataset following the default pipeline. For 
binarization of regulons, default thresholds were used. Regulon specificity scores were generated 
using the calcRSS() command.  
 
CellPhoneDB 

RNA counts for young and aged datasets were analyzed separately to allow for 
comparison. Conversions between mouse and human annotation was performed using biomaRt 
(2.48.2). CellPhoneDB (version 2.1.7) was run in a conda environment (anaconda/2020.02) 
using the statistical_analysis method with 1000 iterations and a .1 threshold. For visualization in 
R, only ligand-receptor pairs in which direction could be inferred were retained for analysis.  
 
Microglia isolation and RT-qPCR analysis 

Young (2-3 month), middle aged (8-13 month), and aged (20-24 month) C57/Bl6 wild 
type and POMC-EGFP reporter mice (Jax Stock No: 009593) were housed and used according to 
protocols approved by Brown University and in accordance with institutional and national 
guidelines. Animals were sacrificed at ZT4. For each biological replicate, four animals were 
pooled, with genotypes and estrous state balanced across conditions. Tissue was dissociated with 
the Adult Brain Dissociation Kit (Miltenyi Biotec, # 130-107-677) according to manufacturer’s 
instructions. Dissociated tissue was incubated CD11b MicroBeads (Miltenyi Biotec, #130-049-
601) for fifteen minutes at 40C. Labeled cells were isolated using Miltenyi Biotec MS columns 
(#130-042-201) on the OctoMACS Separator. RNA was purified using the RNeasy micro kit 
(#74004) and cDNA was generated with the High-Capacity Reverse Transcription Kit (Applied 
Biosystems #4374966). A negative control (-RT) for each sample was also generated by 
excluding the Multiscribe Reverse Transcriptase component of the reaction. 
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Cell2location 
 Cell2location is a Bayesian model that uses snRNAseq cell type signatures to infer cell 
types in Visium spatial transcriptomics by decomposing mRNA counts in each Visium voxel 
into cell types. We performed the three main steps in the cell2location workflow: estimate 
reference expression signatures of cell types using our dataset, map the learned cell type 
signatures onto the slides, and performed downstream analysis including Pearson correlation, 
visualization, and NMF.  The code, model parameters and training evaluations can be found in 
the jupyter notebooks in our github repository. In brief, we used the default parameters to train 
the cell2location model. 
 
Neuronal age prediction using machine learning. 
 Neuronal nuclei (25,002) were selected for young or aged classification. All genes were 
annotated with their chromosomal location. For each neuron, one categorical feature (neuronal 
subtype) and 281 numerical features were used for machine learning: 278 X chromosome genes 
(mean expression > 0.1 read per cell and detected in > 3,000 nuclei), aggregated X chromosome 
gene expression “x_sum”, aggregated all gene expression “sum”, and their ratio “x_prop”. The 
pipeline and functions were implemented in Scikit-learn74. For data splitting, 20% of nuclei were 
first split into the testing set, and the rest 80% were further split into training and validation sets 
using 5 fold cross-validation, resulting in train-validation-testing =  64-16-20. For preprocessing, 
OneHotEncoder was applied for the categorical feature, and StandardScaler was applied for the 
numerical features.  
 

 
 
Eight models (above) were tested over ten different random states. The best hyperparameters 
were selected using GridSearchCV, and the model performance was evaluated using accuracy 
score of the test sets. XGBoost Classifier64 was selected, fine-tuned (max_depth = 5 with early 
stop), and then retrained on new splits across 50 different random states. The baseline accuracy 
was 0.596 ± 0.00765, while the model accuracy was  0.778 ± 0.006224. Model interpretation 
was performed using permutation feature importance and SHAP65. 
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 For the hippocampus dataset, neuronal nuclei (11,204) were selected. For each neuron, 
253 X chromosome genes (mean expression > 0.1 read per cell and detected in > 1,000 nuclei), 
aggregated X chromosome gene expression “x_sum”, aggregated all gene expression “sum”, and 
their ratio “x_prop” were used as features for model training. The rest of the processes were the 
same as above except that the max_depth = 4 for the final 50 different random states. The 
baseline accuracy was: 0.594 ± 0.009167, while the model accuracy was : 0.825 ± 0.007080. 
 
Data and code availability 
  Fastq files for raw single nuclei RNA sequencing and Seurat object were deposited at 
GEO accession XYZ. Code available https://github.com/Webb-
Laboratory/Hajdarovic_And_Yu_et_al_2022. Publicly available datasets are available on GEO: 
Hippocampal single nuclei data, GSE161340; human entorhinal cortex data, GSE138852 
(samples AD3-AD4 and Ct1-Ct2); human prefrontal cortex data, GSE174367 (samples 17, 19, 
37, 43, 45, 50, 66, 90); Spatial data, ArrayExpress E-MTAB-11114. 
 
 
Whole brain RNA isolation and cDNA generation and qRT-PCR 

Hypothalamus, olfactory bulb, cerebellum, and cortex were dissected in cold PBS from 
the brains of 3-month-old and 24 month old C57Bl/6 mice (n=6, 3 male and 3 female for each 
age) and snap frozen in liquid nitrogen. RNA was purified using the Qiagen RNeasy Lipid 
Tissue Mini Kit (Qiagen #74804). cDNA was generated using 500 ng of RNA and the High-
Capacity Reverse Transcription Kit (Applied Biosystems #4374966). A negative control (-RT) 
for each sample was also generated by excluding the Multiscribe Reverse Transcriptase 
component of the reaction. qPCR reactions were completed using the PowerUpTM SYBR TM 
Green Master Mix (Invitrogen #A25918). Stock primers were diluted to 10 mM in sterile water, 
and cDNA was diluted 1:5 in sterile water (whole brain) or 1:3 in sterile water (microglia). 
Expression levels of the genes of interest (see table below) were quantified using a ViiA 7 Real 
Time PCR System with QuantStudio software. For whole brain, Actin was used as a 
housekeeping gene. For microglia, Itgam (CD11b) was used.  Each sample, water control, and -
RT control sample was run in triplicate for each primer set. CT values were normalized to the 
housekeeping gene, and ΔCT values were plotted as 2- ΔCT. Technical replicates were averaged 
per biological replicate. 
 
Gene F sequence R sequence 
Actin  TGTTACCAACTGGGACGAC

A 
CTCTCAGCTGTGGTGGTGAA 

Apoe GATCAGCTCGAGTGGCAAA CTCTGCAGCTCTTCCTGGAC 
Arhgap15 AAAGCCAAAATTGCAGATG

G 
GAGCTTGCTGCTTGGAGTCT 

Cst3 CTGACTGTCCTTTCCATGAC
C 

TGCAGCTGAATTTTGTCAGG 

Cx3cr1 AAGCTCACGACTGCCTTCTT CCGGTTGTTCATGGAGTTGG 
Itgam 
(CD11b)  

CTTCTGGTCACAGCCCTAG
C 

TGGACCACACTCTGTCCAAA 
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Lyz2 ACTGCTCAGGCCAAGGTCT
A 

TGCTCTCGTGCTGAGCTAAA 

Xist GGTTCTCTCTCCAGAAGCT
AGGAAG 

TGGTAGATGGCATTGTGTATT
ATATGG 

 
 
 
 
FIGURE LEGENDS 
Figure 1. Single-nuclei analysis of the hypothalamus. A) Schematic detailing the experimental 
workflow from dissection through analysis. B) Uniform Manifold Approximation and Projection 
(UMAP) plot of all 40,064 nuclei used for analysis. Clustering analysis revealed 11 broad 
categories of cell type identity. C) UMAP plots of all nuclei labeled for expression of cell type-
specific markers. Syt1, neurons; Agt, astrocytes; Plp1, oligodendrocytes; C1qa, 
microglia/macrophages. Color scale indicates level of gene expression. D) Heatmap highlighting 
expression of cell type markers in each cluster, a maximum of 500 nuclei per cluster are 
displayed. 
 
 
Figure 2. The aging hypothalamus harbors cell type-specific transcriptional changes. A) 
Volcano plot showing overall differential expression of genes between all young and aged 
nuclei. Significant genes in purple (adjusted p value < 0.05, FC > 0.1). Genes with p value of 
zero given arbitrarily small p value for plotting purposes. B) Strip plot showing DE genes in each 
cell type. Significant genes (adjusted p value < 0.05, FC > 0.1, MAST analysis with random 
effect for sequencing depth and sample of origin) in color, nonsignificant genes are in gray. Top 
5 upregulated and top 5 downregulated genes per cluster labeled. C) Coefficient of variation 
analysis for each cellular subtype. In almost all subtypes the CV is significantly higher in the 
aged condition (Wilcoxen Test with Bonferonni correction, *** padj < 0.001, ** padj < 0.01 D) 
Heatmap showing GSEA enrichment analysis for Hallmark terms. Color indicates normalized 
enrichment score. Significant gene sets calculated as adjusted p value < 0.1.  
 
Figure 3. Shared and region-specific aging signatures between hypothalamus and 
hippocampus. A) Spearman’s rank correlation of log2 fold change in significant (padj < 0.05) 
genes shared between the hypothalamus and hippocampus. Correlation of expression change in 
neurons is very weakly negatively correlated (ρ -0.069, p <0.001) while gene expression changes 
in other cell types are strongly positively correlated: astrocyte (ρ = 0.78, p < 0.001), 
oligodendrocyte (ρ = 0.61, p < 0.001), microglia (ρ = 0.85, p < 0.001). B) Scatterplot of genes 
significant in at least one dataset (padj <0.05, log2 fold change > 0.1). Color indicates whether a 
gene is significant in both datasets (purple), hypothalamus only (blue) or hippocampus only 
(red). Shading indicates genes that are changing in the same direction for both datasets.   
 
 
Figure 4. Trajectory analysis of aging hypothalamic microglia. A) Monocle3 pseudotemporal 
ordering of microglia and macrophage clusters (n = 1121 nuclei) defining a single trajectory 
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from young to aged nuclei. Nuclei are colored by age (top) and pseudotime (bottom). B) 
Scatterplot showing the proportion of aged nuclei along the pseudotime timeline in 20 time bins 
(sized 0.15 per time bin). Pearson correlation of the proportion of aged nuclei and pseudotime 
timeline, R = 0.89 and p-value = 2.6e-7, 95% confidence interval shown. C) Plot showing the 
module expression score of three microglia states (homeostatic, DAM 1, and DAM 2). The 
darker lines are the local regression result for individual time bins (20 total), with the gray 
shadow depicting the 95% CIs. D) Left: kinetics plot showing the relative expression of 
representative genes for microglia states. The lines approximate expression along the trajectory 
using polynomial regressions. Right: violin plots of gene expression and MAST (*, adjusted p 
value < 0.05, ***, adjusted p value < 0.001). E) Heatmap showing modules of trajectory 
differentially expressed genes (t-DEGs) in the microglia cluster (n = 2112 genes). The expression 
value is RVAE decoded expression. The genes were grouped into four modules after ranking by 
the RVAE decoded expression. Module 1 (645 genes), module 2 (570 genes), module 3 (566 
genes), and module 4 (331 genes). F) Dot plot showing the top 10 GO biological process terms 
for genes in individual modules. 
 
Figure 5. Alterations to X chromosome inactivation center are a feature of the aged female 
hypothalamus. A) Expression of genes involved in X chromosome inactivation by age and cell 
type. Differential expression between young and aged samples was calculated using MAST (* , 
adjusted p value < 0.05, ***, adjusted p value < 0.001). B) RT-qPCR of Xist expression in 
specific brain regions. Xist expression is significantly higher in the hypothalamus (n = 3 per age 
group, **p = 0.008, unpaired t-test with Bonferroni- Dunn correction). C) left, representative 
images from RNAScope for Xist transcript in young and aged female hypothalamus. Right, 
quantification of signal intensity (n = 3 animals per group, *p = 0.0473, unpaired t test).  
 D) Expression of genes known to escape X chromosome inactivation by age and cell type. 
Differential expression between young and aged samples was calculated using MAST (* , 
adjusted p value < 0.05, ***, adjusted p value < 0.001). E) XIST expression in human entorhinal 
cortex (left) and prefrontal cortex (right).  ***, adjusted p value < 0.001, MAST.  
 
Figure 6. Identification of transcriptionally distinct neuronal subtypes. A) UMAP of all 
neuronal nuclei. Distinct clusters are identified by color, with identities listed in (C). B) UMAPs 
highlighting GABAergic (Gad1) and glutamatergic (Slc17a6) nuclei neuronal clusters. Color 
scale indicates expression level. C) left, Neuronal clusters are labeled according to the top 2 
marker genes and ordered based on overall transcriptional similarity. Right, expression of 
neuropeptide genes in each cluster. Dot size indicates percent of nuclei expressing the gene, 
color indicates intensity of expression. D). Estimated spatial locations of neuronal subclusters.  
 
Figure 7. Neuronal subtypes exhibit distinct transcriptional changes with age. A) Strip plot 
showing DE genes per cluster. Significant genes (FC > 0.1, padj < 0.05) are colored, non-
significant genes in gray. Genes discussed in text are labelled. B) Heatmap of GSEA results for 
each neuronal cluster. Significantly enriched terms (padj <0.1) are colored according to the 
normalized enrichment score.  
 
Figure 8. Xist expression predicts neuronal age in the mouse hypothalamus. A) Schematic of 
the machine learning approach. B) Violin plots showing model test set performance. Model 
accuracy across 10 random states is shown, with consistently XGBoost Classifier (xgbc) 
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outperforming the other models. Xgbc was then retrained on new data splits across 50 different 
random states. C-D) Confusion matrix and ROC curve depicting Xgbc model accuracy across 50 
and 10 random states respectively. E) Top 10 most important features of the Xgbc model. Note 
the strong influence of Xist on model accuracy score. F) SHAP summary plot showing feature 
importance for the top 10 features that predict cellular age in the model. G) SHAP force plot 
showing the most impactful features on the model prediction for example observations in young 
and aged neurons. 
 
 
SUPPLEMENTARY MATERIAL 
Supplementary Table 1. Markers for hypothalamic cell clusters. 
Supplementary Table 2. Binarized regulons for hypothalamic cell clusters.  
Supplementary Table 3. Results of differential expression analysis for all nuclei. 
Supplementary Table 4. Differential expression analysis of individual cell types. 
Supplementary Table 5. Results of Moran’s I Test. 
Supplementary Table 6. Cluster markers for neuronal subtypes. 
Supplementary Table 7. Neuropeptide genes in each cluster and function of gene 
Supplementary Table 8. Results of differential expression for neuronal subtypes. 
 
Supplementary Figure 1. Quality control metrics for single nuclei data. A) Number of nuclei 
per sample. B) Violin plots showing the number of UMIs per nuclei per sample (left) and the 
number of genes per nuclei per sample (right). C) Number of nuclei assigned to a cellular 
subtype per sample. D) Proportion of each cell type arising from a particular sample.  
 
Supplementary Figure 2. Gene regulatory network reconstruction for cellular subtypes. A) 
Binarized regulon activity for each regulon in each nuclei. Maximum 500 nuclei per cluster 
shown. Color indicates a regulon is “on” in each cell.  B) Regulon specificity score indicating 
whether a given regulon is specific to a cell type. Top 5 RSS for each cluster shown.  
 
Supplementary Figure 3. Non-neuronal signaling to neurons in young and aged hypothalamus. 
For each ligand-receptor pair, dot size equals mean expression of ligand gene in signaling cell 
and receptor gene in receiving cell, color equals p value.  
 
Supplementary Figure 4. RT-qPCR of sorted whole CDllb+ microglia. One way ANOVA with 
Holm-Šídák test, **, adjusted p value < 0.01). Shown with pseudotime trajectories from figure 4.  
 
Supplementary Figure 5. A) Normalized estimated cell density of neuronal subclusters in 
coronal section of spatial transcriptomic data. B) Estimated cell density of broad cell categories 
and neuronal subclusters in total spatial transcriptional data. 
 
Supplementary Figure 6. Xist expression predicts neuronal age in the mouse hippocampus. A-
B) Confusion matrix and ROC curve depicting Xgbc model accuracy across 50 and 10 random 
states, respectively. C) Top 10 most important features of the Xgbc model. Note the strong 
influence of Xist on model accuracy score. D) SHAP summary plot showing feature importance 
for the top 10 features that predict cellular age in the model. E) SHAP force plot showing the 
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most impactful features on the model prediction for example observations in young and aged 
neurons. 
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Supplementary Table 7  
 
Cluster Peptide Gene – Encoded protein: Function of encoded 

neuropeptide(s) in the hypothalamus 
 

1. Avp/Oxt Avp – Vasopressin: social behavior, stress response, osmotic 
regulation74 
Oxt – Oxytocin: maternal behavior75, social behavior74 
Pdny – anxiety76 

2. Rnf220/Ntng1 Cck – cholecystokinin: feeding56,77 
3. Rgs6/B230323A14Rik Adcyap1 – Pituitary adenylate cyclase-activating polypeptide: 

regulation of neurohormone secretion78 
Cartpt – Cocaine and amphetamine-regulated transcript (CART) 
prepropeptide: feeding56 
Cck – cholecystokinin: feeding 
Nts – Neurotensin: thermoregulation79 

4. Dgkb/B230323A14Rik, 
 

Adcyap1 – Pituitary adenylate cyclase-activating polypeptide: 
regulation of neurohormone secretion 
Cartpt – Cocaine and amphetamine-regulated transcript (CART) 
prepropeptide: feeding 
Cck – cholecystokinin: feeding 

5. Slc1a3/Apoe Adcyap1 – Pituitary adenylate cyclase-activating polypeptide: 
regulation of neurohormone secretion 
Agt – Angiotensin: osmotic regulation, blood pressure80 
Cartpt – Cocaine and amphetamine-regulated transcript (CART) 
prepropeptide: feeding 
Cck – cholecystokinin: feeding 

6. Sgcd/Tac1 Prok2 – Prokineticin 2: feeding81 
Tac1 – Preprotachykinin-1: Reproduction82 

7. Tafa1/Pcdh11x Calca – Calcitonin Related Polypeptide: thermoregulation83 
Sst – Somatostatin: growth inhibition84 
Trh – Thyrotropin Releasing Hormone: energy homeostasis85 

8. Rfx4/Hcrt Hcrt – Hypocretin/orexin: feeding, sleep86,87 
Npvf – Neuropeptide VF Precursor: sleep88 
Pdny – Prodynorphin: anxiety 
Qrfp - Pyroglutamylated RFamide Peptide: feeding, sleep89,90 

9. Meis2/Pou6f2 Sst – Somatostatin: growth inhibition85 
10. Npsr1/Unc13c  
11. Gal/Nts Gal – Galanin: feeding56 

Nts – Neurotensin: thermoregulation 
12. Npas3/Gm32647  
13. Nrxn3/Sox2ot  
14. Nfib/Tcf4  
15. Cartpt/Pmch Cartpt – Cocaine and amphetamine-regulated transcript (CART) 
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prepropeptide: feeding 
Pmch – Pro-Melanin Concentrating Hormone: feeding56 

16. Chrm3/Schip1 Adcyap1 – Pituitary adenylate cyclase-activating polypeptide : 
regulation of neurohormone secretion 

17. Trh/Gpc5 Trh – Thyrotropin Releasing Hormone: energy homeostasis 
18. Tcf4/Ebf1  
19. Plp1/Ptgds  
20. Apoe/Atp1a2 Agt – Angiotensin: osmotic regulation, blood pressure 
21. Slit3/Cacna2d1 Adcyap1 – Pituitary adenylate cyclase-activating polypeptide : 

regulation of neurohormone secretion 
22. Pdzrn4/Kcnq5 Adcyap1 – Pituitary adenylate cyclase-activating polypeptide : 

regulation of neurohormone secretion 
23. Synpr/Tafa1 Adcyap1 – Pituitary adenylate cyclase-activating polypeptide : 

regulation of neurohormone secretion 
Cck – cholecystokinin: feeding 

24. Pard3b/Tac1 Adcyap1 – Pituitary adenylate cyclase-activating polypeptide : 
regulation of neurohormone secretion 
Tac1 – Preprotachykinin-1: Reproduction 

25. Hdc/Slc16a10 Hdc – Histamine: thermoregulation, feeding91 
26. Cartpt/Ebf1 Cartpt – Cocaine and amphetamine-regulated transcript (CART) 

prepropeptide: feeding 
Gal – Galanin: feeding 
Ghrh – Growth hormone releasing hormone: regulation of growth 
hormone92 

27. Crh/Gpc5 Crh – Corticotropin-releasing hormone: stress response 
Sst – Somatostatin: growth inhibition 
Trh – Thyrotropin Releasing Hormone: energy homeostasis 

28. Satb2/Rab3b Vgf – VGF Nerve Growth Factor Inducible: energy homeostasis 
29. Sst/Npy Agrp – Agouti-related peptide: feeding6,56 

Npy – Neuropeptide Y: feeding6,56 
Sst – Somatostatin: growth inhibition 

30. Sox2ot/Gal Gal – Galanin: feeding 
Grp – Gastrin Releasing Peptide: circadian rhythm93 
Pdny – Prodynorphin: anxiety 

31. Pomc/Tac2 Cartpt – Cocaine and amphetamine-regulated transcript (CART) 
prepropeptide: feeding 

Kiss1 – Kisspeptin: reproduction82 
Pdny – Prodynorphin: anxiety 
Pomc – Proopiomelanocyte stimulating hormone: feeding6,56 
Tac2 - Preprotachykinin-B: reproduction82 

32. Celf2/Phactr1 Pdny – Prodynorphin: anxiety 
33. 1700042O10Rik/Ddc Cck – Cholecystokinin: feeding 

Th – Tyrosine hydroxylase: dopaminergic94 
34. Nrg1/Nnat Grp – Gastrin Releasing Peptide: circadian rhythm 

Prok2 – Prokineticin 2: feeding 
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Vgf – VGF Nerve Growth Factor Inducible: energy homeostasis 
Vip – Vasoactive intestinal peptide: circadian rhythm95 

35. Kcnmb2/Hs3st4 Sst – Somatostatin: growth inhibition 
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