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ABSTRACT 

Background: Critical functions of the blood-brain barrier (BBB), including cerebral blood flow and 

vascular response, are regulated by insulin signaling pathways. Therefore, endothelial insulin resistance 

could lead to vascular dysfunction, which is associated with neurodegenerative diseases such as Alzheimer's 

disease (AD). Objective: The objective of the current study is to map the dynamics of insulin-responsive 

pathways in polarized human cerebral microvascular endothelial cells (hCMEC/D3) cell monolayers, a widely 

used BBB cell culture model, to identify molecular mechanisms underlying BBB dysfunction in AD. Methods: 

RNA-Sequencing (RNA-Seq) was performed on hCMEC/D3 cell monolayers with and without insulin 

treatment at various time points. The Short Time-series Expression Miner (STEM) method was used to 

identify clusters of genes with distinct and representative patterns. Functional annotation and pathway 

analysis of the genes from top clusters were conducted using the Webgestalt and Ingenuity Pathway Analysis 

(IPA) software, respectively. Results: Quantitative expression differences of 19,971 genes between the 

insulin-treated and control monolayers at five-time points were determined. STEM software identified 11 

clusters with 3061 genes across that displayed various temporal patterns. Gene ontology enrichment analysis 

performed using the top 5 clusters demonstrated that these genes were enriched in various biological 

processes associated with AD pathophysiology. The IPA analyses revealed that signaling pathways 

exacerbating AD pathology such as inflammation were downregulated after insulin treatment (clusters 1 to 

3). In contrast, pathways attenuating AD pathology were upregulated, including synaptogenesis and BBB 

repairment (clusters 4 and 5). Conclusions: These findings unravel the dynamics of insulin action on the 

BBB endothelium and inform about downstream signaling cascades that potentially regulate neurovascular 

unit (NVU) functions that are disrupted in AD. 
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INTRODUCTION 

Cerebrovascular endothelium, commonly referred to as the blood-brain barrier (BBB), is instrumental in 

maintaining vascular response to regulate cerebral blood flow, delivering essential nutrients for sustaining 

brain functions and removing toxic metabolites from the brain [1]. In addition, the BBB serves as a formidable 

barrier protecting the brain from circulating xenobiotics and immune challenges emanating from the periphery 

[2]. The BBB accomplishes these diverse functions by not functioning independently but as a crucial part of 

the neurovascular unit (NVU), which is organized by the precise spatial arrangement and well-coordinated 

communication among various cells in the cerebral vasculature (endothelial cells, pericytes, and smooth 

muscle cells) and brain parenchyma (astrocytes and neurons) [3]. The molecular mechanisms regulating 

NVU composition and function in health and disease are only partially understood because of the paucity of 

molecular-level information on the less abundant yet functionally critical cerebrovascular endothelial cells and 

pericytes.  

Studies have shown that BBB dysfunction is associated with neurodegenerative diseases such as 

Alzheimer's disease (AD) and Parkinson's disease [4, 5]. Recent research has revealed the importance of 

hyperinsulinemia and peripheral insulin resistance in AD pathogenesis. As several important BBB functions 

were shown to be handled by insulin signaling pathways [6], endothelial insulin resistance could compromise 

BBB integrity and function, and lead to BBB dysfunction. Therefore, it is crucial to study insulin's impact and 

characterize insulin responsive pathways in the BBB endothelium. RNA-Sequencing technology represents 

a powerful tool to investigate transcriptomic changes across the genome and detect insulin's effect on gene 

regulation using model systems. 

Given the impact of insulin on blood-brain-barrier endothelial cells, we have performed RNA-Sequencing 

(RNA-Seq) of polarized human cerebral microvascular endothelial cells (hCMEC/D3) cell monolayers with 

and without insulin treatment at various time points to identify molecular and cellular pathways that are 

responsive to insulin. We conducted experiments at five time points to differentiate insulin-responsive 

pathways and identify early and late response molecular and cellular pathways activated or inhibited after 

insulin treatment in the hCMEC/D3 cell monolayers. To our knowledge, this is the first systematic study 

investigating the transcriptional response to insulin in BBB endothelial cells in a time series RNA-Seq 

experiment.  
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METHODS 

Cell Culture and Illumina TruSeq v2 mRNA Protocol 

Immortalized human cerebral microvascular endothelial cell line (hCMEC/D3) was kindly provided by P-

O Couraud, Institut Cochin, France. The polarized endothelial monolayers were cultured as described 

previously [7], and the detailed methods are provided in our previous publication [8]. In this study, we focused 

on the hCMEC/D3 cell lines that were treated with 100 nm insulin at various time points (t=10, 20, 40, 80, 

and 300 minutes). We also harvested synchronized control BBB cell monolayers without insulin treatment at 

each time point (as shown in Figure 1). Paired-end RNA libraries from insulin-treated and control hCMEC/D3 

cell monolayers ( a total of 10 samples with 100mg insulin at five time points) were prepared according to the 

manufacturer's instructions using TruSeq RNA Sample Prep Kit v2 (Illumina, San Diego, CA). A detailed 

protocol of the RNA library preparation has been discussed in our previous publication [8].   

 

RNA-Seq Data Processing and gene expression quantification  

After paired-end transcriptome sequencing, the RNA-Seq data of ten samples were processed using the 

MAP-RSeq — a comprehensive computational workflow developed at the Mayo Clinic to obtain various 

genomic features from the RNA-Seq experiment [9]. The main goal of the MAP-RSeq pipeline is to obtain 

multiple genomic features, such as gene expression, exon counts, fusion transcripts from RNA-Seq data. 

MAP-RSeq provides quality control reports and summary statistics of the sequencing reads. Reads were 

mapped to the human genome reference hg19 build, and the total number of reads, mapped reads, the 

number of reads mapped to the genome, and the numbers of reads mapped to junctions were obtained for 

each sample. Gene expression counts were quantified using the HT-Seq module (http://www-

huber.embl.de/users/anders/HTSeq/doc/count.html) from MAP-RSeq pipeline for five hCMEC/D3 controls 

and five matched insulin-treated hCMEC/D3 monolayers. Principal component analysis and data analysis 

were then conducted using R programming language and the gene expression data obtained from these five 

treatment and control pairs. 

 

Time-series Gene Expression Analysis 

Normalized gene expression data was used for time-series data analysis. We determined the difference 

between the paired samples (insulin-treated versus control monolayers) at all the five time points for every 

gene. The resulting gene expression differences were then provided as input to the Short Time-series 

Expression Miner (STEM) [10] method to identify clusters of genes with distinct and representative patterns. 

STEM is an application specifically designed for the clustering analysis of short time-series gene expression 

data (3-8 time points). The STEM method identifies clusters of genes that are statistically significant based 
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on the correlation coefficient (the minimal default correlation is 0.7). In the STEM software, we chose the 

parameter options such as the maximum number of model profile=50, a maximum unit change in model 

profiles between time points = 2, and clustering method= STEM. The significance of a cluster is determined 

by STEM software based on a binomial distribution by comparing the actual number of genes assigned to 

the group against the expected number of genes. 

 

Gene set and pathway analysis 

The top clusters of genes identified by the STEM software were retrieved and used to conduct 

overrepresentation analysis using the webGestalt software and gene ontology database [11]. Pathway 

analysis of genes from the significant clusters was performed using Ingenuity pathway analysis software 

(QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) to identify 

pathways that are activated or predicted to be inhibited.  
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RESULTS 

Due to the cost of RNA-Sequencing and lack of availability of tissue samples, most of the gene 

expression studies are single snap-shot studies to identify differentially expressed genes/pathways between 

two conditions. Biological processes are often dynamic and require temporal monitoring to decipher their 

response to health and disease. Insulin signaling pathways that are characterized by rapid response upon 

stimulation and quick return to the baseline levels are prime examples of the pathways that require dynamic 

monitoring to capture pathophysiological variations by conducting time-series experiments. However, it is 

challenging to obtain serial samples from the tissue of an individual, particularly from the brain. Therefore, 

we have conducted studies using the hCMEC/D3 monolayers to study insulin treatment dynamics in the 

blood-brain barrier. At every time point, gene expression changes in insulin-responsive pathways are 

investigated from the paired data of control and insulin-treated hCMEC/D3 monolayers. RNA libraries were 

prepared and sequenced as described in the methods section. After removing the control and treatment 

samples that were not sequenced in the same batch, a total of ten samples remained for further time-series 

data analysis. Raw gene expression counts were obtained, and the total read depth across samples varied 

from 92-149 million reads. Of the 23,399 genes with expression data, there were 3428 genes with less than 

32 counts across all ten samples. After filtering out the genes with zero counts, we had 19,971 genes for the 

rest of the time-series data analysis. We determined the quantitative gene expression differences between 

the treatment and control at all five time points (t=10, 20, 40, 80, and 300 minutes). We analyzed the data 

with short-time-series data analysis software (STEM). 

 

Time-series data analysis identifies eleven significant gene clusters in hCMEC/D3 monolayers after 

insulin treatment  

After removing the low expressed genes in this study, we have provided the normalized time-series gene 

expression data as the input to the STEM software [10]. The STEM method assigned all the genes to a set 

of pre-defined temporal expression profile patterns defined by the number of time points and maximum units 

of fold change. The STEM clustering method represents a set of distinct and representative model temporal 

expression profiles independent of the input data; these model profiles correspond to possible profiles in the 

input gene expression data. All of the model profiles begin at zero, and the model profile is expected to 

increase, decrease, or remain stable (do not change) between two-time points. As shown in Figure 2, STEM 

software identified 11 clusters with 3061 genes across the five time points that display various patterns. The 

number of genes in each cluster is indicated in Table 1. For each cluster, the p-value is determined based 

on a permutation test by comparing the number of genes assigned to a particular profile and genes that are 

expected to follow that specific profile by chance (as shown in Figure 2). After a thorough investigation of the 
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individual clusters, we have observed that clusters 1, 2 and 3 (2096 genes), as well as clusters 4 and 5 (234 

genes), followed similar temporal expression profiles (Figure 2). The gene expression in clusters 1, 2 and 3 

went down at 40 minutes after insulin treatment, and the gene expression in clusters 4 and 5 went up after 

insulin treatment. Hence, we compared the genes and pathways represented by these clusters that 

demonstrated contrasting trends. 

 

Functional annotation of genes in the top 5 clusters affected by insulin treatment shows the genesets 

involved in AD pathophysiology.  

We obtained the genes from the top five clusters (cluster 1-3=2096 and cluster 4-5 = 234 genes) and 

conducted functional annotation of the genes using the Webgestalt software. Gene ontology (GO) enrichment 

analysis was performed using the 2096 geneset (clusters 1-3) that were downregulated at a 40-minute time-

point after insulin treatment. The genes are highly enriched in various biological processes such as the GPCR 

signaling genes, neuropeptide signaling genes, coupled to cyclic nucleotide second messenger genes, 

peptide cross-linking genes, and humoral immune response genes (Table 2). Similarly, the GO enrichment 

analysis was conducted for 234 geneset (clusters 4&5) that were upregulated at 40 min time frame following 

insulin treatment in the hCMEC/D3 monolayers (Table 3). These genes are associated with biological 

processes that are also associated with AD pathophysiology, such as central nervous system neuron 

differentiation, response to mechanical stimulus, skeletal system morphogenesis, extracellular structure 

organization, and mesenchymal cell proliferation genes, connective tissue development, embryonic skeletal 

system development. 

Canonical pathway analysis of the top five clusters has identified pathways that are critical for NVU 

functions. 

We conducted pathway analysis to identify the known canonical pathways that are associated with our 

top clusters. The 2096 geneset (genes from cluster 1-3) and 234 geneset (genes from clusters 4-5) were 

submitted to the Ingenuity Pathway Analysis (IPA software), and the pathways with a p-value < 0.05 were 

obtained. The top canonical pathways are shown in Table 4 and Table 5 with the z-scores; if the z-score > 2, 

the pathway is deemed to be activated after insulin treatment, and if Z-score < -2, the pathway is predicted 

to be inhibited after insulin treatment. The ratio column in Tables 4 and 5 indicates the proportion of genes 

from our geneset to the genes that are present in the canonical pathway. 
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DISCUSSION 

The BBB is a critical gatekeeper that dynamically removes toxic metabolites from the brain and delivers 

essential nutrients, such as glucose and insulin, to maintain brain functions. BBB dysfunctions manifested as 

reduced cerebral blood flow, impaired amyloid-beta clearance, and cerebrovascular inflammation are 

believed to promote AD progression. Notably, these pathological features are consistently indicated in type-

2 diabetes mellitus (T2DM) and are associated with insulin resistance, which is an established risk factor for 

AD [12, 13]. However, the cause-and-effect relationship between cerebrovascular dysfunctions and insulin 

resistance in AD is poorly characterized. Therefore, it is imperative to identify insulin-responsive pathways in 

the BBB endothelium, a major component of BBB. 

 

GO enrichment analysis 

One of the major AD pathologies is abnormal amyloid-beta (Aβ) deposition in the brain, which is due to 

the imbalance between production and its clearance from the brain. Peripheral hyperinsulinemia has been 

shown to increase brain and plasma Aβ levels significantly [33]. Our previous study further demonstrated 

insulin could differentially impact BBB trafficking of Aβ40 versus Aβ42 [14]. However, the underlying molecular 

mechanisms are not well understood. In the current study, gene expression changes in polarized hCMEC/D3 

monolayers upon insulin treatment were clustered by STEM analysis. In clusters 1-3, the gene expression 

decreased at 40 minutes post insulin treatment, whereas the opposite trend was observed in clusters 4 and 

5. Notably, genes identified in clusters 1-3 were shown to upregulate Aβ levels, whereas genes from clusters 

4 and 5 were reported to decrease Aβ levels. For instance, calcitonin-related polypeptide and calcitonin 

receptor were found in clusters 1-3, and treatment with calcitonin gene-related peptide (cGRP) receptor 

antagonists could reduce Aβ accumulation [15]. Hypocretin receptor 2 (identified in clusters 1-3), which binds 

to neuropeptides orexin A and orexin B, was found to be downregulated after insulin treatment. Orexin was 

demonstrated to disrupt the autophagosome-lysosome fusion process and may lead to impairment in Aβ 

degradation [16]. Further, the amount of brain Aβ was found to be substantially decreased upon knocking 

down the orexin gene [17]. In contrast, platelet-derived growth factor receptor, which mediates Aβ clearance 

by LRP1 [18], was identified in clusters 4-5, and the expression was increased with insulin treatment. On the 

other hand, platelet factor 4 (PF4) and elastase, which could potentially enhance Aβ production, were 

identified in clusters 1-3. While PF4 is released from activated platelets which produce more than 90% of 

circulating Aβ [19], elastase is a proteolytic enzyme that is a candidate protease involved in the generation 

of Aβ [20]. Apart from production and clearance, genes that regulate Aβ aggregation were also segregated 

in clusters 1-3. For example, several isoforms of transglutaminase, associated with peptide cross-linking, 

were found in clusters 1-3. Transglutaminase is a calcium-activated enzyme that converts soluble proteins 
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into insoluble species through cross-linking. Transglutaminase levels and activity are increased in AD brains 

[21]. Further, Aβ has been shown to be a substrate of transglutaminase [22]. Therefore, it is possible insulin 

could mitigate Aβ deposition by modulating the transglutaminase expression. Coagulation factor XIII, another 

enzyme that belongs to the same geneset, has been shown to covalently cross-link Aβ40 into oligomers as 

well as fibrins [23].  

On the other hand, genes that reduce Aβ aggregation were identified in clusters 4-5. For example, three 

isoforms of collagen type Ⅵ alpha chain were found to increase after insulin treatment. Reduction of collagen 

Ⅵ could enhance Aβ aggregation and prevent neurotoxicity. Further, treatment of soluble collagen Ⅵ was 

shown to block the association of Aβ oligomers with neurons [24]. 

Inflammation, which is mediated by diverse immune cells and pro-inflammatory chemical signals, is a 

common pathological feature of both AD and diabetes [25]. Insulin has been shown to prevent inflammation 

in both peripheral tissues and the brain [26-28]. However, the anti-inflammatory effect of insulin on BBB 

endothelial cells is not well understood. Genes from clusters 1-3 that are downregulated after insulin 

treatment were found to drive inflammation, whereas genes in clusters 4 and 5 could reduce inflammation. 

For example, humoral immune response gene ontology was significantly enriched in clusters 1-3, and many 

genes were involved in pro-inflammatory actions, one of which is the fibrinogen alpha chain that encodes the 

alpha subunit of fibrinogen. Aβ was shown to interact with fibrinogen and lead to the production of pro-

inflammatory molecules [16]. Moreover, both urocortin 2, which is a member of corticotropin-releasing factor 

(CRF), and corticotropin-releasing hormone receptor 2 were found in clusters 1-3. Overexpression of brain 

CRF was shown to mimic the chronic inflammatory stress and could further increase Aβ deposition and 

behavioral deficits [29]. Several isoforms of interferon (INF) were also in this geneset, including type Ⅰ (INF-

α 1, INF-α 8) and type Ⅱ class (INF-γ). Previous studies have demonstrated that type Ⅰ INF response drives 

neuroinflammation and synapse loss in AD [30] and higher levels of INF-γ were observed in patients with 

mild cognitive impairment (MCI) compared to controls [31]. Contrarily, genes in cluster 4-5 were found to 

have anti-inflammatory effects and upregulated with insulin treatment. Bone morphogenic protein 7 (BMP7) 

encodes a secreted ligand of the transforming growth factor-beta (TGF-beta) superfamily of proteins. 

Previous study indicated that BMP7 was able to prevent neuronal injuries induced by Aβ, including cell 

apoptosis and oxidation stress [32]. Moreover, dopamine receptor D2 was found to be upregulated and 

astrocytic dopamine D2 receptors were shown to suppress neuroinflammation[33]. Hippocampal dopamine 

D2 receptor also correlates with memory functions in AD [34].  

 

IPA canonical pathway analysis 

Using Ingenuity Pathway Analysis (IPA) software, we identified several signaling pathways to be enriched 
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in clusters 1-3 and downregulated after insulin treatment. In agreement with GO enrichment analysis, the 

neuroinflammation signaling pathway was found to be downregulated with insulin treatment. Moreover, 

specific genes have been reported to be related to AD. For example, matrix metalloproteinase-3 (MMP-3) 

was shown to distribute in AD brains selectively [35]. Additionally, cognitively healthy individuals with AD risk 

markers were found to have higher levels of CSF MMP-3 [36]. IL17 pathway was also involved in inflammation 

and shown to be downregulated after insulin treatment. Previous studies demonstrated that pretreatment 

with IL-17 neutralizing antibody could markedly reduce Aβ42-induced neurodegeneration and prevent the 

increase of pro-inflammatory mediators in a dose-dependent manner [37]. Interestingly, treatment with anti-

IL-17 antibody was also shown to ameliorate insulin resistance and inflammation in TD2M. Therefore, this 

pathway could provide yet another mechanistic connection between AD and T2DM. Notably, there are also 

other pathways that mitigate AD progression were found to be downregulated upon insulin exposure. For 

instance, endothelial nitric oxide synthase (eNOS) signaling was found to be downregulated. This effect could 

be induced by excessive insulin exposure that could drive insulin resistance [38]. 

In clusters 4-5, however, pathways that attenuate AD pathologies were found to be enriched by IPA 

analysis, one of which is the synaptogenesis signaling pathway. AD is characterized by progressive cognitive 

impairment and memory loss, which result from loss of hippocampal and cortical synapses. Therefore, one 

promising AD treatment strategy might be stimulating synaptogenesis. Given that intranasal insulin 

administration was shown to improve cognition in AD patients, our finding provided a potential mechanism 

by which insulin exerts such beneficial effects [39]. Although synapse is exclusively formed in neurons, BBB 

endothelium is essential for synaptogenesis by maintaining the homeostasis of the brain microenvironment 

and interacting with glia cells and neurons. Li et al. previously showed that activation of endothelial-derived 

GABA signaling could promote neuronal migration, which is critical for synapse formation [40]. Additionally, 

several critical genes in this pathway were also identified to be associated with the mitigation of AD pathology, 

one of which is thrombospondin2 (THBS2). Previous evidence has suggested that thrombospondin1 

expression was decreased in AD brains, and treatment of exogenous thrombospondin1 could restore the Aβ 

induced synaptic pathology [41]. It is possible that thrombospondin2 has similar beneficial effects because 

these proteins share the same structure and the amino acid sequences are slightly different [42]. GP6 

signaling pathway was also enriched in clusters 4-5 and upregulated after insulin treatment. This pathway 

contains many collagens and laminins that form the basement membrane of the BBB. Particularly, collagen 

Ⅵ in this pathway was also demonstrated to prevent the neurotoxicity of Aβ [24]. Insulin was previously 

shown to increase tight junction proteins of BBB endothelial cells [43]; our findings suggested that it could 

also potentially promote the establishment of the basement membrane. Therefore, it is possible that insulin 

could restore the BBB disruption, which is highly implicated in AD progression. In summary, these results 
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provided novel insights into the molecular mechanisms by which insulin exerts beneficial effects on the BBB 

endothelium and regulates NVU functions. 

 

TABLES AND FIGURES 

Table 1: Time series clustering of the genes based on gene expression profile changes was conducted using 

the STEM software. STEM detected 11 significant clusters of genes with similar expression profiles across 

five-time points. The number of genes in each cluster is listed. 

Time Series 

Data Number of Genes 

Cluster 1 926 

Cluster 2 701 

Cluster 3 469 

Cluster 4 135 

Cluster 5 99 

Cluster 6 174 

Cluster 7 119 

Cluster 8 112 

Cluster 9 124 

Cluster 10 120 

Cluster 11 82 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434315doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434315


 

Table 2: Involvement of cluster 1-3 genes in AD pathology after GO enrichment analysis. These 

genes are downregulated at 40 minutes after insulin treatment. 

Cluster Ontology Gene Involvement in AD Reference 

1 

GPCR 

signaling 

pathway, 

coupled to 

cyclic 

nucleotide 

second 

messenger 

urocortin 2 

Increases Aβ deposition and 

behavioral deficits 
[29] 

corticotropin 

releasing hormone 

receptor 2 

prostaglandin E 

receptor 3 

Increases Aβ levels and 

inflammation 
[44, 45] 

platelet factor 4 Contributes to Aβ production  [19] 

galanin receptor 1 Associated with cognitive decline [46] 

calcitonin related 

polypeptide alpha 
Associated with Aβ accumulation 

and tau phosphorylation 
[15] 

calcitonin receptor 

macrophage 

receptor with 

collagenous 

structure 

A receptor for Aβ [47] 

1 
Peptide cross-

linking 

transglutaminase 3 
Tau protein is an excellent substrate 

of transglutaminase in vitro; 

transglutaminase colocalizes with 

Aβ pathology 

[21, 22] 
transglutaminase 6 

transglutaminase 5 

transglutaminase 7 

coagulation factor 

XIII A chain 

Covalently cross-links Aβ40 into 

aggregates 
[23] 

1 

neuropeptide 

signaling 

pathway 

prokineticin 

receptor 2 
Upregulated in Aβ42 injected rats [48] 

hypocretin receptor 

2 

Leads to suppressed autophagic 

flux and impaired Aβ degradation 
[16, 17] 

1,3 

humoral 

immune 

response 

defensin beta 1 
Increased expression in AD brain [49] 

defensin beta 126 

elastase, neutrophil 

expressed 

Increased expression in 

neurofibrillary tangle-bearing 

neurons; A candidate protease for 

Aβ generation  

[20] 

fibrinogen alpha 

chain 

Interacts with Aβ and generates pro-

inflammatory molecules 
[16] 

interferon-alpha 1 Blockage diminishes ongoing 

microgliosis and synapse loss in AD 

models 

[30] 
interferon-alpha 8 

interferon-gamma Increased expression in AD patients [31] 
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Table 3: Involvement of cluster 4-5 genes in AD pathology after GO enrichment analysis. 

These genes are upregulated at 40 minutes after insulin treatment. 

Cluster Ontology Gene Involvement in AD Reference 

4 

mesenchymal 

cell 

proliferation 

bone morphogenetic 

protein 7 

Prevented neuronal injuries in 

PC12 cells induced by Aβ25-35 
[32] 

4 

embryonic 

skeletal system 

development 

platelet derived growth 

factor receptor alpha 

defective PDGF-BB-PDGFR-β 

signaling resulted in faulty 

amyloid-β clearance 

[18] 

bone morphogenetic 

protein 7 
Discussed above 

4 

connective 

tissue 

development 

collagen type VI alpha 3 

chain Treatment of neurons with 

soluble collagen VI blocked the 

association of Aβ oligomers 

with neurons and neurotoxicity 

[24] 
collagen type VI alpha 1 

chain 

collagen type VI alpha 2 

chain 

4 

central nervous 

system neuron 

differentiation 

plexin A4 
Decreased expression in AD 

brain 
[50] 

dopamine receptor D2 

Decreased expression in AD 

brain; suppresses 

neuroinflammation 

[33, 34] 

4 

response to 

mechanical 

stimulus 

Decorin 
Decreased expression in AD 

brain 
[51] 

dopamine receptor D2 Discussed above 

5 
skeletal system 

morphogenesis 

bone morphogenetic 

protein 7 
Discussed above 

collagen type VI alpha 2 

chain 
Discussed above 

collagen type VI alpha 3 

chain 
Discussed above 

platelet derived growth 

factor receptor alpha 
Discussed above 

collagen type VI alpha 1 

chain 
Discussed above 

5 

extracellular 

structure 

organization 

Decorin Discussed above 

bone morphogenetic 

protein 7 
Discussed above 

collagen type VI alpha 2 

chain 
Discussed above 

collagen type VI alpha 3 

chain 
Discussed above 

collagen type VI alpha 1 

chain 
Discussed above 
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Table 4. Ingenuity pathway analysis of the genes from clusters 1, 2, and 3. List of pathways, 

with z-score, -log(p-values), and the ratio are listed below.  

Ingenuity Canonical Pathways z-score -log(p-value) Ratio 

SPINK1 Pancreatic Cancer Pathway 2.530 5.740 0.183 

CREB Signaling in Neurons -6.633 7.510 0.076 

Breast Cancer Regulation by Stathmin1 -5.692 5.560 0.068 

Neuroprotective Role of THOP1 in 

Alzheimer's Disease 
-3.162 3.630 0.103 

Intrinsic Prothrombin Activation Pathway -2.449 3.580 0.167 

Amyotrophic Lateral Sclerosis Signaling -3.000 3.100 0.103 

MSP-RON Signaling In Macrophages 

Pathway 
-2.828 2.600 0.089 

Neuroinflammation Signaling Pathway -3.051 2.260 0.060 

MSP-RON Signaling In Cancer Cells 

Pathway 
-3.000 2.080 0.075 

IL-17 Signaling -3.464 1.890 0.064 

Retinoate Biosynthesis I -2.000 1.710 0.118 

Role of Pattern Recognition Receptors in 

Recognition of Bacteria and Viruses 
-2.236 1.690 0.065 

eNOS Signaling -2.449 1.600 0.063 

Nitric Oxide Signaling in the 

Cardiovascular System 
-2.449 1.490 0.071 

Cardiac Hypertrophy Signaling 

(Enhanced) 
-3.900 1.470 0.046 

FGF Signaling -2.449 1.350 0.071 

Tumor Microenvironment Pathway -3.162 1.340 0.057 

Netrin Signaling -2.236 1.310 0.077 

 

 

Table 5. Ingenuity pathway analysis of the genes from clusters 4 and 5. List of pathways, with 

z-score, -log(p-values) and the ratio are listed below.  

Ingenuity Canonical Pathways z-score -log(p-value) Ratio 

GP6 Signaling Pathway 2.236 2.940 0.040 

White Adipose Tissue Browning Pathway 2.000 2.880 0.039 

IL-6 Signaling 2.000 2.090 0.032 

Dendritic Cell Maturation 2.000 1.540 0.022 

Synaptogenesis Signaling Pathway 2.236 1.330 0.016 
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Figure 1: Experimental design showing the RNA-Sequencing time-points of human cerebral microvascular 

endothelial cell (hCMEC/D3) monolayers with and without insulin treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The figure shows the eleven clusters or profiles of genes after insulin treatment (treatment –control 

gene expression data) from five-time points 10 minutes, 20 minutes, 40 minutes, 80 minutes, and 300 minutes. 

The clusters are ordered based on the number of genes ranked by significance. Inside each set (in the box), 

on the top left-hand corner, the cluster-ID is indicated, and on the right-hand corner, the enrichment p-value 

Time to sequencing: 

(Insulin) 

(Control) 
10 minutes  20 minutes      40 minutes      80 minutes    300 minutes  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434315doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434315


is displayed. 
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