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Abstract Perceptual decisions are biased toward higher-value options when overall gains can be 9 
improved. When stimuli demand immediate reactions, the neurophysiological decision process 10 
dynamically evolves through distinct phases of growing anticipation, detection and discrimination, 11 
but how value biases are exerted through these phases remains unknown. Here, by parsing motor 12 
preparation dynamics in human electrophysiology, we uncovered a multiphasic pattern of 13 
countervailing biases operating in speeded decisions. Anticipatory preparation of higher-value 14 
actions began earlier, conferring a “starting point”- advantage at stimulus onset, but the delayed 15 
preparation of lower-value actions was steeper, conferring a value-opposed buildup rate bias. This, 16 
in turn, was countered by a transient deflection toward the higher value action evoked by stimulus 17 
detection. A neurally-constrained process model featuring anticipatory urgency, biased detection, 18 
and accumulation of growing stimulus-discriminating evidence, successfully captured both behavior 19 
and motor preparation dynamics. Thus, an intricate interplay of distinct biasing mechanisms serves 20 
to prioritise time-constrained perceptual decisions. 21 

Introduction 22 

Perceptual decision making is generally well explained by a process whereby evidence is 23 
accumulated over time up to a bound that can trigger an action (Brown and Heathcote, 2008; Link 24 
and Heath, 1975; Ratcliff, 1978; Smith and Ratcliff, 2004; Usher and McClelland, 2001). In most 25 
models based on this principle, a given response time (RT) is made up of two temporal 26 
components, where the decision variable is either building at a stationary rate (“drift rate”) 27 
determined by a stable evidence representation, or is suspended, during “non-decision” delays 28 
associated with sensory encoding and motor execution. This simple scheme, developed primarily 29 
through the study of perceptual decisions with low to moderate speed pressure, affords two ways to 30 
explain how faster and more accurate responses are made to higher-value or more probable stimuli: 31 
through modulating the starting point or drift rate of the process (Blangero and Kelly, 2017; Feng et 32 
al., 2009; Leite and Ratcliff, 2011; Mulder et al., 2012; Ratcliff and McKoon, 2008; Simen et al., 33 
2009; Summerfield and Koechlin, 2010; Urai et al., 2019; Voss et al., 2004; White and Poldrack, 34 
2014). Corresponding adjustments have been reported in neurophysiological recordings from 35 
motor-related areas of the brain (de Lange et al., 2013; Hanks et al., 2011; Rorie et al., 2010). 36 
However, recent work has highlighted additional dynamic elements of the decision process whose 37 
contributions to choice performance are likely to be accentuated when stimuli require immediate 38 
action.  39 

First, when stimulus onset is predictable, anticipatory activity in motor preparation regions can begin 40 
to forge a decision even before the stimulus appears. While standard models do allow for 41 
anticipatory processing in the setting of the starting point from which the accumulator evolves after 42 
sensory encoding, neurophysiological data have revealed that anticipatory motor preparation is 43 
often dynamic, proceeding on a trajectory aimed at eventually crossing an action-triggering 44 
threshold by itself even in the absence of sensory input (Feuerriegel et al., 2021; Kelly et al., 2021; 45 
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Stanford et al., 2010). This represents a pre-stimulus signature of a signal identified in 46 
neurophysiology studies known as urgency—defined in accumulator models as an evidence-47 
independent buildup component that continues to operate throughout the decision process, adding 48 
to sensory evidence accumulation so that the criterion amount of cumulative evidence to terminate 49 
the decision reduces with time (Churchland et al., 2008; Hanks et al., 2014; Murphy et al., 2016; 50 
Shinn et al., 2020; Steinemann et al., 2018; Thura and Cisek, 2014). 51 

Second, for many suddenly-onsetting stimuli, sensory evidence of their distinguishing features 52 
emerges some time after the initial sensory neural response signalling their onset (Afacan-Seref et 53 
al., 2018; Smith and Ratcliff, 2009), meaning that detection precedes discrimination. In the case of 54 
the widely-studied random dot motion stimulus, recent work shows that behavior is well captured by 55 
a model in which accumulation begins at the onset of sensory encoding but where it takes a further 56 
400 ms approximately for the direction information to stabilise (Smith and Lilburn, 2020). In fact, 57 
serial detection and discrimination phases are reflected in human electrophysiological signatures of 58 
differential motor preparation during fast, value-biased decisions about other sensory features. 59 
Specifically, these signals show biased stimulus-evoked changes initially in the direction of higher 60 
value before being re-routed towards the correct sensory alternative (Afacan-Seref et al., 2018; 61 
Noorbaloochi et al., 2015), in line with previously proposed dual-phase models (Diederich and 62 
Busemeyer, 2006).  63 

Thus, in time-pressured situations decision formation is not suspended until sensory 64 
representations stabilise, but rather proceeds through a concerted sequence of anticipatory, 65 
detection and discriminatory processing phases. Although previous work has established the 66 
potential importance of these individual phases (Afacan-Seref et al., 2018; Diederich and 67 
Busemeyer, 2006; Kelly et al., 2021; Noorbaloochi et al., 2015; Smith and Lilburn, 2020; Stanford et 68 
al., 2010), there exists no detailed computational account of how value-biased decision formation 69 
dynamics unfold through all three of them. In this study we used two complementary human 70 
electrophysiological signatures of motor preparation during performance of a sudden-onset random 71 
dot motion discrimination task under a tight deadline, to forge such an account.  72 

We observed a complex pattern of distinct biases exerted across multiple phases including an initial 73 
anticipatory buildup in motor preparation for the high-value alternative, a later but steeper 74 
anticipatory buildup for the low-value alternative and then, immediately following stimulus onset, a 75 
further transient burst toward the high-value alternative. By incorporating urgency signal model 76 
components whose initial amplitude and buildup rate were constrained to match the corresponding 77 
measures of anticipatory motor preparation, we were able to adjudicate among several alternative 78 
multi-phase decision process models. We found that a model that featured 1) an initial, transient 79 
detection-triggered deflection toward the higher value alternative and 2) gradually-increasing 80 
discriminatory sensory evidence, best accounted for behavior, as well as recapitulating the fast 81 
dynamics of stimulus-evoked, differential motor preparation. Together, the findings show that, rather 82 
than simply enhancing all parameters of the decision process in favor of high-value alternatives, the 83 
neural decision architecture has the flexibility to apply biases in opposing directions to different 84 
process components, in a way that affords low-value decision signals the chance to “catch-up” 85 
when smaller rewards can be attained. 86 

Results 87 

Behavior. Participants performed fast-paced motion direction discrimination using the well-studied 88 
random dot kinematogram (RDK) stimulus (Roitman and Shadlen, 2002) with a preceding cue 89 
indicating the more valuable direction. We recorded scalp electroencephalography (EEG) from 90 
seventeen participants performing the task in three blocked regimes: high coherence with a very 91 
short deadline; low coherence with a slightly longer deadline; and the two coherences interleaved 92 
with the longer deadline (Figure 1A). These regimes were similarly challenging but in different ways, 93 
allowing us to further explore the extent to which the uncovered value biasing dynamics generalize 94 
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across task contexts where the demands are placed through lower discriminability versus through 95 
tight deadlines, and where stimulus discriminability is heterogeneous versus homogeneous (Hanks 96 
et al., 2011; Moran, 2015). In each trial, two colored arrows appeared prior to the stimulus onset, 97 
the colors of which indicated the respective value of a correct response in each of the two possible 98 
directions (left and right). After the onset of the stimulus, participants responded by clicking the 99 
mouse button corresponding to the chosen direction with their corresponding thumb. We imposed a 100 
single value differential (30 vs 10 points) that, combined with the deadline and coherence settings, 101 
induced a decision-making approach that was guided strongly by both sensory and value 102 
information. Correct responses between 100 ms after stimulus onset and the deadline resulted in 103 
the points associated with the color cue; otherwise, no points were earned. The value manipulation 104 
produced strong behavioral effects across all 4 conditions, though overall accuracy and RT varied 105 
(Figure 1B).  106 

 107 

Figure 1: Value-cued motion direction discrimination task and behavioral data. A Trial structure with 108 
task conditions below. B Mean and standard error across participants (n=17) for proportion correct 109 
and median RTs of correct responses. Repeated measures ANOVAs with fixed effects for task 110 
condition and value demonstrated that accuracy was higher for high-value trials than low-value trials 111 
(F(1,16)=60.8, p<0.001, partial η2=0.79), and the median response times (RTs) for correct 112 
responses were shorter (F(1,16)=80.7, p<0.001, partial η2=0.84). In addition to the large value 113 
effects, task condition affected accuracy (F(3,48)=60.2, p<0.001, partial η2=0.79) and correct RTs 114 
(F(3,48)=38.1, p<0.001, partial η2=0.61); the high coherence conditions were more accurate (p<.001 115 
for blocked and interleaved) and the blocked high-coherence condition, with the shorter deadline, 116 
was the fastest (p<.001 compared to other 3 conditions). Pairwise comparisons revealed no 117 
significant difference between the low-coherence conditions in correct RTs (p=0.6; BF10= 0.28). 118 
The low-coherence interleaved condition was slightly more accurate than the low coherence 119 
blocked condition but not significantly so, and the Bayes factor indicates the data contain insufficient 120 
evidence to draw definite conclusions (p=0.1, BF10=0.87). The Condition x Value interaction was 121 
significant for accuracy (F(3,48)=6.4, p=0.001, partial η2=0.29) but not correct RTs (p=0.7). 122 

Our ultimate goal was to develop a model that could jointly explain the group-average EEG decision 123 
signals and behavior. Behavior was quantified in the RT distributions for correct and error 124 
responses in each stimulus and value condition, summarized in the 0.1, 0.3, 0.5, 0.7 and 0.9 125 
quantiles (Ratcliff and Tuerlinckx, 2002). Following the analysis of Smith & Corbett (2019), we 126 
verified that the individual RT quantiles could be safely averaged across participants without 127 
causing distortion by plotting the quantiles of the marginal RT distributions for the individual 128 
participants against the group-averaged quantiles, for each of the 8 conditions (Figure 1-Figure 129 
Supplement 1). The quantiles of the individual distributions were seen to fall on a set of very straight 130 
lines, indicating that the quantile-averaged distribution belongs to the same family as the set of its 131 
component distributions (Smith and Corbett, 2019), thus approximating the conditions for safe 132 
quantile-averaging identified by Thomas and Ross (1980). We calculated the Pearson correlations 133 
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between each individual’s quantiles and the group average with that individual excluded, for each 134 
condition (see Figure 1-Figure Supplement 2), finding that the lowest r2 was 0.965 while most 135 
values were above 0.99. These analyses indicate that quantile-averaging will produce a valid 136 
characterization of the pattern of behavioral data in the individuals. 137 

EEG Signatures of Motor Preparation. Decreases in spectral amplitude in the beta band 138 
(integrated over 14-30Hz) over motor cortex reliably occur with the preparation and execution of 139 
movement (Pfurtscheller, 1981). When the alternative responses in a decision task correspond to 140 
movements of the left and right hands, the signal located contralateral to each hand leading up to 141 
the response appears to reflect effector-selective motor preparation that is predictive of choice 142 
(Donner et al., 2009). Furthermore, before the onset of sensory evidence the ‘starting levels’ of the 143 
signals reflect biased motor preparation when prior expectations are biased (de Lange et al., 2013), 144 
and are higher under speed pressure for both alternatives (Kelly et al., 2021; Murphy et al., 2016; 145 
Steinemann et al., 2018), implementing the well-established decision variable (DV) adjustments 146 
assumed in models (Bogacz et al., 2010; Hanks et al., 2014; Mulder et al., 2012). The signal 147 
contralateral to the chosen hand then reaches a highly similar level at response irrespective of 148 
stimulus conditions or response time, consistent with a fixed, action-triggering threshold (Devine et 149 
al., 2019; Feuerriegel et al., 2021; Kelly et al., 2021; O’Connell et al., 2012; Steinemann et al., 150 
2018). The level of beta before stimulus onset also predicts response time, and its post-stimulus 151 
buildup rate scales with evidence strength, underlining that this signal reflects both evidence-152 
independent and evidence-dependent contributions to the decision process (Steinemann et al., 153 
2018). Thus, we can interpret the left- and right-hemisphere beta as reflecting two race-to-threshold 154 
motor-preparation signals whose buildup trace the evolution of the decision process from stimulus 155 
anticipation through to the response (Devine et al., 2019; Kelly et al., 2021; O’Connell et al., 2012). 156 

Here, prior to stimulus onset, motor preparation (decrease in beta amplitude) began to build in 157 
response to the value cue, first for the high-value alternative and later for the low-value alternative 158 
(F(1,16)=15.8, p=.001, partial η2=0.5 for jackknifed onsets, Figure 2A), and continued to build for 159 
both alternatives after stimulus onset. Consistent with prior work suggesting an action-triggering 160 
threshold, the signal contralateral to the chosen hand reached a highly similar level at response 161 
irrespective of cue-type, coherence or regime (Figure 2B). Before the stimulus onset, rather than 162 
generating a stable starting level bias the motor preparation signals continued to increase 163 
dynamically. This replicates similar anticipatory buildup observed in a previous experiment with prior 164 
probability cues, and does not reflect an automatic priming due to the cue because its dynamics 165 
vary strategically with task demands such as speed pressure (Kelly et al., 2021). Thus, we take the 166 
anticipatory buildup to reflect dynamic urgency that, independent of but in addition to the evidence, 167 
drives the signals towards the threshold (Churchland et al., 2008; Hanks et al., 2014; Murphy et al., 168 
2016; Steinemann et al., 2018; Thura and Cisek, 2014). 169 

We examined this anticipatory activity for evidence of value bias in the period immediately before 170 
stimulus onset (Figure 2A). Preparation for the high-value alternative was greater than that for the 171 
low-value alternative 750ms after the cue (F(1,16)=17.6, p<.001, partial η2=0.52). However, despite 172 
their later onset, the buildup rates of motor preparation signals for the low-value alternative were 173 
significantly steeper (slope from 700-800 ms, F(1,16)=14.7, p=.001, partial η2=.48), indicating a 174 
negative buildup-rate bias. These beta slopes for the high and low-value alternatives, averaged 175 
across conditions, are shown for each individual in Figure 2-Figure Supplement 1. Despite absolute 176 
levels of beta amplitude varying quite widely across the group, as is typical in human EEG, the 177 
majority of individuals (14 out of 17) show steeper buildup for the low-value alternative. As a 178 
consequence of these differences in onset and buildup rate, the bias in relative motor preparation 179 
favouring the high-value cue peaked at around 600 ms post-cue and then began to decline before 180 
stimulus onset (Figure 2C).  181 

Next, to trace the rapid stimulus-evoked dynamics of the decision process with higher temporal 182 
resolution, we examined the broadband lateralized readiness potential (LRP). This differential signal 183 
represents the relative motor preparation dynamics between the hands associated with the correct 184 
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and error responses (Afacan-Seref et al., 2018; Gluth et al., 2013; Gratton et al., 1988; 185 
Noorbaloochi et al., 2015; Van Vugt et al., 2014), here examined relative to a peri-stimulus baseline 186 
interval (-50-50 ms) in order to emphasize fast stimulus-evoked dynamics (Figure 2D; see also 187 
Figure 2-Figure Supplement 2 for an analysis of the pre-stimulus LRP). Beginning approximately 188 
100 ms after the stimulus, there was a deflection in the direction of the cued choice (in the correct 189 
direction for high-value trials and incorrect direction for low-value trials, F(1,16)=20.3, p<.001, partial 190 
η2=.56, effect of value on the mean LRP from 150-180 ms, Figure 2D). We refer to this initial 191 
deflection as a “bolus,” following a similar finding by Noorbaloochi et al., (2015). The sensory 192 
evidence appears to begin to affect motor preparation at around 150 ms when the LRP for the low-193 
value trials begins to turn around and build in the correct direction.  194 

Together these signals indicate that motor preparation passed through several key phases. 195 
Anticipatory buildup began first for the high-value alternative, followed by low-value preparation 196 
which, beginning to compensate for its lower level, reached a higher buildup rate before stimulus 197 
onset, constituting a negative buildup-rate bias. Then, stimulus onset evoked a brief value-biased 198 
deflection, consistent with a positive drift-rate bias effect, before giving way to a final phase 199 
dominated by discriminatory sensory information. 200 

 201 

Figure 2: Grand average (n=17) EEG signatures of motor preparation. A Unilateral beta amplitude, 202 
contralateral to high- and low-value alternatives in the period after the cue and before the motion 203 
stimulus appeared at 850 or 900 ms; Note that the Y-axis is flipped such that decreasing amplitude 204 
(increasing motor preparation) is upwards. Topographies are for left-cued trials averaged with the 205 
right-left flipped topography for right-cued trials, so that the right side of the head-plot represents the 206 
hemisphere contralateral to the high-value side. Amplitude topography reflects beta amplitude at 207 
750 ms relative to amplitude at cue onset, and slope is measured from 700-800 ms. B Beta 208 
amplitude contralateral to response for correct trials only, relative to stimulus onset. Error bars are 209 
the standard errors of amplitudes 50 ms before response, with between-subject variability factored 210 
out, plotted against RT. Trials were separated by session and coherence, showing high- and low-211 
value correct trials median-split by RT and low-value error trials. C Relative motor preparation (the 212 
difference between the waveforms in panel A), highlighting the pre-stimulus decline due to steeper 213 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 2, 2022. ; https://doi.org/10.1101/2021.03.08.434248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434248
http://creativecommons.org/licenses/by/4.0/


Page 6 of 31 
 

low-value urgency. D LRP: ipsilateral - contralateral to correct response calculated at standard sites 214 
C3/C4, so that deflection upward corresponds to relative motor preparation in the correct direction. 215 
LRP waveforms were baseline corrected with respect to the interval -50-50 ms to focus on local 216 
stimulus-evoked dynamics. Topography shows the difference in amplitude between left- and right-217 
cued trials at 150-180 ms relative to baseline. All waveforms derived from all trials regardless of 218 
accuracy unless otherwise stated. 219 

Model Development. We next sought to construct a decision process model that can capture both 220 
behavior and the motor preparation dynamics described above. Probably the most widely-used 221 
evidence-accumulation model for two-alternative decision making is the diffusion decision model 222 
(DDM, Ratcliff, 1978), which describes a one-dimensional stationary evidence accumulation process 223 
beginning somewhere between two decision bounds and ending when one of the bounds is 224 
crossed, triggering the associated response action. The time this process takes is known as the 225 
decision time, which is added to a nondecision time (accounting for sensory encoding and motor 226 
execution times) to produce the final RT. This model has been successfully fit to the quantiles of RT 227 
distributions (e.g. Figure 1-Figure Supplement 1) for correct and error responses across a wide 228 
range of perceptual decision contexts. Traditionally, value biases can be incorporated into this 229 
framework by either biasing the starting point closer to one bound than the other or biasing the rate 230 
of evidence accumulation, the former of which generally better describes behavior (Ratcliff and 231 
McKoon, 2008). However, researchers have found that when there is a need to respond quickly, a 232 
stationary evidence accumulation model is not sufficient to capture the pattern of value biases in 233 
behavior, which exhibits a dynamic transition from early, value-driven responses to later evidence-234 
based ones. Accounting for this fast value-biased behavior in a DDM framework has instead 235 
required a non-stationary drift rate; either a dual phase model with an initial value-based drift rate 236 
transitioning to a later evidence-based one (Diederich and Busemeyer, 2006), or combining a 237 
constant drift rate bias with a gradually increasing sensory evidence function (Afacan-Seref et al., 238 
2018). Alternatively, Noorbaloochi et al (2015) proposed a linear ballistic accumulator model with a 239 
probabilistic fast guess component that was driven by the value information. However, in each of 240 
these approaches evidence accumulation begins from a stable starting point, meaning they could 241 
not account for the dynamic biased anticipatory motor preparation activity.  242 

Combined urgency + evidence-accumulation model: As noted above, we interpreted the anticipatory 243 
beta changes to be reflective of a dynamic urgency driving the motor preparation for each 244 
alternative towards its threshold, independent of sensory evidence. Urgency has been found to be 245 
necessary to explain the more symmetrical RT distributions found in many speed-pressured tasks, 246 
as well as the sometimes-strong decline in accuracy for longer RTs in these conditions. Urgency 247 
has been implemented computationally in a variety of ways, reviewed in detail by Smith & Ratcliff 248 
(2021) and Trueblood et al. (2021). While models assuming little or no accumulation over time 249 
characterize urgency as a “gain” function that multiplies the momentary evidence, models centered 250 
on evidence accumulation assume that urgency adds to cumulative evidence in a DV with a fixed 251 
threshold, which is mathematically equivalent to a bound on cumulative evidence that collapses 252 
over time (Drugowitsch et al., 2012; Evans et al., 2020; Hawkins et al., 2015; Malhotra et al., 253 
2017). The latter, additive urgency implementation is consistent with neurophysiological signatures 254 
of urgency found across multiple evidence strengths including zero-mean evidence (Churchland et 255 
al., 2008; Hanks et al., 2011) and provides the most natural interpretation of the beta signals here 256 
due to their anticipatory, pre-stimulus buildup before evidence accumulation was possible.  We 257 
therefore drew on a recently proposed model for decisions biased by prior expectations with two 258 
discrete levels: the one-dimensional accumulation of stimulus-evoked activity (noisy sensory 259 
evidence and bias) is fed to a ‘motor’ level where it is combined additively with evidence-260 
independent buildup components that linearly increase with time (Murphy et al., 2016; Steinemann 261 
et al., 2018) to generate the motor-level DVs engaging in a race to the bound (Kelly et al., 2021, 262 
Figure 3A). 263 

Distinct pre-stimulus starting levels were set for the DV contralateral (parameter Zc) and ipsilateral 264 
(Zi) to the direction of the value cue for each regime. Extrapolating from the anticipatory motor 265 
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preparation buildup, we assumed the operation of linearly-increasing urgency, which was also 266 
biased by the value cue. The urgency buildup rates varied from trial to trial independently for the two 267 
response alternatives, in a Gaussian distribution with means Uc,i  and standard deviation su. We 268 
assume in all models that the accumulation process takes an additive combination of noisy stimulus 269 
evidence plus a stimulus-evoked bias, both of which are implemented in alternative ways for 270 
comparison as detailed below. We refer to that combination as the "cumulative evidence plus bias" 271 
function, 𝑥(𝑡). The DVs were then generated by adding the cumulative evidence plus bias in favor 272 
of either alternative to the corresponding motor-level urgency signal, triggering a decision at the 273 
“decision time” when the first reached the bound:    274 

𝐷𝑉1(𝑡) = 𝑚1(𝑡) + ⌊𝑥(𝑡)⌋ (1) 

𝐷𝑉2(𝑡) = 𝑚2(𝑡) + ⌊−𝑥(𝑡)⌋ (2) 

Here 𝐷𝑉1 and 𝐷𝑉2 represent the DVs for the correct and incorrect responses respectively, which 275 
were updated in our simulations at a time interval 𝑑𝑡 = 1 ms. 𝑚1 and 𝑚2 represent the motor-level 276 
urgency contributions contralateral and ipsilateral to the cued direction on high-value trials, and the 277 
reverse on low-value trials. The motor level contribution was defined as: 278 

𝑚1(𝑡) = 𝑧1 + 𝑢1. (𝑡 − 𝑇𝑧) (3) 

𝑚2(𝑡) = 𝑧2 + 𝑢2. (𝑡 − 𝑇𝑧) (4) 

𝑧1 and 𝑧2 represent the starting levels for the DVs at pre-stimulus time,  𝑇𝑧,  at which the starting 279 
beta levels are measured; and 𝑢1 and 𝑢2 represent the urgency rates for the two alternatives on that 280 
trial. For example, in a high-value trial (in which the cued direction is the correct response): 281 

𝑢1~𝑁(𝑈𝑐 , 𝑠𝑢); 𝑧1 =  𝑍𝑐, and (5) 

𝑢2~𝑁(𝑈𝑖 , 𝑠𝑢); 𝑧2 =  𝑍𝑖. (6) 

The cumulative evidence plus bias, 𝑥(𝑡) is positive in the direction of the correct response, and the 282 
half-wave rectification operation, ⌊𝑥⌋ = max (0, 𝑥), apportions the positive and negative components 283 
to the appropriate DVs. All the above equations are defined for the time following 𝑇𝑧.   284 

The trial RT was obtained by adding to the decision time a motor execution time; this varied from 285 
trial to trial on a uniform distribution with mean Tr which varied between the regimes, and range st. 286 
Allowing for regime differences in motor execution was important as its timing is known to be 287 
affected by speed/accuracy settings (Kelly et al., 2021; Rinkenauer et al., 2004; Weindel et al., 288 
2021). In previous work we had constrained the mean motor-execution time parameter using an 289 
EEG motor-evoked potential (Kelly et al., 2021). However, likely due to the substantially increased 290 
model constraints in the current study (see Neural Constraints section below), we found in 291 
preliminary analyses that constraining the motor-execution times in this way was detrimental to our 292 
fits. The cumulative evidence plus bias function was initiated at the time of stimulus onset 𝑥(0) =0, 293 
and updated according to the following equation: 294 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 2, 2022. ; https://doi.org/10.1101/2021.03.08.434248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434248
http://creativecommons.org/licenses/by/4.0/


Page 8 of 31 
 

𝑥(𝑡) = 𝑥(𝑡 − 𝑑𝑡) + 𝐵(𝑡). 𝑑𝑡 +  𝜇(𝑡). 𝑑𝑡 + 𝑤(𝑡). √𝑑𝑡 (7) 

Here 𝐵(𝑡) represents the stimulus evoked bias, 𝜇(𝑡) is the drift rate of the evidence. The within-trial 295 
noise, 𝑤(𝑡), is Gaussian-distributed with standard deviation 𝜎(𝑡):  296 

𝑤(𝑡)~𝑁(0, 𝜎(𝑡)). (8) 

 297 

Figure 3 Model Schematic. A Components of the model with a transient burst of stimulus-evoked 298 
bias and increasing evidence (‘BurstIE’), with example traces for the cumulative sum of evidence 299 
plus bias, urgency and the resultant motor-level DV traces from a simulated low-value trial. A delay 300 
Tac after stimulus onset, t0, the combination of a sudden detection-triggered bias function and 301 
growing, noisy sensory evidence began to be accumulated, and with the addition of urgency drove 302 
the race between two DVs toward the threshold. The cumulative evidence plus bias was half-wave 303 
rectified such that (positive) evidence towards the correct (low-value) response was added to the 304 
low-value urgency signal, and vice versa. B Alternative evidence and noise functions. For SE 305 
models both stepped abruptly to their asymptotic value whereas for IE models both increased 306 
according to a gamma function. C Alternative drift-rate bias functions. For ‘Burst’ models the 307 
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duration of bias was short, with a maximum of 72 ms, whereas sustained drift-rate bias (‘Sust’) 308 
models had a bias that continued throughout the trial. Waveforms are not drawn to scale. 309 

Neural Constraints: Based on the principle that neural constraints permit greater model complexity 310 
without unduly increasing degrees of freedom (O’Connell et al., 2018), from the anticipatory motor 311 
preparation signals we adopted constraints on not just starting levels (Kelly et al., 2021) but also the 312 
biased mean urgency buildup rates. The mean beta starting levels (750 ms post cue) and slopes 313 
(from 700-800 ms post-cue) were calculated for each regime across participants. To obtain the 314 
model parameters, we linearly re-scaled the beta signals within a range from 0, corresponding to 315 
the lowest starting level, to a fixed bound of 1 corresponding to the beta threshold—the average 316 
value of beta contralateral to the chosen hand across all conditions 50 ms prior to response (see 317 
Figure 4A). The setting of the bound at 1 was an arbitrary choice and serves as the scaling 318 
parameter for the model. The starting levels and mean rates of urgency buildup for the high and 319 
low-value alternatives were set to equal the amplitude and temporal slope of the corresponding 320 
scaled beta signals for each regime (Table 1). 321 

Table 1: EEG-constrained parameters. 322 
Parameter Symbol High 

Coherence 
Low 
Coherence 

Interleaved 

Starting point contralateral to high value Zc .33 .3 .2 
Starting point ipsilateral to high value Zi .14 .003 0 
Mean urgency rate contralateral to high value Uc 1.33 1.06 1.26 
Mean urgency rate ipsilateral to high value Ui 1.78 1.66 1.76 

 323 
Within this neurally-constrained urgency model framework, we fit several alternative bounded 324 
accumulation models to the data for comparison. Specifically, we explored whether the data were 325 
better captured by a stationary (Ratcliff and McKoon, 2008) or growing (Afacan-Seref et al., 2018; 326 
Smith and Lilburn, 2020) evidence function, and by a sustained (Afacan-Seref et al., 2018) or 327 
transient (Diederich and Busemeyer, 2006) drift-rate bias, by comparing four main model variants 328 
that featured two plausible alternative ways to implement noisy evidence accumulation and two 329 
different stimulus-evoked biasing mechanisms: 330 

Evidence and noise functions: We compared models with a standard stationary evidence (SE) 331 
function with abrupt onset to increasing evidence (IE) models where the evidence and noise 332 
gradually grow with time (Smith et al., 2014; Smith and Lilburn, 2020) (Figure 3B). Both model types 333 
had an asymptotic drift rate parameter, ν, to which the mean of the sensory evidence stepped (SE) 334 
or gradually tended (IE), for each coherence level. A single within-trial noise parameter (s) dictated 335 
the asymptotic standard deviation of Gaussian-distributed within-trial noise. We also estimated an 336 
onset time for accumulation, Tac, relative to stimulus onset. In the SE models this parameter 337 
signalled the onset of the bias accumulation (see below), while the noisy evidence stepped up at a 338 
later time, Tev:  339 

𝜇𝑆𝐸(𝑡) =  {
𝜈 𝑖𝑓 𝑡 > 𝑇𝑒𝑣

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9) 

𝜎𝑆𝐸(𝑡) =  {
𝑠 𝑖𝑓 𝑡 > 𝑇𝑒𝑣

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

In the IE models, the bias, evidence, and noise functions all began at Tac. The increasing evidence 340 
and noise functions used were those developed for a time-changed diffusion model (Smith et al., 341 
2014; Smith and Lilburn, 2020) in which the drift rate ν, and diffusion coefficient s2 (the squared 342 
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standard deviation of the Gaussian-distributed within-trial noise), are both scaled by a growth rate 343 
function 𝜗: 344 

𝜇𝐼𝐸
(𝑡) =  𝜈. 𝜗(𝑡) (11) 

𝜎𝐼𝐸(𝑡) = 𝑠. √𝜗(𝑡) 
(12) 

Following Smith and Lilburn (2020, see equation 9), 𝜗 took the form of an incomplete gamma 345 
function with rate β, where the argument n and β were free parameters: 346 
 347 

𝜗(𝑡) = {

1

Γ(𝑛)
∫ 𝑒−𝑟𝑟𝑛−1𝑑𝑟,   𝑖𝑓 𝑡 > 𝑇𝑎𝑐

𝛽(𝑡−𝑇𝑎𝑐)

0

0,                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13) 

 348 
In this equation Γ(𝑛) is the gamma function. The shape of the function obtained by one of our 349 
model fits is shown in Figure 3B. 350 

Stimulus-evoked bias functions: We also compared two alternative implementations of a drift-rate 351 
bias across different model variants. One featured a sustained drift-rate bias (‘Sust’) which began at 352 
Tac and lasted until response. The other featured a shorter transient bias, inspired by the apparent 353 
concentrated burst of value-biased activity (‘Burst’) before evidence accumulation took hold in the 354 
LRP (Figure 3C). Both functions involved a bias magnitude parameter (νb) for each regime:  355 

𝐵𝑆𝑢𝑠𝑡(𝑡) =  {
±𝜈𝑏 , 𝑖𝑓 𝑡 ≥ 𝑇𝑎𝑐

0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

𝐵𝐵𝑢𝑟𝑠𝑡(𝑡) =  {
±𝜈𝑏, 𝑖𝑓 𝑇𝑎𝑐 ≤ 𝑡 ≤ (𝑇𝑎𝑐 + 𝐵𝑢𝑟𝑠𝑡𝑇)

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(15) 

The bias factor ±𝜈𝑏 was positive for high-value trials and negative for low-value trials. The ‘Burst’ 356 
was composed of a drift-rate bias beginning at Tac whose duration 𝐵𝑢𝑟𝑠𝑡𝑇 varied on a uniform 357 
distribution from 0-72ms. In preliminary analyses we found that the burst magnitude and its range of 358 
durations could trade off each other such that equivalent fits to behavior could be found for a wide 359 
range of values of the latter. We thus fixed the maximum duration to 72 ms because it produced a 360 
simulated-DV bolus similar in duration to the real LRP (Figure 4 B,C; see Methods). We also 361 
restricted Tac to a narrow range of 90-100 ms in the fits, close to the apparent onset of the real LRP 362 
bolus; we did not find that expanding this range helped the models to converge. 363 

Model Fits. Models were fit to the group average of the RT quantiles (see Methods). We did not fit 364 
the models to individual subjects because, in contrast to models solely fit to behavior where each 365 
individual’s data can be taken as an accurate reflection of the outcomes of their true individual 366 
decision process, our neurally-constrained models constrain certain key parameters to equal EEG 367 
beta-amplitude measures. These EEG measures are much less reliable on an individual-subject 368 
level, where it is not unusual to have certain individuals showing no signal at all due to factors 369 
independent of the decision process such as brain geometry. We therefore conduct the modeling on 370 
a grand-average level because grand-average beta-amplitude dynamics are much more robust. 371 
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The increasing-evidence (IE) models performed better than the stationary-evidence (SE) models, 372 
with the BurstIE model providing the best fit to behavior (Table 2). This model captured all the main 373 
qualitative features of the RT distributions, including the indistinguishable (value-driven) leading 374 
edges of correct high-value and incorrect low-value trials (Figure 4 D-E), and the transition from 375 
value-based to evidence-based responses visible in the low-value conditional accuracy functions 376 
(CAFs, Figure 4F). Although the SustIE, BurstSE and SustSE models exhibited a less close 377 
quantitative fit to behavior as reflected in Akaike’s Information Criterion (AIC) and Akaike weights 378 
(W), qualitatively, they all captured the main behavioral patterns reasonably well including the 379 
biased fast guess responses (Figure 4-Figure Supplements 1-3). The estimated parameters for 380 
these four primary models are given in Table 3.  381 

We tested four additional versions of the IE model to assess the contribution of the constrained 382 
urgency and stimulus-evoked bias to the fits (Table 2). First, allowing the urgency rates to be free 383 
parameters, but unbiased by value (Kelly et al., 2021), did not capture the behavior as well as the 384 
constrained BurstIE model. Then, a model with constrained urgency but no stimulus-evoked bias 385 
produced a far inferior fit. These results suggest that in addition to accounting for the slow temporal 386 
integration properties of sensory evidence encoding, incorporating both key insights gained from the 387 
EEG signals was important in capturing behavior. We then verified the specific contribution of 388 
quantitative differences across regimes in the urgency effects measured in the beta signals by 389 
showing that swapping the neural constraints across regimes substantially worsened the fit.  390 

To serve as a benchmark, we also fit the diffusion decision model (DDM), with stationary evidence 391 
accumulation and allowing for bias only in the starting point of evidence accumulation (Ratcliff and 392 
McKoon, 2008), whose performance was markedly worse than all of the neurally-constrained 393 
alternatives. Indeed, this poor performance was expected given there are substantive qualitative 394 
features of the data that the DDM is not equipped to capture, such as the value-driven leading edge, 395 
the fast transition from value- to evidence-based responses, and the symmetric RT distributions as 396 
has been established before (Afacan-Seref et al., 2018; Diederich and Busemeyer, 2006; Kelly et 397 
al., 2021). The estimated parameters for the DDM are given in Table 4.  398 

Finally, in the last 7 rows of Table 2 we report the performance of selected neurally-constrained 399 
models that incorporate additional parameters which were included in a neurally-constrained model 400 
from previous work (Kelly et al., 2021) but had little effect here. First, a central finding from (Kelly et 401 
al., 2021), which involved an extreme speed-pressure manipulation, was that the drift rate 402 
parameter increased under speed pressure for the same stimulus coherence. Thus, the: “BurstIE + 403 
drift boost” model allowed an additional drift boost parameter in the high coherence blocked 404 
condition, relative to the high-coherence interleaved condition. This resulted in an almost identical 405 
G2, suggesting that in this case the much more subtle speed pressure manipulation between the 406 
conditions was not sufficient to replicate the effect. Second, their model had a uniformly distributed 407 
starting-level variability with a range parameter, sZ, applied independently to the constrained mean 408 
starting levels of the DVs. This parameter did not improve our fits to any of the four neurally-409 
constrained models (listed in rows 11-14). Third, it was possible that the effect of the gradual 410 
integration of motion evidence could be captured in the SE models by allowing for variability in the 411 
evidence onset time, Tev. Whereas Kelly et al., (2021) incorporated variability in accumulation onset 412 
relative to a fixed evidence onset time, it was more convenient here to incorporate a qualitatively 413 
similar feature by varying evidence onset, since accumulation onset was anchored to the onset of 414 
the LRP bolus response. We found that adding such variability, uniformly distributed with range 415 
sTev, very slightly improved performance of the BurstSE model and did not help the SustSE model. 416 
Neither were improved to an extent where they could compete with the best-fitting BurstIE model.  417 

 418 

 419 

 420 
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Table 2. Goodness of fit metrics. 421 
Model Stimulus-evoked 

bias 
Evidence k G2 AIC W 

BurstIE Burst Increasing 14 43 71 .47 
SustIE Sustained Increasing 14 60 88 .0001 
BurstSE Burst Stationary 13 69 95 0 
SustSE Sustained Stationary 13 89 115 0 
Unbiased urgency slopes Burst Increasing 17 54 88 .0001 
Urgency-only bias None Increasing 11 362 384 0 
DDM None Stationary 14 606 634 0 
Constraints-Swap 1 Burst Increasing 14 272 300 0 
Constraints-Swap 2 Burst Increasing 14 122 150 0 
BurstIE + drift boost Burst Increasing 15 42 72 .22 
BurstIE + sZ Burst Increasing 15 42 72 .31 
SustIE + sZ Sustained Increasing 15 59 89 0 
BurstSE + sZ Burst Stationary 14 69 97 0 
SustSE + sZ Sustained Stationary 14 92 120 0 
BurstSE + sTev Burst Stationary 14 64 92 0 
SustSE + sTev Sustained Stationary 14 92 120 0 

Goodness of fit quantified by chi-squared statistic, G2. Model comparison was performed using 422 
Akaike’s Information Criterion (AIC), which penalises for the number of free parameters (k). The 423 
Akaike Weights (W) shown, which can be cautiously interpreted as the probability that each model 424 
is the best in the set, are calculated here based on the set of models in this table. The probability 425 
mass is shared between the different versions of the BurstIE model. In the two Constraints-Swap 426 
models, the constrained parameters for A) high coherence, B) low coherence and C) interleaved 427 
blocks were taken from the neural signals corresponding to [B,C,A] (Swap 1) and [C,A,B] (Swap 2), 428 
respectively. 429 

 430 
Figure 4: Real and model-simulated waveforms and behavior for blocked session (top row) and 431 
interleaved session (bottom row). A Scaled beta signals used to constrain the models. The high 432 
versus low-value difference in starting level varied across regime (Regime x Value interaction 433 
F(2,32)=4.1, p=.03, partial η2=.84; pairwise comparisons of value-difference indicated low 434 
coherence blocked > high coherence blocked, p=0.01). The Regime x Value interaction for slope 435 
was not statistically significant (F(2,32)=0.11, p=.89, partial η2=.96); B Real LRP. There was a 436 
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significant interaction in bolus amplitude (mean LRP from 150-180 ms) between Value and 437 
Condition (F(3,48)=2.9, p=.04, partial η2=.16). Pairwise comparisons of the value difference 438 
provided moderate evidence that the blocked high-coherence condition had a larger difference than 439 
the interleaved high-coherence condition (p=0.09, BF10 = 3.87); there were no significant 440 
differences between the other conditions (all p>0.23). C Mean simulated trajectories of the 441 
difference between correct and incorrect DVs from the best-fitting model with Burst drift-rate bias 442 
and increasing evidence (BurstIE); D-E Real (circles) and model-simulated (solid lines) RT 443 
distributions. F Real and model-simulated conditional accuracy functions (CAFs). All waveforms 444 
derived from all trials regardless of accuracy. 445 

Table 3: Estimated parameters for the four main models. 446 
Parameter Symbol BurstIE SustIE BurstSE SustSE 

Asymptotic drift rate (high coherence) νh 6.4 8.4 4.9 4.6 

Asymptotic drift rate (low coherence) νl 2.8 3.3 2.1 2.1 

Drift rate bias (high coherence blocked) νbh 2.4 .63 2.3 0.51 

Drift rate bias (low coherence blocked) νbl 2.3 .49 2.4 0.46 

Drift rate bias (interleaved) νbi 3.1 .74 3.1 0.63 

Within-trial noise asymptotic standard deviation s 1.13 1.16 0.93 0.81 

Accumulation onset time (ms) Tac 90 90 91 91 

Burst duration range (ms) brange 72 --- 72 ---- 

𝜗(𝑡) − rate β 54.9 41.4 --- --- 

𝜗(𝑡) − argument  n 6.9 6.7 --- --- 

Evidence onset time (ms) Tev --- --- 205 223 

Mean motor time (high coherence blocked) (ms) Trh 86 72 73 57 

Mean motor time (low coherence blocked) (ms) Trl 85 67 74 54 

Mean motor time (interleaved) (ms) Tri 95 79 84 63 

Urgency rate variability su 0.42 0.46 0.39 0.4 

Motor time variability (ms) st 65 65 81 80 

Note: Fixed parameter shown in bold typeface. 447 
 448 
Table 4: Estimated parameters for the DDM 449 
Parameter Symbol DDM 

Drift rate (high coherence) νh 6.34 

Drift rate (low coherence) νl 3.5 

Bound (high coherence blocked) ah 0.17 

Bound (low coherence blocked) al 0.18 

Bound (interleaved) ai 0.16 

Starting point bias (high coherence blocked) zb_h 0.12 

Starting point bias (low coherence blocked) zb_l 0.1 

Starting point bias (interleaved) zb_i 0.11 

Nondecision time (high coherence blocked) (ms) Ter_h 0.27 

Nondecision time (low coherence blocked) (ms) Ter_l 0.3 

Nondecision time (interleaved) (ms) Ter_i 0.31 

Starting-point variability sz 0.09 

Nondecision time variability st 0.13 

Drift rate variability η 6.39 

Decision Variable Simulations. We qualitatively explored the correspondence between the fast 450 
neural dynamics of the LRP and simulated decision process by plotting the difference between the 451 
two DVs (Figure 4 B-C). The starting levels are not comparable because, unlike the simulated 452 
process, the real LRP was baseline corrected, and the initially decreasing value bias in the 453 
simulated waveforms is not seen in the LRP due to interfering posterior slow potentials (see Figure 454 
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2-Figure Supplement 2). There was, however, good correspondence between the dynamics from 455 
the onset of the deflection, which was notably absent in the alternative SustIE and SustSE model 456 
simulations (Figure 4-Figure Supplements 1,3). The BurstIE model effectively captured aspects of 457 
both EEG motor preparation signatures through its distinct countervailing biasing mechanisms. 458 
While our previous work compared the absolute value of the simulated cumulative evidence and 459 
bias function (x(t)) to the centroparietal positivity (CPP)—an event related potential thought to be 460 
related to evidence accumulation (Kelly et al., 2021)—here this component was obscured by large 461 
potentials evoked by the sudden stimulus onset, and thus could not be reliably used in the same 462 
way. 463 

Jack-knifing Procedure for Model Comparison. The variability in individual-participant EEG 464 
precluded us from performing neurally-constrained modeling at the individual level, so it was not 465 
possible to verify that this model comparison would hold for all participants. While the analysis 466 
represented in Figure 1-Figure Supplements 1 and 2 reassured us that the quantile-averaging of the 467 
data did not cause distortion, we nevertheless sought to take a step towards quantifying how much 468 
our participant selection affected the model comparison results. To this end, we repeated the model 469 
comparison for the 4 main neurally-constrained models and the DDM 17 times in turn with one 470 
participant excluded each time. The BurstIE model was strongly preferred for all of the samples (see 471 
Figure 4-Figure Supplement 5).  472 

Discussion 473 

Convergent evidence from motor preparation signals and behavioral modeling demonstrated that a 474 
dynamic sequence of opposing value biases and non-stationary evidence accumulation all played 475 
important roles in forming the rapid, multiphasic decisions on this task. In most decision-making 476 
models a “starting-point bias” parameter—shifting the starting point of accumulation—treats 477 
anticipatory biases as static adjustments before the process begins (Leite and Ratcliff, 2011; Mulder 478 
et al., 2012). Here, far from creating a stable starting point to kick off a stationary decision process, 479 
we found a dynamic pattern of biased motor preparation that is best understood as a two-480 
dimensional race beginning well in advance of the stimulus. Constraining a behavioral model with 481 
these signals enabled us to characterize a surprisingly complex process, revealing biasing 482 
mechanisms that would otherwise have been inaccessible. 483 

In agreement with previous research that has called for nonstationary accounts of value biasing in 484 
time-pressured decisions (Diederich and Busemeyer, 2006), we found that the value bias was 485 
largely concentrated in the early part of the process. The particular dynamics of the RDK stimulus, 486 
featuring a substantial lag between stimulus onset and the emergence of discriminatory sensory 487 
evidence, may have provided a focal point for the bias to be expressed separately from the 488 
evidence itself; indeed the model comparison very clearly favored the growing sensory evidence 489 
and noise. However, the signature expressions of this sequential detection-discrimination effect—490 
namely, the almost purely value-driven nature of both the leading edge of RT distributions and of 491 
the initial stimulus-evoked LRP deflection—are observed also for discriminations of stimulus 492 
displacement (Noorbaloochi et al., 2015) and color (Afacan-Seref et al., 2018), suggesting the 493 
phenomenon generalises beyond the RDK stimulus. While our findings indicate that a strong 494 
transient drift-rate bias better captures the data relative to a sustained, constant bias, the possibility 495 
of a hybrid of the two, where the initial detection-triggered burst reduces to a smaller sustained bias, 496 
was not tested because it was assumed to go beyond a reasonable number of free parameters. 497 
Thus, uncertainty remains regarding the exact temporal profile of this stimulus-evoked bias, and we 498 
cannot say that it fully disappears beyond the burst.  499 

The dynamic shift from value to evidence-driven accumulation is reminiscent of conflict tasks, for 500 
which a stationary drift rate is similarly insufficient to describe the observed behavioral patterns. In 501 
these tasks, the context in which a perceptual stimulus is presented (i.e. features of the stimulus 502 
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that are irrelevant to the task requirements) can be congruent with either the correct or the incorrect 503 
response. The latter case causes conflict that results in slower and more error-prone responding 504 
(Eriksen and Eriksen, 1974; Lu and Proctor, 1995; MacLeod, 1991), and produces signatures of 505 
competing motor plans in the LRP that are similar to those found here (Gratton et al., 1988). 506 
Prominent accounts of these tasks posit that an automatic processing of the stimulus happens in 507 
parallel with the controlled (decision) process (Servant et al., 2016; Ulrich et al., 2015). It is plausible 508 
that the LRP ‘bolus’ in our study could arise from a related mechanism in which the value cue 509 
automatically ‘primes’ a response, although it seems likely that value-biased responding is more 510 
intentional since it may confer a benefit in terms of the increased reward. Indeed, the patterns of 511 
biased anticipatory motor preparation we see in this study can not be present in tasks where the 512 
conflict does not arise until after stimulus onset; in such tasks the anticipatory mu/beta buildup 513 
activity while present is unbiased (Feuerriegel et al., 2021). In the case of these beta signals, the 514 
fact that the buildup happens earlier under speed pressure (Kelly et al., 2021) suggests that they 515 
are much more likely to be strategic rather than automatic, and we would not expect a bottom-up 516 
lateralization in response to the physical appearance of the cues due to their symmetric design. 517 
Nonetheless, even if different in nature, some of the functional dynamics arising from our value bias 518 
cues are interestingly similar to those arising from conflict tasks where both competing influences 519 
are externally presented. 520 

The implication of a negative buildup-rate bias in urgency is counterintuitive but not completely 521 
without precedent. In the context of the DDM with unequal prior probabilities, Moran (2015) found 522 
that a negative drift-rate bias featured alongside a starting point bias in the optimal decision strategy 523 
under certain assumed bound settings, albeit not when bound settings were assumed controllable 524 
as part of the optimization calculation. Here, a similar tradeoff between the positive starting-level 525 
bias and negative urgency-rate bias may have arisen from the fact that the greater the starting point 526 
bias, the greater the need for a steeper low-value urgency signal to give it a chance to overtake the 527 
high-value signal when the low-value DV represents the correct response. 528 

Understanding the processes generating the behaviors in this task rested on the neurophysiological 529 
identification of strategic urgency biases. The anticipatory nature of the early beta signal buildup 530 
aided in specifically linking it to evidence-independent urgency, and its incorporation in the model 531 
was key to understanding the subsequent processing of the motion stimulus. We conducted the 532 
modeling here on a grand-average level because grand-average beta-amplitude dynamics are 533 
much more robust than those of individuals, but this meant that we were unable to examine 534 
individual differences in behavior. The extent to which these different forms of bias might trade off 535 
each other at the individual level remains for now an open question. Nevertheless, the finding of a 536 
negative urgency rate bias as part of the participants’ dominant strategy highlights the broad range 537 
of dynamic adjustments that can be made during fast-paced sensorimotor decisions.  538 

Methods 539 

Participants. The experiment involved one psychophysical training session and two EEG recording 540 
sessions. As the task was challenging, the training session served a dual purpose of giving 541 
participants the time to learn the task and to screen out those who found it too difficult. Twenty-nine 542 
adult human participants performed the training session. Eleven discontinued due to either 543 
insufficient performance on the task, or conflicting commitments. Eighteen participants (8 female) 544 
thus completed the two EEG sessions. Motor preparation biasing effects tend to be consistent and 545 
robust (e.g. effect sizes of at least d=1 for similar “bolus” effects in Afacan-Seref et al., 2018), and 546 
15-18 participants provide 80% power to detect medium-to-large effect sizes. Participants all had 547 
normal or corrected-to-normal vision. They each provided informed, written consent to the 548 
procedures, which were approved by the Ethics Committee of the School of Psychology at Trinity 549 
College Dublin, and the Human Research Ethics Committee for the Sciences, at University College 550 
Dublin. Participants were compensated with €20 for the training session and €32 for their 551 
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participation in each EEG session with the potential to earn up to €12 extra depending on their 552 
performance. One of the participants was an author and the remainder were naive. 553 

Setup. Participants were seated in a dark booth, with their heads stabilized in a chin rest placed 57 554 
cm from a cathode ray tube monitor (frame rate 75 Hz, resolution 1024 × 768) with a black 555 
background. They rested their left/right thumbs on the left/right buttons of a symmetric computer 556 
mouse secured to the table in front of them.  557 

Task. The task was programmed in Psychtoolbox for MATLAB (Brainard, 1997). Trials began with 558 
the presentation of a central grey 0.25ᵒ fixation square. Upon achieving fixation (4ᵒ radius detection 559 
window, EyeLink 1000, SR Research), a value cue replaced the fixation square after either 400 or 560 
450 ms (randomly selected) and remained on screen, until the end of the trial (Figure 1). The cue 561 
consisted of equiluminant green and cyan arrows placed and pointing to the left and right of center, 562 
indicating the directions that would be worth 30 points (high value) or 10 points (low value) if 563 
subsequently presented and correctly responded to with the corresponding hand within the 564 
deadline. Incorrect or late responses were worth 0 points. Color-value assignment was randomly 565 
counterbalanced across participants. The RDK stimulus (5ᵒ diameter) appeared and commenced 566 
moving either 850 or 900 ms (randomly selected) after cue onset and lasted 600 or 781 ms for the 567 
shorter or longer deadline conditions, respectively. Participants were required to maintain fixation 568 
throughout, and upon stimulus offset received feedback on whether they were ‘Correct!’, 569 
‘WRONG!’,  ‘TOO SLOW!’ or 'TOO EARLY! WAIT FOR CUE …’  or 'WAYYY TOO SLOW!' if they 570 
didn’t respond at all before the dots turned off.  571 

The task was performed in three blocked regimes: High coherence (51.2%) with a short deadline 572 
(365 ms); low coherence (19.2%) with a slightly longer deadline (475 ms); and interleaved high and 573 
low coherence with the longer deadline. The RDK stimulus was adapted from code from the 574 
Shadlen laboratory (Gold and Shadlen, 2003; Roitman and Shadlen, 2002). A set of white dots were 575 
presented within a circular aperture of 5ᵒ in diameter that was the same black color as the 576 
background. The dot density was 16.7 dots per ᵒ/s. One third of the total number of dots was visible 577 
on screen at any one time; each dot remained on screen for one 13.3-ms frame and was replotted 2 578 
frames later as the 3 sets of dots were alternated. Depending on the coherence level, each dot had 579 
either a 19.2% or 51.2% chance of being replotted by an offset in the direction of coherent motion at 580 
a rate of 5ᵒ/s. Otherwise the dots were randomly relocated within the aperture. The first onset of 581 
coherent motion thus occurred 40 ms (3 frames) after the onset of the stimulus. If an offset dot was 582 
set to be plotted outside of the aperture, it was replotted in a random location on the edge of the 583 
aperture opposite to the direction of motion. 584 

Procedure. So that participants could become familiar with the task, and particularly get used to its 585 
fast pace, they performed one session of psychophysical training before the main experimental 586 
sessions. Blocks in the training sessions comprised 80 trials. The session began with blocks of high-587 
coherence trials with a long deadline and without value bias (20 points for each direction; both arrow 588 
cues were yellow). The deadline was gradually reduced to 365 ms. The same procedure was then 589 
followed for low-coherence blocks. If participants had great difficulty with the low coherence, the 590 
experimenter gave them some further practice starting at 45% and gradually brought it down to 591 
19.2%. Finally, participants practiced an equal number of biased blocks in the high-coherence, low-592 
coherence, and interleaved high- and low-coherence regimes. 593 
 594 
Participants performed the two blocked regimes (5 or 6 blocks each of 120 trials) in one EEG 595 
recording session and the interleaved regime (10 or 12 blocks) in the other. Due to experimenter 596 
error, one participant performed the blocked experimental session twice and we included the data 597 
from both sessions in our analyses. The blocks within each regime were run consecutively to ensure 598 
that subjects would settle into a strategy, and the order of regimes and sessions was randomized. In 599 
training and throughout the EEG recording sessions, participants were encouraged to adopt a 600 
strategy that would maximize their points and were informed that the points earned in two randomly 601 
selected blocks (one per regime in the blocked session) would determine their bonus payment in 602 
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each recording session. Participants were provided with the total number of points earned at the 603 
end of the block as well as the number of points missed in the block for each trial type (blue and 604 
green) to motivate them and help them determine whether they were biasing too much or too little. 605 
The experimenters helped participants interpret this feedback and when needed provided frequent 606 
reminders that it was important to pay attention to both the value cue and the stimulus and that 607 
there were no points awarded for late responses.  608 
 609 
Behavioral analyses.  RTs were measured relative to the onset of the RDK stimulus. RTs less than 610 
50 ms (0.23% of trials) were excluded from analyses and model fitting. Responses up to and 611 
beyond the deadline were included in all analyses so long as they occurred before the end of the 612 
RDK stimulus; trials without a response (0.21% of trials) were excluded. One participant was an 613 
outlier in terms of biasing (error rate difference between low-value and high-value trials fell more 614 
than two interquartile ranges above the upper quartile) and was excluded from further analyses. 615 
 616 
Electrophysiological data analysis. Continuous EEG data from 128 scalp electrodes were 617 
acquired using an ActiveTwo system (BioSemi, The Netherlands) and digitized at 1024 Hz. Offline 618 
analyses were performed using in-house MATLAB scripts (MathWorks, Natick, MA) using data 619 
reading, channel interpolation and topographic plot functions from the EEGLAB toolbox (Delorme 620 
and Makeig, 2004). EEG data were low-pass filtered by convolution with a 137-tap Hanning-621 
windowed sinc function designed to provide a 3-dB corner frequency of 37 Hz with strong 622 
attenuation at the mains frequency (50 Hz), and detrended. The data were epoched from -150 to 623 
2450 ms relative to the cue onset. We identified and interpolated (spherical splines) channels with 624 
excessively high variance with respect to neighboring channels and channels that saturated or flat-625 
lined during a given block. The data were then average-referenced, and trials were rejected upon 626 
detection of artifacts between cue and response (on any channel with magnitude > 70µV, or 50 µv 627 
for the selected motor channels used in our analyses). Then, to mitigate the effects of volume 628 
conduction across the scalp, current source density (CSD) transformation was applied to the single-629 
trial epochs (Kayser and Tenke, 2006; Kelly and O’Connell, 2013). Shorter cue-locked (-150 to 630 
1500ms), stimulus-locked (-1000 to 650ms) and response-locked (-400 to 210ms) event-related 631 
potentials (ERPs) were then extracted from the longer epochs, average-referenced and baseline 632 
corrected to the 100-ms window following the cue. The cue- and stimulus-locked LRP was 633 
calculated as the difference in ERP between electrodes at standard 10-20 sites C3 and C4 (Gratton 634 
et al., 1988), by subtracting the ERP ipsilateral to the correct response from the contralateral ERP. 635 
 636 
Beta-band activity was measured using a short-time Fourier transform applied to 300-ms windows 637 
stepped by 25 ms at a time, and by taking the mean amplitude in the range 14-30 Hz. We restricted 638 
our measurements to the beta band as opposed to including both mu and beta (Kelly et al., 2021) to 639 
avoid any potential interference from posterior alpha-band activity which is known to lateralise in 640 
situations where attention can be guided to the left or right. We found posterior lateralization to be 641 
minimal in the beta-band amplitude, and while there was an appreciable slope difference, this was 642 
clearly separated from the motor-related areas (see Figure 5A). To ensure precise measurements 643 
for model constraints, beta was measured from electrodes selected per individual based on 644 
exhibiting the strongest decrease at response relative to cue or stimulus onset. Standard sites 645 
C3/C4 were selected by default where difference-topography foci were close and symmetric (9 of 17 646 
subjects), and otherwise electrodes were selected among those proximal to the foci based on their 647 
exhibiting smooth decline in their amplitude timecourses from cue to response. Where uncertain, 648 
preference was given to symmetry across hemispheres and electrodes that reached a common 649 
threshold across conditions at response.  650 
 651 
For these individually-selected electrodes (marked in Figure 5A), the contralateral beta just prior to 652 
response (-50ms) reached a threshold across conditions (Figure 5B; the error bars in Figure 2B 653 
break this down further into value and response conditions). The ipsilateral beta diverged between 654 
the blocked high coherence and the other conditions, indicating a closer race for the most speed-655 
pressured condition. When the standard C3/C4 sites were instead selected, however, we found an 656 
offset between the blocked conditions and the interleaved conditions (Figure 5C). This was 657 
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unexpected, but not entirely surprising due to the fact that the blocked and interleaved sessions 658 
were performed on different days for all participants, and the different demands potentially resulted 659 
in some global changes in measured beta amplitude not directly related to motor preparation. The 660 
inset topographies show the overall difference in beta amplitude between the two sessions at 661 
response; the difference does not appear to be of motor origin. As this difference was evident to a 662 
similar degree before the stimulus onset, we recalculated the beta starting points and slopes with 663 
the C3/C4 electrodes after first subtracting the offset between the two sessions at -50ms from 664 
response from all beta traces. We found that the calculated neural constraints were similar 665 
regardless of electrode choice (Table 5).  The starting levels were almost identical except for a small 666 
difference in the low-coherence-blocked levels both contralateral and ipsilateral to high value. The 667 
steeper ipsilateral slope was also maintained and the difference relative to contralateral slope had a 668 
similar magnitude. Due to our desire to obtain the clearest view of motor activity possible, we used 669 
the individually-selected electrodes in our modeling and analyses. 670 

 671 
Figure 5 Electrode selection for beta analysis. A Topographies of the difference between left- and 672 
right-cued trials for beta amplitude at 750 ms relative to amplitude at the cue, and slope from 700-673 
800 ms after the cue. Standard sites C3/C4 are marked with large black dots, while other electrodes 674 
that were selected for certain individuals are marked with smaller dots. B Response-locked beta 675 
contralateral (solid) and ipsilateral (dashed) to response for the four conditions with individually 676 
selected electrodes. C Same as B, but with standard sites C3/C4 selected for all participants. 677 
Topographies show the average difference in beta amplitude between blocked and interleaved 678 
conditions at -50ms relative to response, for right and left responses separately. 679 
 680 
 681 
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Table 5. Scaled beta start-points and slopes for individually-selected electrodes and C3/C4. 682 
Parameter Individually selected C3/C4 

 High 
Coherence 

Low 
Coherence 

Interleaved High 
Coherence 

Low 
Coherence 

Interleaved 

Zc .33 .3 .2 .33 .35 .2 
Zi .14 .003 0 .12 .06 0 

Uc 1.33 1.06 1.26 1.24 0.95 1.17 
Ui 1.78 1.66 1.76 1.66 1.61 1.63 

 683 
Statistical Approach. Repeated measures ANOVAs with both Value and Regime/Conditions 684 
included as appropriate, were used to test for differences in behavioral and neural amplitude and 685 
slope measures, and followed up with pairwise, FDR-corrected t-tests using the Python package 686 
pingouin (Vallat, 2018). Given the study’s focus on mechanisms common to the various conditions, 687 
we state main effects of value in the main text, and address regime effects in the figure legends. 688 
The onsets for the beta signals were calculated using a jackknife procedure in which the traces 689 
were computed for the average signals of 16 subjects at a time, with each subject systematically 690 
excluded in turn, to compute the first time at which it exceeded 20% of the response threshold for 691 
that subgroup. The standard errors of each condition were then scaled up by 16 and a repeated-692 
measures ANOVA was conducted.   693 
 694 
Modeling. We fit several alternative bounded accumulation models to the data for comparison. In 695 
the neurally-constrained models, to linearly scale the pre-stimulus beta signals we defined the 696 
lowest “starting level” and bound to be 0 and 1, respectively. The mean contralateral beta amplitude 697 
50ms before response was mapped to the bound, while the condition with the lowest beta amplitude 698 
750ms after the cue was mapped to 0. 699 
 700 
In the standard DDM (Ratcliff and McKoon, 2008), noisy evidence accumulated in one dimension as 701 
in Equation 7 but without drift-rate bias; B=0. Evidence accumulated to a fixed bound (a) which 702 
varied across the 3 regimes, and there was no urgency. In each regime we allowed a separate 703 
biased mean starting point of accumulation (zb), with uniformly distributed variability sz so that:  704 
 705 

𝑥(0) = ±𝑧𝑏 + 𝑈(−𝑠𝑧 /2, 𝑠𝑧 /2) 
(16) 

where zb has a positive sign for high value trials, and a negative sign for low-value trials. A 706 
nondecision time (Ter) parameter (different for each regime) was also perturbed by uniformly 707 
distributed variability (st) and added to the decision time to obtain the final RT. There were 2 drift-708 
rate parameters—one for each coherence—that were constant over time and common across the 709 
regimes, but varied from trial to trial in a Gaussian distribution with standard deviation η. By 710 
convention, the square root of the diffusion coefficient, or standard-deviation of the within-trial noise, 711 
σ, was fixed at 0.1 and acted as a scaling parameter for the model. 712 
 713 
We fit each model to 16 RT distributions (Figure 4 D-E): correct and error responses for high- and 714 
low-value trials across the four conditions. We partitioned each distribution into 6 bins bounded by 715 
the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles. Models were fit by minimising the chi-squared statistic G2, 716 
between the real quantiles and those obtained from Monte-Carlo simulated RT distributions:  717 

𝐺2 = 2 (∑ ∑ 𝑁𝑐,𝑣

2

𝑣=1

4

𝑐=1

[∑ ∑ 𝑝𝑐,𝑣,𝑜,𝑞log
𝑝𝑐,𝑣,𝑜,𝑞

𝜋𝑐,𝑣,𝑜,𝑞

6

𝑞=1

2

𝑜=1

]) (17) 

where 𝑝𝑐,𝑣,𝑜,𝑞  and 𝜋𝑐,𝑣,𝑜,𝑞 are the observed and predicted proportions of responses in bin q, 718 

bounded by the quantiles, of outcome o (correct/error) of condition c (coherence x 719 
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Blocked/Interleaved) and value v (high/low), respectively. 𝑁𝑐,𝑣 is the number of valid trials per 720 

condition and value.  721 

In the model simulations the urgency signals were defined to equal their scaled (750 ms post-cue) 722 
beta levels at 100 ms prior to stimulus onset time. In the experiment, stimulus onset corresponded 723 
to 850 or 900 ms post cue; thus, we started the stimulus-evoked accumulation with a 50-ms delay 724 
on half of the trials and adjusted the RTs accordingly. For the IE models, the shape function 𝜗(𝑡) 725 
was obtained in our simulations by numerical integration. We searched the parameter space using 726 
the particle swarm optimization algorithm (Kennedy and Eberhart, 1995) as implemented in 727 
MATLAB, initialized with a number of swarms equal to 10 times the number of parameters to be 728 
estimated. To aid convergence we set the same random seed for each simulation within a search, 729 
which comprised 20,000 trials per value per condition. Because there was randomness associated 730 
with the optimization we ran it at least 4 times for each model. We then obtained a final G2 for each 731 
parameter vector by running a simulation with 2,000,000 trials and initialized with a different seed, 732 
and selected that with the lowest value. We performed model comparison using AIC, which 733 
penalises models for complexity: 734 

𝐴𝐼𝐶 =  𝐺2 + 2𝑘 (18) 

where k is the number of free parameters. We also calculated the Akaike weights (Burnham, K.P. 735 
and Anderson, D.R., 2002, p.75; Wagenmakers and Farrell, 2004), which can be cautiously 736 
interpreted as providing a probability that model i is the best model in the set: 737 

𝑊𝑖(𝐴𝐼𝐶) =  
𝑒−

1
2

∆𝑖(𝐴𝐼𝐶)

∑ 𝑒−
1
2

∆𝑖(𝐴𝐼𝐶)𝑘
𝑖=1

 

(19) 

Where ∆𝑖(𝐴𝐼𝐶) is the difference in AIC between model i and the best-fitting model. 738 
 739 
The simulated DVs for comparison with the real LRP were obtained by subtracting the average DV 740 
of the incorrect option from the correct option, time-locked to stimulus onset. We did not make the 741 
simulations fall back to zero upon bound crossing, and so the signals continue to build and become 742 
less comparable to the real average LRP once it peaks and falls due to responses being made. 743 
Initially we had allowed the possible range of burst durations to be a free parameter in the BurstIE 744 
model and obtained several equally good fits in which this parameter was spread over a wide range 745 
of values, trading off with the bias magnitude. We thus decided to constrain this parameter to 746 
correspond to the real LRP as closely as possible, with the understanding that within our framework 747 
we could not be certain of its exact form. We fit the model four times with the burst duration range 748 
set to 30, 50, 70 and 90 ms, and compared the time between burst onset and the low-value 749 
turnaround in the real LRP (53.7 ms) to those in the simulations. Finding the 70-ms duration range 750 
gave the closest match (52 ms), we then adjusted the duration-range parameter holding all others 751 
constant to obtain a 54-ms simulated LRP duration when the range parameter was set to 72 ms. 752 
We adopted this value in all further fits to the BurstIE and BurstSE models. 753 
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Figure Supplements 933 

 934 

Figure 1- Figure Supplement 1 Quantile-Quantile plots. Marginal RT distribution quantiles for each 935 
participant plotted against the group-averaged quantiles, for high-value (top) and low-value (bottom) 936 
trials. The thick black line represents the group average plotted against itself. A High-coherence 937 
blocked; B low-coherence blocked; C high-coherence interleaved; D low-coherence interleaved. 938 
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 939 

Figure 1- Figure Supplement 2. Individual-group quantile correlation (r2) statistics for A high-value 940 
and B low-value trial distributions. Each line represents an individual participant. 941 
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 942 

Figure 2- Figure Supplement 1. Slope of each individual’s beta decrease at 700-800ms after the 943 
cue, for motor preparation contralateral to the high and low value alternatives, averaged across 944 
regimes. Note that the slopes shown here are negative as beta is a decreasing signal. The buildup 945 
for the low-value alternative is steeper for 14 of the 17 individuals. 946 

 947 

Figure 2-Figure Supplement 2. A slow-moving posterior potential interfered with measurement of the 948 
LRP between cue and motion stimulus, leading us to rely solely on beta-band activity to examine 949 
anticipatory motor preparation. ERPs ipsilateral-contralateral to correct response, so that deflection 950 
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upward corresponds to relative motor preparation in the correct direction, between cue and stimulus 951 
(left) and locked to the stimulus onset (right). A. LRP (standard sites C3/C4- see black dots in 952 
topographies), and B. Lateralized posterior potential (calculated in the exact same way as the LRP 953 
but using parietal electrodes A5 and A18 on the left; A31 and B5 on the right, Biosemi 128-channel 954 
cap). The LRP following the onset of the cue appeared to show a slowly growing bias towards the 955 
cued direction which, contrary to our findings of a tapering relative bias in beta, persisted up to and 956 
following the stimulus onset. However, the difference topography (left inset) of left- minus right-cued 957 
trials just before stimulus onset (700-800 ms after the cue) relative to cue onset (-50-50 ms) shows 958 
that, that in addition to motor preparation, the topography was dominated by a posterior potential of 959 
the opposite polarity. This slow posterior potential begins to grow at around 300 ms after the cue 960 
and then begins to decrease after around 600 ms, calling for an accounting of potential overlap 961 
effects in interpreting the LRP dynamics between cue and stimulus. The relative beta amplitude 962 
timecourse (Figure 2C) shows that relative preparation for the high value alternative begins before 963 
400 ms, at which time the LRP here appears quite stable. However, it is likely that the 964 
simultaneously increasing, opposing posterior potential may at that point be suppressing the 965 
expression of a motor preparation bias towards high value in the LRP. Then, as the relative beta 966 
preparation begins to decline at around 600 ms, the posterior potential is also beginning its decline 967 
and inducing what appears as an increasing bias to high value in the LRP.  The right inset 968 
topography shows the difference in slope for left and right- cued trials from -200 to +100ms relative 969 
to the stimulus. It is clear that this slow drift towards high value visible in the LRP is primarily 970 
posterior in origin. For this reason, we did not rely on the LRP to examine the anticipatory motor 971 
preparation dynamics, but rather restricted its use to the analyses of stimulus-evoked activity, and 972 
baseline corrected the signal to stimulus onset. 973 
 974 

 975 

Figure 4-Figure Supplement 1. SustIE model-simulated waveforms and behavior for blocked 976 
session (top row) and interleaved session (bottom row). A Mean difference between simulated DVs; 977 
B-C Real (circles) and model-simulated (solid lines) RT distributions. D Real and model-simulated 978 
CAFs. 979 
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 980 

Figure 4-Figure Supplement 2. BurstSE model-simulated waveforms and behavior for blocked 981 
session (top row) and interleaved session (bottom row). A Mean difference between simulated DVs; 982 
B-C Real (circles) and model-simulated (solid lines) RT distributions. D Real and model-simulated 983 
CAFs. 984 
 985 
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Figure 4-Figure Supplement 3. SustSE model-simulated waveforms and behavior for blocked 987 
session (top row) and interleaved session (bottom row). A Mean difference between simulated DVs; 988 
B-C Real (circles) and model-simulated (solid lines) RT distributions. D Real and model-simulated 989 
CAFs. 990 
 991 

 992 
Figure 4-Figure Supplement 4. DDM model-simulated waveforms and behavior for blocked session 993 
(top row) and interleaved session (bottom row). A Mean simulated DV. Note the timing of the 994 
displayed DV is delayed by 80ms relative to the neurally-constrained model figures to approximately 995 
adjust for the motor component of the estimated nondecision time; B-C Real (circles) and model-996 
simulated (solid lines) RT distributions. D Real and model-simulated CAFs. 997 
 998 
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 999 
Figure 4-Figure Supplement 5. Results of Jackknifing analysis. A AIC for each jackknifed sample for 1000 
the four main neurally-constrained models. DDM is excluded here to aid visibility, as its fits were 1001 
markedly worse than the rest. B Akaike weights assigned to the 5 models, including DDM, for each 1002 
jackknifed sample. The BurstIE model was strongly preferred for all samples. 1003 
 1004 
 1005 
 1006 
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