
Make Interactive Complex Heatmaps in R

Zuguang Gu
German Cancer Research Center

Daniel Hübschmann
German Cancer Research Center

Abstract

Heatmap is a powerful visualization method on two-dimensional data to reveal pat-
terns shared by subsets of rows and columns. In R, there are many packages that make
heatmaps. Among them, ComplexHeatmap provides rich tools for constructing highly
customizable heatmaps. It can easily establish connections between information from
multiple sources by automatically concatenating and adjusting multiple heatmaps as well
as complex annotations, which makes it widely applied in data analysis in various fields, es-
pecially in Bioinformatics. Nevertheless, the limit of ComplexHeatmap still exists. It only
generates static plots which restricts deeper inspections on complex heatmaps, e.g., to look
into a subset of rows and columns when a specific pattern of interest is observed from the
heatmap. In this work, we described a new R/Bioconductor package InteractiveComplex-
Heatmap that brings interactivity to ComplexHeatmap. InteractiveComplexHeatmap is
designed with an easy-to-use interface where static complex heatmaps can be directly
exported to an interactive Shiny web application only with one extra line of code. The
interactive application contains comprehensive tools for manipulating heatmaps. Besides
common tools as in other interactive heatmap packages, InteractiveComplexHeatmap
additionally supports, e.g., selecting over multiple heatmaps or searching heatmaps via
row or column labels. Also, InteractiveComplexHeatmap provides methods for exporting
static heatmaps from other popular heatmap functions, e.g., heatmap.2() or pheatmap(),
to interactive heatmap applications. Finally, InteractiveComplexHeatmap provides flex-
ible functionalities for integrating interactive heatmap widgets into other Shiny applica-
tions. InteractiveComplexHeatmap provides a user interface for self-defining response to
the selection events on heatmaps, which helps to implement more complex Shiny web
applications.

Keywords: visualization, interactive heatmap, complex heatmap, Shiny, R.

1. Introduction

Heatmap is a popular visualization method on a two-dimensional matrix where colors are
the major aesthetic elements mapping to data (Wilkinson and Friendly 2009). In routine
data analysis procedures, matrix for heatmap visualization is normally accompanied with
row and column reordering, e.g., by hierarchical clustering or seriation (Hahsler, Hornik, and

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

2 Make Interactive Complex Heatmaps in R

Buchta 2008), so that features with similar patterns are grouped closely and they can be
easily identified from the colors on heatmap. The reordering methods can also be chosen
specifically for the topic under study. For example, the R package EnrichedHeatmap (Gu,
Eils, Schlesner, and Ishaque 2018) can be used to visualize how DNA demethylation is enriched
around the transcriptional start sites (TSS) of genes by a heatmap where columns are ordered
by genomic distances from CpG dinucleotides to gene TSS and rows are ordered by the
enrichment score defined by EnrichedHeatmap. Heatmap is widely applied in various research
fields, especially popular in Bioinformatics. Since the first paper on heatmap visualization
on a gene expression dataset was published (Eisen, Spellman, Brown, and Botstein 1998),
heatmap has been a standard tool for visualizing e.g., gene expression, DNA methylation and
other high-throughput datasets represented as matrices. In R (R Core Team 2020), there are
several packages that implement heatmaps. The function heatmap() from package stats is the
most fundamental one, but with very limited functionality. The function heatmap.2() from
package gplots (Warnes, Bolker, Bonebakker, Gentleman, Huber, Liaw, Lumley, Maechler,
Magnusson, Moeller, Schwartz, and Venables 2020) is an enhanced version of heatmap()

which supports more graphics on heatmap, such as a color legend with value distribution and
trace lines showing the difference of values to the column or row medians. There are also
packages implemented with the grid graphics system such as the function pheatmap() from
package pheatmap (Kolde 2019) and the function aheatmap() from package NMF (Gaujoux
and Seoighe 2010). They provide more flexible controls on heatmaps.

As data emerges fast in dimensions nowadays, especially in the Genomics field, an efficient
visualization for integrative analysis or multi-omics analysis is urgently needed to associate
multiple types of data for easily revealing relationships between multiple objects. From the
aspects of heatmap visualization, it reflects in two points. The first is the support of heatmap
annotation which contains extra information to associate to the main heatmap. For example,
in a typical heatmap visualization on gene expression data where rows are genes and columns
are patients, it is common that patients have clinical meta-data available, such as age, gender
or whether the patient has certain DNA mutations. With annotation attached to heatmap,
it is easy to identify, e.g., whether a group of genes showing high expression correlate to a
certain age interval or whether they have specific types of DNA mutations. heatmap() and
heatmap.2() only support single heatmap-like annotation for one numeric or character vec-
tor. pheatmap() and aheamtap() allow multiple heatmap-like annotations for corresponding
more information to heatmap. The package superheat (Barter and Yu 2018) and heatmap3
(Zhao, Yin, Guo, Sheng, and Shyr 2021) supports more types of graphics for annotations,
such as points or lines which are able to make more accurate visual representation on an-
notation data. The second point of visualizing multiple sources of information is to directly
apply “complex heatmap visualization” by simultaneously linking multiple heatmaps to make
it straightforward to compare patterns between heatmaps. For example, in our published
study (Gu et al. 2018), we applied complex heatmap visualization on gene expression, DNA
methylation and various histone modifications to reveal general transcriptional regulation pat-
terns among multiple human tissues. To implement both complex annotation and heatmap
visualization, we previously developed an advanced heatmap package ComplexHeatmap (Gu,
Eils, and Schlesner 2016a). It supports not only the basic annotation graphics as in other
packages, but also a variety of extra complex annotation graphics such as violin plot or horizon
plot, and it even allows users to self-define their own annotation graphics. ComplexHeatmap
provides a simple syntax to link multiple heatmaps where rows or columns of all heatmaps

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 3

are adjusted simultaneously. The simplicity of its user interface and comprehensiveness of
the functionalities make ComplexHeatmap widely used in Bioinformatics to reveal interesting
patterns from data that are potentially biologically meaningful.

After a specific pattern of subset of rows and columns is observed from the heatmap, the next
step is to extract corresponding rows and columns for downstream analysis, which requires
interactivity on heatmaps. There are also several R packages that implement interactive
heatmaps such as d3heatmap (Cheng and Galili 2018), heatmaply (Galili, O’Callaghan, Sidi,
and Sievert 2017) and iheatmapr (Schep and Kummerfeld 2017). The interactivity allows
hovering on heatmap cells and selecting a region from it. There are other web-based and
non-R implementations, such as Morpheus (Morpheus 2021), Heatmapper (Babicki, Arndt,
Marcu, Liang, Grant, Maciejewski, and Wishart 2016), Clustergrammer (Fernandez, Gunder-
sen, Rahman, Grimes, Rikova, Hornbeck, and Ma’ayan 2017) and NG-CHM (Ryan, Stucky,
Wakefield, Melott, Akbani, Weinstein, and Broom 2019) which allow users to directly upload
data to the web server and manipulate heatmap with no programming knowledge.

ComplexHeatmap is popular and powerful for generating static complex heatmaps. Here
we developed a new R/Bioconductor package InteractiveComplexHeatmap that brings inter-
activity to ComplexHeatmap. InteractiveComplexHeatmap can be very easily applied that
static complex heatmaps are directly exported to an interactive Shiny web application only
with one extra line of code. The interactive application contains comprehensive tools for
manipulating heatmaps. Besides common tools as in other interactive heatmap packages,
InteractiveComplexHeatmap additionally supports, e.g., selecting over multiple heatmaps or
searching heatmaps via row or column labels. The latter would be especially useful when
users already have some features of interest to look into. Also, InteractiveComplexHeatmap
provides methods to export static heatmaps from other popular heatmap functions, e.g.,
heatmap.2() or pheatmap(), to interactive heatmap applications, which greatly expands
the ability of interactive heatmap visualization in R. Finally, InteractiveComplexHeatmap
provides functionalities for integrating interactive heatmap widgets into other Shiny appli-
cations. InteractiveComplexHeatmap provides a user interface for self-defining response to
the selection events on heatmaps, e.g., by clicking or brushing, which helps to develop more
complex Shiny web applications. InteractiveComplexHeatmap can be freely obtained from
https://bioconductor.org/packages/InteractiveComplexHeatmap/.

The paper is structured as follows. In Section 2, we first made a brief introduction to the
functionalities in ComplexHeatmap. In Section 3, we described how to export static heatmaps
to an interactive Shiny web application and we also described the tools provided by the in-
teractive application. In Section 4, we explained how the interactivity is implemented in
InteractiveComplexHeatmap. In Section 5, we explained in detail how to integrate Interac-
tiveComplexHeatmap in Shiny application development. And finally, in Section 6, as a case
study, we implemented a complex interactive heatmap application which visualizes results of
differential gene expression analysis.

2. A brief introduction to ComplexHeatmap

In this section, we briefly introduce basic functionalities of making single heatmaps and a list of
heatmaps with ComplexHeatmap. For more comprehensive usages, readers are recommended
to refer to the ComplexHeatmap complete reference (Gu 2021).

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://bioconductor.org/packages/InteractiveComplexHeatmap/
https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

4 Make Interactive Complex Heatmaps in R

ComplexHeatmap is implemented with the grid graphics engine under S4 object-oriented sys-
tem. There are three major classes defined in the package: a Heatmap class that defines a
single heatmap, a HeatmapList class that defines a list of heatmaps, and a HeatmapAnnota-

tion class that defines a list of heatmap annotations.

2.1. A single heatmap

The function Heatmap() makes a single heatmap and returns an object in Heatmap class. The
only mandatory argument in Heatmap() is a matrix, either numeric or character. It provides
numerous additional arguments for customizing heatmap. Besides common functionalities as
in other heatmap functions, Heatmap() has following major features:

• Flexible controls of clustering. The hierarchical clustering can be specified in various
ways, i.e., 1. by a predefined distance method such as "euclidean" or "pearson", 2.
by a distance function that calculates pairwise distance between two vectors or directly
from a matrix, 3. by a clustering object e.g. a hclust or a dendrogram object or
an object that can be coerced to dendrogram by a proper as.dendrogram() function,
or 4. by a clustering function that takes matrix as input and returns a dendrogram

object. Besides that, dendrogram can be rendered on both edges and nodes, e.g., to
assign different colors for dendrogram branches or to add symbols on dendrogram nodes
(Figure 1A).

• Split heatmap. Heatmap splitting is an efficient way to highlight group-wise patterns
(Figure 1D). ComplexHeatmap provides various ways for splitting heatmap into “slices”
on both rows and columns. 1. Set a number of groups for k -means clustering; 2. Set
a categorical variable which can be a vector or a data frame, then the heatmap is split
by all combinations of levels in the categorical variable; 3. If hierarchical clustering is
already applied, the splitting can be specified as a single number so that cutree() is
internally applied to split. For the first two splitting methods, if clustering is turned on,
clustering is performed within each heatmap slice, also a second clustering is performed
over heatmap slices based on the slice means.

• Flexible controls of colors and legends. It allows exact mapping between colors and
values in matrix with a color mapping function by specifying breaks and corresponding
colors, then remaining colors are linearly interpolated in the corresponding intervals.
It also allows very flexible configurations on heatmap legends, such as multiple-color
scheme legends. Please refer to Section “Legends” in ComplexHeatmap complete refer-
ence (Gu 2021) for more examples.

• Render heatmap body as a raster image. For a heatmap on a huge matrix that is saved as
vector graphics (e.g., a pdf figure), rasterization helps to efficiently reduce the final file
size while the loss of figure quality is ignorable. Heatmap() supports various methods
for image rasterization. See detailed explanations and comparisons in (Gu 2020).

• Customize heatmap. There are two ways for customizing heatmap with user-defined
code: 1. to customize heatmap body via cell_fun or layer_fun argument to add
self-defined graphics to heatmap cells when heatmap is drawing (Figure 1B), and 2. to
use decorate_*() family functions, e.g., decorate_annotation(), to add graphics to
any heatmap component after the heatmap is drawn.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 5

1 2 3

1,
B

1,
A

2,
B

2,
A

row8
row14
row6
row12
row13
row15
row1
row3
row9
row11
row10
row2
row16
row18
row4
row17
row5
row7

co
lum

n1
0

co
lum

n7

co
lum

n1
3

co
lum

n1
5

co
lum

n2

co
lum

n6

co
lum

n1
2

co
lum

n1
8

co
lum

n1
7

co
lum

n2
2

co
lum

n8

co
lum

n1
4

co
lum

n9

co
lum

n2
1

co
lum

n2
0

co
lum

n4

co
lum

n1
9

co
lum

n2
3

co
lum

n5

co
lum

n1
1

co
lum

n1

co
lum

n1
6

co
lum

n3

co
lum

n2
4

0

0.5

1
foo1

bar1

fo
o2 0

0.
5 1

1.
5

bar2

foo1

0
5
10
15
20
25

mat

−2
−1
0
1
2

foo2

0
5
10
15
20

bar2

group1
group2

1 2

2
1

row5

row7

row2

row4

row9

row6

row8

row1

row3

co
lu

m
n6

co
lu

m
n2

co
lu

m
n7

co
lu

m
n1

co
lu

m
n4

co
lu

m
n5

co
lu

m
n3

co
lu

m
n8

co
lu

m
n9

mat

−2
−1
0
1
2

0

0.
5 1

0.
2

0.
4

0.
6

0.
8 0

0.
5 1

1.
5

−
2 0 2

row1

row2

row3

row4

row5

row6

row7

−
2 0 2

−
4

−
2 0 2 4

−
5 0 5

20
0

40
0

60
0

80
0

10
00

Methylation

1,
hy

po
1,

hy
pe

r
2,

hy
pe

r
2,

hy
po

sa
m

pl
e8

sa
m

pl
e6

sa
m

pl
e5

sa
m

pl
e7

sa
m

pl
e4

sa
m

pl
e1

0

sa
m

pl
e3

sa
m

pl
e9

sa
m

pl
e1

sa
m

pl
e2

sa
m

pl
e1

2

sa
m

pl
e1

8

sa
m

pl
e1

5

sa
m

pl
e1

9

sa
m

pl
e1

3

sa
m

pl
e1

4

sa
m

pl
e1

6

sa
m

pl
e1

7

sa
m

pl
e1

1

sa
m

pl
e2

0

type

di
re

ct
io

n

Expression

sa
m

pl
e9

sa
m

pl
e1

0

sa
m

pl
e4

sa
m

pl
e3

sa
m

pl
e7

sa
m

pl
e2

sa
m

pl
e5

sa
m

pl
e1

sa
m

pl
e8

sa
m

pl
e6

sa
m

pl
e1

8

sa
m

pl
e1

7

sa
m

pl
e1

3

sa
m

pl
e1

1

sa
m

pl
e1

5

sa
m

pl
e1

9

sa
m

pl
e1

4

sa
m

pl
e1

6

sa
m

pl
e1

2

sa
m

pl
e2

0

type

co
r_

p

ge
ne

 ty
pe

an
no

_g
en

e

di
st

_t
ss

Enhancer

en
ha

nc
er

_1

en
ha

nc
er

_2

en
ha

nc
er

_3

Comprehensive correspondence between methylation, expression and other genomic features
type

Control
Tumor

methylation

0

0.5

1

direction

hyper
hypo

expression

−2

−1

0

1

2

cor_p

0

1

2

3

4

gene type

protein_coding
psedo−gene
lincRNA
others
microRNA

anno_gene

intergenic
TSS
intragenic

dist_tss

0

5000

10000

anno_enhancer

0

0.5

1

A B

C

D

Figure 1: Demonstration of ComplexHeatmap. A) A heatmap with both row and column
annotations. The columns on the heatmap were split by a three-group k -means clustering and
rows were split by combination of a categorical variable and a two-group k -means clustering.
B) A heatmap with customizations. On the heatmap, horizontal neighbour cells were con-
nected if they had the same signs. Black borders were added to the top right and bottom left
heatmap slices. C) Examples of various annotation graphics supported in ComplexHeatmap.
D) An example of complex heatmap visualization based on a real-world dataset.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

6 Make Interactive Complex Heatmaps in R

2.2. Heatmap annotations

Heatmap annotations are important components of a heatmap that show additional informa-
tion associated with rows or columns. ComplexHeatmap provides very flexible support for
setting annotations and defining new annotation graphics. The annotations can be put on
the four sides of the heatmap and they are automatically reordered and split according to the
heatmap.

There are following annotation graphics demonstrated in Figure 1C (from left to right):

• Heatmap-like annotation. It is named as “simple annotation” in ComplexHeatmap. It
visualizes a vector or a matrix, either numeric or character.

• Image annotation. It supports images in various formats, e.g., png, svg, pdf, jpg.
• Points annotation. It supports a single numeric vector or a numeric matrix.
• Lines annotation. It supports a single numeric vector or a numeric matrix. Additionally,

it supports to perform loess smoothing over data points.
• Barplot annotation. It also supports stacked bar plots.
• Boxplot annotation.
• Text annotation. It supports constructing more customized text with package gridtext

(Wilke 2020).
• Histogram annotation.
• Violin annotation. It visualizes a list of distributions. Alternatively, the distributions

can also be visualized by normal density plots or heatmaps.
• Joy plot annotation.
• Horizon plot annotation.

All built-in annotation graphics are implemented by annotation functions named with anno_

prefix, e.g., anno_points() for points annotation. Besides the above listed annotations, Com-
plexHeatmap supports more complex annotations. For example, there is a “mark annotation”
by anno_mark() which draws labels for a subset of rows or columns where the labels are
shifted from their original positions to get rid of overlapping and lines are drawn to connect
labels to their corresponding rows or columns. ComplexHeatmap provides a user interface for
creating new annotation graphics. For example, package EnrichedHeatmap (Gu et al. 2018)
defined an “enriched annotation” by anno_enriched() which visualizes average enrichment
of certain genomic signals over a list of genomic features, and package simplifyEnrichment
(Gu and Hübschmann 2021) defined a “word cloud annotation” by anno_word_cloud() which
visualizes summaries of groups of rows by word clouds.

The function HeatmapAnnotation() accepts multiple annotations specified as name-value
pairs. Simple annotations are specified as vectors, matrices or a data frame and legends
are automatically generated for them. Other annotations should be specified via functions
anno_*(). An example is as follows.

R> ha = HeatmapAnnotation(

+ foo = runif(10),

+ bar = sample(letters[1:4], 10, replace = TRUE),

+ pt = anno_points(runif(10)),

+ txt = anno_text(month.name[1:10]),

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 7

+ ...

+)

Row annotations should be set with one additional argument which = "row" or by the helper
function rowAnnotation(). Column annotations are assigned to argument top_annotation

or bottom_annotation and row annotations are assigned to argument left_annotation or
right_annotation in Heatmap().

2.3. A list of heatmaps

The main feature of ComplexHeatmap is that it supports concatenating multiple heatmaps
and annotations so that it is possible to visualize associations between various sources of infor-
mation. ComplexHeatmap provides a simple syntax for concatenating heatmaps with the op-
erator +. The expression returns a HeatmapList object and directly printing the HeatmapList
object draws the heatmap.

R> ht_list = Heatmap(...) + Heatmap(...) + rowAnnotation(...)

R> ht_list # It draws the heatmap

We previously introduced annotations as components of a single heatmap. Here row annota-
tions can also be independently concatenated to the heatmap list, as are demonstrated in the
above code. Alternatively, which is less used, the heatmap lists can be vertically concatenated
with the operator %v%.

R> ht_list = Heatmap(...) %v% Heatmap(...) %v% HeatmapAnnotation(...)

R> ht_list

The amount of heatmaps and annotations to be concatenated can be arbitrary. The ordering
and splitting of all heatmaps are adjusted by the main heatmap, which is by default the first
numeric matrix, or other heatmap in the list that is specified by the user.

2.4. High-level plots implemented with ComplexHeatmap

The flexibility of ComplexHeatmap allows users to implement new high-level graphics on data
with a matrix-like structure. In ComplexHeatmap, there are following high-level graphics
functions that have already been implemented:

• densityHeatmap(). It visualizes a list of distributions via heatmap.
• oncoPrint(). It visualizes multiple genomic alteration events (e.g. single-base muta-

tions or fragment deletions) in a list of genes and in multiple patients.
• UpSet(). It visualizes intersections over multiple sets. This is an enhanced version of

package UpSetR (Conway, Lex, and Gehlenborg 2017). UpSet() is also able to visualize
intersections over genomic intervals.

More importantly, the three functions all return Heatmap objects, thus, the graphics can
be concatenated to additional heatmaps or annotations to construct a complex view of the
data. As an example, an oncoPrint can be concatenated to a gene expression heatmap to
quickly connect the relationship between DNA mutations and the influence on gene expression.
Example code is simply as follows:

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

8 Make Interactive Complex Heatmaps in R

R> oncoPrint(...) + Heatmap(...)

2.5. A complex example

Figure 1D demonstrates complex heatmap visualization on a dataset randomly generated but
based on patterns found in an unpublished work. The figure visualizes associations between
DNA methylation, gene expression, enhancers and gene-related information. In heatmaps,
each row corresponds to a differentially methylated region (DMR, which is a genomic region
showing significantly different methylation between tumor and control samples) or other ob-
jects that are associated with the DMR. In Figure 1D, there are following heatmaps from left
to right:

1. A heatmap of methylation level in DMRs. Red corresponds to 100% methylation in the
DMR and blue corresponds to no methylation.

2. A one-column heatmap showing the direction of differential methylation. hyper means
methylation is higher in tumor samples than in control and hypo means methylation is
lower in tumor samples.

3. A heatmap of gene expression. Each gene is the nearest gene in the genome of the
associated DMR. Note only the DMRs with methylation levels negatively correlated to
the expression level of their nearest genes are kept in Figure 1D.

4. A one-column heatmap of p-values from Pearson correlation test between gene expres-
sion and methylation.

5. A one-column heatmap of the gene type, i.e., whether the corresponding gene is a
protein-coding gene or of other type.

6. A one-column heatmap of the annotation of DMRs to genes, i.e., does the DMR locate
in gene TSS or outside gene regions?

7. A one-column heatmap of the genomic distance between DMR to TSS of the associated
gene.

8. A heatmap showing the overlap between enhancers and DMRs. Enhancers are genomic
regions where proteins can bind to regulate gene expression.

The heatmap list is split by the combination of directions of differential methylation and a
two-group k -means clustering. The latter is to distinguish high-methylation groups and low
methylation groups. In Figure 1D, the complex heatmaps reveal that highly methylated DMRs
are enriched in intergenic and intragenic regions and rarely overlap with enhancers (row group
"2,hypo" and "2,hyper"), while in contrast, lowly methylated DMRs are enriched in TSS and
enhancers (row group "1,hypo" and "1,hyper"). This might imply that enhancers associate
with low methylation and methylation changes in enhancers might affect their transcriptional
activities on related genes.

3. Export heatmap to a Shiny web application

3.1. The function htShiny()

For any single heatmap or a list of heatmaps represented as a Heatmap or a HeatmapList object
produced by ComplexHeatmap, the function htShiny() in InteractiveComplexHeatmap can

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 9

be simply applied to export it to a Shiny web application (Chang, Cheng, Allaire, Sievert,
Schloerke, Xie, Allen, McPherson, Dipert, and Borges 2021). To demonstrate the usage,
we generated a list of two heatmaps of a numeric heatmap and a character heatmap. In
the numeric heatmap, k -means clustering with two groups was applied on both rows and
columns. A point annotation was put on top of the first heatmap as a heatmap component
and a barplot annotation was inserted between the first and the second heatmaps.

R> library(ComplexHeatmap)

R> set.seed(111)

R> mat1 = matrix(rnorm(100), 10)

R> rownames(mat1) = colnames(mat1) = paste0("a", 1:10)

R> mat2 = matrix(sample(letters[1:10], 100, replace = TRUE), 10)

R> rownames(mat2) = colnames(mat2) = paste0("b", 1:10)

R>

R> ht_list = Heatmap(mat1, name = "mat_a", row_km = 2, column_km = 2,

+ top_annotation = HeatmapAnnotation(foo = anno_points(runif(10)))) +

+ rowAnnotation(bar = anno_barplot(sample(10, 10))) +

+ Heatmap(mat2, name = "mat_b")

After the heatmap object ht_list is created, it can be directly sent to htShiny(). The
interactive heatmap application is automatically opened in a web browser or in a pop-up
window in RStudio IDE (Figure 2).

R> ht_list = draw(ht_list) # not necessary, but recommended

R>

R> library(InteractiveComplexHeatmap)

R> htShiny(ht_list)

To use htShiny(), the heatmap object is recommended to be updated with the function
draw(). If it has not been updated, it will be applied inside htShiny() automatically. Up-
dating by draw() speeds up loading the Shiny application because draw() applies clusterings
which is normally the most time-consuming step in heatmap generation. After draw() is exe-
cuted, clustering results are saved in the returned heatmap object so that repeatedly drawing
heatmap can directly use the saved clustering results. If the heatmap includes randomness,
such as k -means clustering by setting row_km or column_km argument, it is necessary to exe-
cute draw() before sending the heatmap object to htShiny() to get rid of obtaining different
heatmaps when executing htShiny() multiple times.

Executing the function htShinyExample() with no argument prints a list of 54 examples of
various usages of interactive heatmaps. Specifying an index in htShinyExample() runs the
corresponding interactive application as well as showing the source code that generates the
application, e.g., htShinyExample(1.5) demonstrates an example of exporting a list of two
heatmaps to an interactive web application.

3.2. Tools in the interactive heatmap application

In the Shiny application illustrated in Figure 2, there are three main components: the original
heatmap, the selected sub-heatmap and the output that prints information of the heatmap

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

10 Make Interactive Complex Heatmaps in R

Figure 2: A demonstration of interactive complex heatmap. On the left is the original heatmap
and on the right is the sub-heatmap that was selected from left. Below both heatmaps are
the tools for controlling heatmaps. At the bottom of the application is the output that shows
the information of the heatmap cell that was clicked or the sub-heatmap that was selected.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 11

cell that was clicked or the sub-heatmap that was selected. In the original heatmap, users
can click on it or select an area from it. If an area is selected from the original heatmap, a
sub-heatmap is drawn on the right side in the application. Both heatmaps can be resized by
dragging from their bottom right.

Under the original heatmap, there are various tools integrated:

• Search heatmap: If the corresponding matrices have row or column labels, it allows
users to search matrix labels to obtain a subset of rows and columns. The keywords
can be exactly matched to row or column labels or be a regular expression. Once the
corresponding rows or columns are found in heatmaps, a sub-heatmap is drawn in the
right sub-heatmap component.

• Configure brush: It configures visual style of the brush which selects the area from
heatmap, i.e., border color and background color, border width and opacity of the
brush.

• Save image: The main heatmap can be saved into a file in one of the three formats:
png, pdf and svg.

• Resize image: The size of heatmap can be precisely controlled by manually providing a
value for it.

Under the sub-heatmap, there are also tools for controlling the sub-heatmap.

• Configure sub-heatmap: There are three sections of controls. 1. Basic controls such
as whether to show row or column names, 2. Brushing on the original heatmap might
not precisely capture rows or columns users expected. Users can manually remove a
certain number of rows or columns from four dimensions of the selected sub-heatmap.
3. Selected sub-heatmap can be further converted into a second interactive heatmap
application. It will be introduced in more detail in Section 3.4.

• Export table: The values in sub-heatmap can be viewed and exported as a text table.
The table also includes values in corresponding annotations.

• Save sub-heatmap: The sub-heatmap can be saved into a file in one of the three formats:
png, pdf and svg.

• Resize sub-heatmap: The size of sub-heatmap can be precisely controlled by manually
providing a value for it.

At the bottom of the application, there is an output component. If a heatmap cell was clicked,
the output component prints the meta information of that cell, such as the value, the row
and column indices and labels. If there are annotations associated in heatmap, corresponding
annotation values are also printed. If an area was selected from the original heatmap, the
output component prints a runnable code that can be used to obtain row and column indices
from the corresponding matrices. The output component can be self-defined to allow more
complex output to respond to user’s actions on the heatmap. It will be introduced in more
detail in Section 5.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

12 Make Interactive Complex Heatmaps in R

Figure 3: Interactivating last generated heatmap. The original heatmap is generated by
get_signatures() from package cola.

3.3. Use last generated heatmaps

ComplexHeatmap is broadly used in many scripts and packages where they generate heatmaps
but do not directly return Heatmap/HeatmapList objects. Nevertheless, this won’t affect
the use of InteractiveComplexHeatmap because the last generated heatmap object is always
automatically saved. Calling htShiny() without a heatmap object will automatically use
the last one. We demonstrate this functionality with the package cola (Gu, Schlesner, and
Hübschmann 2020).

cola heavily uses ComplexHeatmap to implement various customized heatmaps to visualize
consensus clustering results as well as results from downstream analysis. As an example,
the function get_signatures() extracts signatures that are significantly different between
the predicted subgroups. get_signatures() makes a list of heatmaps for visualizing the
patterns of signatures and returns a data frame of the signatures as well as various statistics
for the statistical test, thus, we cannot directly interact with the heatmap object. When
get_signatures() draws the heatmaps, the heatmap object is saved internally, then directly
calling htShiny() without any argument converts the signature heatmap into an interactive
application (Figure 3).

R> library(cola) # from Bioconductor

R> data(golub_cola)

R> get_signatures(golub_cola["ATC:skmeans"], k = 3) # this makes the heatmap

R> ht_shiny()

Note the functionality of automatically saving the last heatmap object is only turned on when
InteractiveComplexHeatmap is loaded, which means, library(InteractiveComplexHeatmap)
should be executed before making heatmap, or users can manually turn it on by executing
ComplexHeatmap::ht_opt(save_last = TRUE).

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 13

A

B

Figure 4: Recursively generate interactive heatmaps. The second interactive heatmap (Figure
B) is generated from the sub-heatmap in the first interactive heatmap by clicking the button
“Interactivate sub-heatmap” (highlighted in orange rectangle in Figure A).

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

14 Make Interactive Complex Heatmaps in R

3.4. Recursive interactive heatmap application

When the original heatmap visualizes a huge matrix, in the interactive heatmap application,
a small selection rectangle would cover a dense subset of rows and columns where single cells
are still hard to identify in the sub-heatmap component. In this case, the sub-heatmap can
be continually exported to another independent interactive heatmap widget which is in a new
layer above current one, just by clicking the button “Interactivate sub-heatmap” in the tool
under sub-heatmap (Figure 4). This process can be recursively applied until users are satisfied
with the details seen in the sub-heatmap.

3.5. Applications on other heatmap functions

InteractiveComplexHeatmap automatically interactivates static heatmaps generated by Com-
plexHeatmap. To facilitate analysis from users who still use other heatmap functions and also
want to convert their heatmaps into interactive applications, in the companion package Com-
plexHeatmap, we implemented three “translation functions”: ComplexHeatmap:::heatmap(),
ComplexHeatmap:::heatmap.2() and ComplexHeatmap::pheatmap() to replace stats::heatmap(),
gplots::heatmap.2() and pheatmap::pheatmap(). The three translation functions have the
same set of arguments as original ones and corresponding arguments are translated to proper
settings in ComplexHeatmap so that they make heatmaps visually as same as possible to orig-
inal heatmaps. Note in order not to dilute user’s namespace, heatmap() and heatmap.2()

are not exported from ComplexHeatmap and users must add ComplexHeatmap::: prefix to
use them. While for pheatmap(), if package pheatmap is already loaded ahead of Complex-
Heatmap, there is a message printed to inform ComplexHeatmap::pheatmap() overwrites
pheatmap::pheatmap(). Since the translation functions have the same sets of arguments as
original ones, no further modification on code that users need to apply.

ComplexHeatmap:::heatmap(), ComplexHeatmap:::heatmap.2() and ComplexHeatmap::pheatmap()

all generate Heatmap objects, thus heatmaps from these three functions can be converted into
interactive applications. The returned object by e.g., ComplexHeatmap:::heatmap() can be
sent to htShiny(), or htShiny() can be directly called with no argument after the heatmap
is drawn. Example code is as follows:

R> ht = ComplexHeatmap:::heatmap(...)

R> htShiny(ht)

R> # or even simpler

R> ComplexHeatmap:::heatmap(...)

R> htShiny()

R>

R> ComplexHeatmap:::heatmap.2(...)

R> htShiny()

R>

R> ComplexHeatmap::pheatmap(...)

R> htShiny()

Demonstrations are in Figure 5 and live examples on the three heatmap functions can be
obtained from htShinyExample(2.4), htShinyExample(2.5) and htShinyExample(2.6).

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 15

A

B

C

Figure 5: Applications on heatmaps generated from other heatmap functions. The three
interactive heatmaps are from A) heatmap(), B) heatmap.2() and C) pheatmap().

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

16 Make Interactive Complex Heatmaps in R

3.6. Applications on other high-level plots

ComplexHeatmap supports implementing high-level plots as long as the data is represented
in a matrix-like structure. The following listed functions all generate Heatmap objects, thus,
they can be easily exported to interactive applications.

• ComplexHeatmap::oncoPrint(): It visualizes various types of genomic alterations for a
list of genes in multiple patients and generates a so-called oncoPrint plot (Gao, Aksoy,
Dogrusoz, Dresdner, Gross, Sumer, Sun, Jacobsen, Sinha, Larsson, Cerami, Sander,
and Schultz 2013). In the plot, columns are reordered in a special way to highlight the
mutual exclusivity of genes that have alterations among different groups of patients.
The example of an interactive oncoPrint can be found in Figure 6A and a live example
can be run with htShinyExample(2.2).

• ComplexHeatmap::UpSet(): It implements the UpSet plot (Conway et al. 2017) which
is an efficient way for visualizing intersections between a large number of sets. Ad-
ditionally, UpSet() is able to visualize intersections between multiple lists of genomic
intervals. The example of an interactive UpSet plot can be found in Figure 6B and a
live example can be run with htShinyExample(2.3).

• ComplexHeatmap::densityHeatmap(): It visualizes a list of distributions by heatmap.
The example of an interactive density heatmap can be found in Figure 6C and a live
example can be run with htShinyExample(2.1).

• EnrichedHeatmap::EnrichedHeatmap(): The package EnrichedHeatmap visualizes the
enrichment of certain genomic signals (e.g., DNA methylation) on specific genomic
features (e.g., gene TSS) by a special heatmap. EnrichedHeatmap inherits Complex-
Heatmap and the constructor function EnrichedHeatmap() returns a Heatmap object,
thus, an “enriched heatmap” can be exported to an interactive application as well. One
simple example is in Figure 6D and runnable examples can be found in htShinyExam-

ple(3.1), htShinyExample(3.2) and htShinyExample(3.3).

Recall ComplexHeatmap makes it easy to combine a list of Heatmap and HeatmapAnnotation

objects, thus, heatmaps generated by the previous four functions can associate to additional
heatmaps or annotations to generate complex interactive visualizations. An example is in
htShinyExample(3.2) where the heatmap list includes an enriched heatmap of histone mod-
ification on gene TSS, a second enriched heatmap of DNA methylation on gene TSS and a
third normal heatmap of gene expression; the heatmap list clearly illustrates the correspon-
dence between three genomic signals and the interactivity of this Shiny application ensures
the genes with specific patterns can be easily captured.

As we have demonstrated in Section 3.3, for some other high-level plots generated by functions
which internally use ComplexHeatmap while do not directly return Heatmap or HeatmapList
objects (e.g., cola::get_signatures()), users can always first generate heatmap in a certain
graphics device (on-screen or off-screen), then execute htShiny() with no heatmap object to
obtain the interactive applications (see examples in htShinyExample(1.6) and htShinyEx-

ample(1.7)).

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 17

A

B

C D

Figure 6: Applications on other high-level plots. A) An interactive oncoPrint. B) An inter-
active UpSet plot. C) An interactive density heatmap. D) An interactive enriched heatmap.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

18 Make Interactive Complex Heatmaps in R

3.7. Interactivate heatmaps indirectly generated by heatmap(), heatmap.2() and
pheatmap()

In Section 3.3, we introduced how to export heatmaps indirectly generated from Complex-
Heatmap to interactive applications. There is another scenario where heatmaps are indi-
rectly generated by stats::heatmap(), gplots::heatmap.2() or pheatmap::pheatmap(),
i.e., they are generated by third-party functions which internally use the three heatmap
functions. How can we turn these heatmaps into interactive applications? The solution is
simple. We just need to go to e.g. pheatmap namespace and replace pheatmap with Com-

plexHeatmap::pheatmap right there.

The following example is from package SC3 (Kiselev, Kirschner, Schaub, Andrews, Yiu, Chan-
dra, Natarajan, Reik, Barahona, Green, and Hemberg 2017) where function sc3_plot_expression()

draws a heatmap internally using pheatmap() (This can be found out by checking the source
code of sc3_plot_expression()).

R> # The following code is runnable

R> library(SingleCellExperiment)

R> library(SC3)

R> library(scater)

R>

R> sce = SingleCellExperiment(

+ assays = list(counts = as.matrix(yan),

+ logcounts = log2(as.matrix(yan) + 1)),

+ colData = ann

+)

R>

R> rowData(sce)$feature_symbol = rownames(sce)

R> sce = sce[!duplicated(rowData(sce)$feature_symbol),]

R> sce = runPCA(sce)

R> sce = sc3(sce, ks = 2:4, biology = TRUE)

R>

R> sc3_plot_expression(sce, k = 3)

To replace the internal use of pheatmap::pheatmap() with ComplexHeatmap::pheatmap(),
the function assignInNamespace() can be used to directly change the value of pheatmap

in pheatmap namespace. After doing that, executing sc3_plot_expression() always uses
ComplexHeatmap::pheatmap() and now it is possible to use htShiny() to export it to an
interactive application.

R> assignInNamespace("pheatmap", ComplexHeatmap::pheatmap, ns = "pheatmap")

R> library(InteractiveComplexHeatmap)

R> sc3_plot_expression(sce, k = 3)

R> htShiny()

To safely change stats::heatmap(), gplots::heatmap.2() or pheatmap::pheatmap() to
ComplexHeatmap:::heatmap(), ComplexHeatmap:::heatmap.2() or ComplexHeatmap::pheatmap(),
it is recommended to execute one of the following commands at the beginning of user’s R ses-
sion.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 19

R> assignInNamespace("heatmap", ComplexHeatmap:::heatmap, ns = "stats")

R> assignInNamespace("heatmap.2", ComplexHeatmap:::heatmap.2, ns = "gplots")

R> assignInNamespace("pheatmap", ComplexHeatmap::pheatmap, ns = "pheatmap")

4. Implementation of interactivity

Being different from interactive heatmap packages based on JavaScript, e.g., d3heatmap,
heatmaply or iheatmapr, InteractiveComplexHeatmap has a special way to capture posi-
tions that users clicked on heatmaps and to extract values from corresponding matrices. To
demonstrate it, we still use the object ht_list previously generated in Section 3.1 which
includes a list of two heatmaps and k -means clustering was applied on the numeric heatmap.

InteractiveComplexHeatmap implements two types of interactivity: 1. on the interactive
graphics device, and 2. in the Shiny web application. The interactivity on the interactive
graphics device is the basis of the interactivity of the Shiny application, thus, in following
sections, we will first introduce how the interactivity is implemented with the interactive
graphics device.

4.1. On the interactive graphics device

Here the “interactive graphics device” refers to the window for generating plots if R is directly
used in the terminal, or the figure panel in Rstudio IDE.

InteractiveComplexHeatmap first captures physical positions of all heatmap slices, i.e., the
distance to the bottom left of the graphics device, by the function htPositionsOnDevice().
Internally, the function goes to the viewport of every heatmap slice and utilizes the function
grid::deviceLoc() to capture positions measured in the graphics device. Before execut-
ing htPositionsOnDevice(), the heatmap should be already drawn on the device so that
htPositionsOnDevice() can access various viewports.

R> draw(ht_list) # It draws heatmap

R> pos = htPositionsOnDevice(ht_list)

R> pos

DataFrame with 6 rows and 8 columns

heatmap slice row_slice column_slice x_min

<character> <character> <integer> <integer> <simpleUnit>

1 mat_a mat_a_heatmap_body_1_1 1 1 0.733inches

2 mat_a mat_a_heatmap_body_1_2 1 2 1.33inches

3 mat_a mat_a_heatmap_body_2_1 2 1 0.733inches

4 mat_a mat_a_heatmap_body_2_2 2 2 1.33inches

5 mat_b mat_b_heatmap_body_1_1 1 1 3.18inches

6 mat_b mat_b_heatmap_body_2_1 2 1 3.18inches

x_max y_min y_max

<simpleUnit> <simpleUnit> <simpleUnit>

1 1.29inches 1.18inches 2.83inches

2 2.63inches 1.18inches 2.83inches

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

20 Make Interactive Complex Heatmaps in R

3 1.29inches 0.437inches 1.14inches

4 2.63inches 0.437inches 1.14inches

5 5.08inches 1.18inches 2.83inches

6 5.08inches 0.437inches 1.14inches

Note, the calculation of heatmap slice positions relies on the device size. In the previous
example code, pos was calculated in a device with 6 inches width and 4 inches height.

The returned object pos is a DataFrame object that contains positions of all heatmap slices.
The DataFrame class defined in package S4Vectors (Pagès, Lawrence, and Aboyoun 2020) is
very similar to a data frame, but it can store more complex data types, such as the simpleUnit
vectors generated by grid::unit(). Figure 7A contains the original heatmap and black
rectangles in Figure 7B were drawn based on the positions that were captured.

Next, InteractiveComplexHeatmap captures the physical position of the point that the user
clicked on the heatmap. This is simply done by applying function grid::grid.locator() in
the ROOT viewport. Now with knowing positions of heatmap slices and position of the point
that the user clicked, it is possible to calculate which row and column in the original matrix
user’s click corresponds to.

In Figure 7B, assume blue point with coordinate (a, b) was clicked by the user. The heatmap
slice which the user clicked into can be easily identified by comparing the position of the click
and the position of every heatmap slice. Assume the heatmap slice where user’s click is in
has a range of (x1, x2) on x direction and a range of (y1, y2) on y direction. There are nr

rows (nr = 7) and nc columns (nc = 7) in this heatmap slice and they are marked by dashed
lines in Figure 7B. Note all coordinate values (a, b, x1, y1, x2 and y2) are measured as the
distances to the bottom left of the graphics device.

In this heatmap slice, the row index ir and column index ic of the cell where the click is in
can be calculated as (assume the left bottom corresponds to the index of 1 for both rows and
columns):

ic = d a− x1
x2 − x1

· nce

ir = d b− y1
y2 − y1

· nre

where the symbol dxe means the ceiling of the numeric value x. In ComplexHeatmap, the
row with index 1 is always put on the top of the heatmap, then ir should be adjusted to:

ir = nr − d
b− y1
y2 − y1

· nre+ 1

The subset of row and column indices in the original matrix that belongs to the selected
heatmap slice is already stored in ht_list object (they can be retrieved by functions row_order()
and column_order()), thus, we can obtain the row and column index in the original matrix
that corresponds to user’s click easily with ir and ic.

Denote the matrix for the complete heatmap (without splitting) as M , and denote the subset
of row and column indices in the heatmap slice where user’s click is in as orow and ocol. Note,
orow and ocol can be reordered due to e.g. clustering. Then row and column indices for the
clicked point in M , denoted as jr and jc, are calculated as follows:

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 21

1 2

1
2

a
9
a
4
a
1

a
5
a
8
a
3
a
6
a
7
a
2

a
1
0

0.2
0.4
0.6

foo

0 5

1
0

bar

b10

b9

b7

b2

b5

b4

b1

b8

b3

b6

b
1
b
2
b
3
b
4
b
5
b
6
b
7
b
8
b
9

b
1
0

mat_a

−4

−2

0

2

4

mat_b

c
b
i
g
h
d
f
j
a
e

(a, b)

(x1, y1)

(x2, y2)

nr = 7

nc = 7

A

B

Figure 7: Demonstration of the implementation of interactivity. A) The original heatmap.
B) The black rectangles are drawn based on the positions captured for all heatmap slices.
Figure A and B were both drawn in a device with 6 inches width and 4 inches height. Dashed
rectangles correspond to image borders.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

22 Make Interactive Complex Heatmaps in R

Figure 8: Demonstration of selectPosition(). Circle on the heatmap represents the point
clicked by user. On the left is the interactive graphics device and on the right is the R
terminal.

jr = orowir

jc = ocolic

And the corresponding value in M is Mjr,jc .

InteractiveComplexHeatmap has two functions selectPosition() and selectArea() which
allow users to pick single positions or to select areas from heatmaps. Under the interactive
graphics device, users do not need to run htPositionsOnDevice() explicitly. The positions
of heatmaps are automatically calculated, cached and reused if heatmaps are the same and
the device has not changed its size. If users change the device size, htPositionsOnDevice()
will be automatically re-executed.

Figure 8 demonstrates an example of using selectPosition(). Interactively, selectPosi-
tion() asks the user to click one position on the heatmap. The function returns a DataFrame

which contains the heatmap name, slice name and row and column index in the corresponding
matrix. An example output from selectPosition() is as follows:

DataFrame with 1 row and 6 columns

heatmap slice row_slice column_slice row_index

<character> <character> <numeric> <numeric> <integer>

1 mat_a mat_a_heatmap_body_1_2 1 2 9

column_index

<integer>

1 8

The output means the position that the user clicked is in a heatmap named "mat_a" and

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 23

in its first row slice and in the second column slice. Assume mat is the matrix for heatmap
"mat_a", then the clicked point corresponds to the value mat[9, 8].

Similarly, the function selectArea() asks the user to click two positions on the heatmap
which define an area. Note since the selected area may overlap over multiple heatmap slices,
selectArea() returns a DataFrame with multiple rows. An example output is as follows.

DataFrame with 4 rows and 6 columns

heatmap slice row_slice column_slice row_index

<character> <character> <numeric> <numeric> <IntegerList>

1 mat_a mat_a_heatmap_body_1_2 1 2 7,2,5,...

2 mat_a mat_a_heatmap_body_2_2 2 2 8

3 mat_b mat_b_heatmap_body_1_1 1 1 7,2,5,...

4 mat_b mat_b_heatmap_body_2_1 2 1 8

column_index

<IntegerList>

1 6,7,2,...

2 6,7,2,...

3 1,2,3

4 1,2,3

The columns row_index and column_index are stored in a class of IntegerList which is
simply a list of integer vectors. To get the row indices in e.g. mat_a_heatmap_body_1_2 (in
the first row), user can use either one of the following commands (assume the DataFrame

object is named df):

R> df[1, "row_index"][[1]]

R> unlist(df[1, "row_index"])

R> df$row_index[[1]]

4.2. On off-screen graphics devices

It is also possible to use selectPosition() and selectArea() on off-screen graphics devices,
such as pdf or png. Now the positions cannot be selected interactively, but instead argument
pos in selectPosition() or pos1/pos2 in selectArea() need to be specified to simulate
clicks. The values for pos, pos1 and pos2 should be unit objects of length two which
corresponds to the x and y coordinates of the positions relative to the bottom left of the
device.

R> png(...)

R> ht_list = draw(ht_list)

R> pos = selectPosition(ht_list, pos = unit(c(3, 3), "cm"))

R> dev.off()

Users do not need to use this functionality directly with an off-screen graphics device, but it
is very useful when implementing the interactivity in a Shiny application where the plot is

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

24 Make Interactive Complex Heatmaps in R

actually generated under an off-screen graphics device.

4.3. In Shiny web applications

With the three functions htPositionsOnDevice(), selectPosition() and selectArea(),
it is possible to implement Shiny applications for interactively working with heatmaps. Now
the question is how does the server side capture the positions that the user clicked on heatmap
which is actually on the web page. Luckily, there is a solution. The heatmap is normally
generated within a shiny::plotOutput() and plotOutput() provides two actions that can
be applied on heatmaps: click and brush. Then under the Shiny framework, server can
receive the information of the positions as soon as the user performs clicking or brushing on
heamtaps. The positions can be later sent to selectPosition() or selectArea() via pos

or pos1/pos2 arguments for correctly corresponding to the original matrices. htShiny() is
implemented in this way, as well as some other functions for Shiny application development,
which will be introduced in the next section.

5. Shiny web application development

htShiny() exports heatmaps as stand-alone Shiny web applications. InteractiveComplex-
Heatmap also provides general solutions for integrating interactive heatmap widgets in other
Shiny application development. It allows dynamically generating interactive heatmap widgets
according to different configurations on heatmaps, and customizing the output that responds
to user’s actions on heatmaps.

There are following two main functions for Shiny application development:

• InteractiveComplexHeatmapOutput(),
• makeInteractiveComplexHeatmap().

InteractiveComplexHeatmapOutput() constructs the user interface (UI). As already demon-
strated in Section 3.2, the interactive heatmap widget by default contains three components,
i.e., the original heatmap, the sub-heatmap and the output that prints information of cells
that users selected. The first two heatmap components contain various tools for controlling
both heatmaps. makeInteractiveComplexHeatmap() defines a list of responses to user’s
actions that were performed on heatmaps as well as in the tools.

Note htShiny() is simply a wrapper function on these two functions, thus, most of the
functionalities introduced in this section also work for htShiny().

5.1. With one interactive heatmap widget

Creating a Shiny application that only contains one interactive heatmap widget is rather
simple. Following is an example that can be directly copied and pasted to an R session
(Figure 9).

R> library(ComplexHeatmap)

R> library(InteractiveComplexHeatmap)

R> library(shiny)

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 25

Figure 9: A simple Shiny application directly from ui and server.

R>

R> data(rand_mat) # simply a random matrix

R> ht1 = Heatmap(rand_mat, name = "mat",

+ show_row_names = FALSE, show_column_names = FALSE)

R> ht1 = draw(ht1)

R>

R> ui = fluidPage(

+ h3("My first interactive ComplexHeatmap Shiny app"),

+ p("This is an interactive heatmap visualization on a random matrix."),

+ InteractiveComplexHeatmapOutput()

+)

R> server = function(input, output, session) {

+ makeInteractiveComplexHeatmap(input, output, session, ht1)

+ }

R> shinyApp(ui, server)

5.2. With multiple interactive heatmap widgets

Multiple interactive heatmap widgets can be integrated into one single Shiny application. Now
a“heatmap ID”must be assigned to each widget, so that makeInteractiveComplexHeatmap()
can find the correct heatmap to respond. If there is only one heatmap widget in the Shiny
application, such as in Section 5.1, the heatmap ID is internally generated if it is not specified
and the UI is automatically linked to the server in the two functions. In the following example,
we create a second widget which visualizes a random character matrix (Figure 10). The two

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

26 Make Interactive Complex Heatmaps in R

interactive heatmap widgets are independent in the application. See htShinyExample(1.8)

and htShinyExample(5.1) for live examples.

R> set.seed(88)

R> mat2 = matrix(sample(letters[1:10], 100, replace = TRUE), 10)

R> ht2 = draw(Heatmap(mat2, name = "mat2"))

R>

R> ui = fluidPage(

+ h3("The first heatmap"),

+ InteractiveComplexHeatmapOutput("heatmap_1",

+ height1 = 300, height2 = 300),

+ hr(),

+ h3("The second heatmap"),

+ InteractiveComplexHeatmapOutput("heatmap_2",

+ height1 = 300, height2 = 300)

+)

R> server = function(input, output, session) {

+ makeInteractiveComplexHeatmap(input, output, session, ht1, "heatmap_1")

+ makeInteractiveComplexHeatmap(input, output, session, ht2, "heatmap_2")

+ }

R> shinyApp(ui, server)

5.3. Customize the widgets

The original heatmap and sub-heatmap components can be resized by dragging from bottom
right of the two boxes, but still, InteractiveComplexHeatmapOutput() provides arguments
of width1, height1, width2 and height2 to precisely control the initial sizes of the two
components. They can be manually set to make sure the heatmaps are well visualized and
aligned when the application is initialized.

The layout

The layout of the three components is controlled by argument layout in InteractiveCom-

plexHeatmapOutput(). It supports following values:

• "(1-2)|3": Original heatmap and sub-heatmap are in the same row, and output is in
the second row. This is the default layout.

• "1|(2-3)": Original heatmap is in a single row, while sub-heatmap and output are in
the second row.

• "1-2-3": All three components are in the same row.
• "1|2|3": Each component is in a single row.
• "1-(2|3)": Original heatmap is in a single column. Sub-heatmap and output are

vertically aligned and are in the second column. An example can be found with ht-

ShinyExample(4.1).

Note the values for layout are in a special format to help to understand the layout, where the
three code 1, 2 and 3 correspond to original heatmap, sub-heatmap and output respectively,

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 27

Figure 10: A Shiny application with two interactive heatmap widgets.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

28 Make Interactive Complex Heatmaps in R

symbol "-" corresponds to horizontal alignment and "|" corresponds to vertical alignment.
With different layouts, different default values are assigned to widths and heights of the three
components to make sure they are well aligned.

Action on single heatmap cells

By default, to get the information of a single cell in the heatmap, a "click" action is used. In
InteractiveComplexHeatmapOutput(), the action can also be set to "hover" or "dblclick",
then hovering or double clicking on heatmap will trigger the response on the sever side. The
example in htShinyExample(1.9) demonstrates usages of these three actions.

Which action to respond

The argument response in InteractiveComplexHeatmapOutput() can be set as a vector with
values in "click", "hover", "dblclick", "brush" and "brush-output" to only respond to
one or multiple events on heatmap. E.g., if response is only set to "click", there will be no
response for the brush event in the interactive heatmap, also the sub-heatmap component is
removed from the application.

Brushing on heatmap by default triggers two responses, one in the sub-heatmap and one in
the output. If "brush-output" is included in response instead of "brush", there will be
only response for brushing in the output, and the sub-heatmap component is removed from
the application.

Separately specify the three UI components

InteractiveComplexHeatmapOutput() contains all three UI components. Nevertheless, the
three components can be separately specified by three individual functions: originalHeatmapOut-
put(), subHeatmapOutput() and HeatmapInfoOutput(). This provides flexibility for the UI
arrangement, e.g., to integrate with package shinydashboard (Chang and Borges Ribeiro
2018) where each UI component is wrapped within an individual box. An example is as
follows (Figure 11).

R> library(shinydashboard)

R> body = dashboardBody(

+ fluidRow(

+ box(title = "Original heatmap", width = 4,

+ solidHeader = TRUE, status = "primary",

+ originalHeatmapOutput("ht", title = NULL)),

+ box(title = "Sub-heatmap", width = 4,

+ solidHeader = TRUE, status = "primary",

+ subHeatmapOutput("ht", title = NULL)),

+ box(title = "Output", width = 4,

+ solidHeader = TRUE, status = "primary",

+ HeatmapInfoOutput("ht", title = NULL))

+)

+)

R> ui = dashboardPage(

+ dashboardHeader(),

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 29

Figure 11: Separately specify the three UI components and integrate with shinydashboard.

+ dashboardSidebar(disable = TRUE),

+ body

+)

R> server = function(input, output, session) {

+ makeInteractiveComplexHeatmap(input, output, session, ht1, "ht")

+ }

R> shinyApp(ui, server)

Please note, since now the three components are generated independently, to correctly connect
the three components as well as the server, the heatmap ID must be explicitly specified in all
functions. More examples on integrating with shinydashboard can be found in htShinyEx-

ample(10.1) to htShinyExample(10.5).

5.4. Work with R Markdown documents

It is straightforward to integrate InteractiveComplexHeatmap in an interactive R Markdown
document, just in the same way as integrating normal Shiny applications. Examples can be
found in htShinyExample(7.1) and htShinyExample(7.2).

5.5. Self-define the output

Both clicking and brushing on a heatmap trigger an output associated with the heatmap.
The output gives information of rows and columns selected by users. In InteractiveComplex-
Heatmap, the response for the two actions can be self-defined, which makes it possible to
build an interactive application with complex responses.

There are two arguments: click_action and brush_action in makeInteractiveComplex-

Heatmap() which accept self-defined functions to define how to respond after the heatmap was
clicked or brushed. The two functions should accept two arguments, the first is a DataFrame

object which contains the information of which rows and columns are selected by the user,
and the second argument should always be output which is used in the Shiny server function.

To use click_action or brush_action, a htmlOutput (or other similar *Output) should be

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

30 Make Interactive Complex Heatmaps in R

first set up in the UI, then the Shiny application knows where to update the output. The
output UI can replace the default output by directly assigning to argument output_ui in
InteractiveComplexHeatmapOutput().

R> ui = fluidPage(

+ InteractiveComplexHeatmapOutput(output_ui = htmlOutput("info"))

+)

Or to create a new output UI independent to the interactive heatmap widget.

R> ui = fluidPage(

+ InteractiveComplexHeatmapOutput(),

+ htmlOutput("info")

+)

click_action or brush_action is normally defined as follows (assume the ID set in htmlOut-

put() is "info"):

R> function(df, output) {

+ output$info = renderUI({

+ if(is.null(df)) {

+ ...

+ } else {

+ ...

+ }

+ })

+ }

If users didn’t click or brush inside the heatmap body (e.g., only clicked in the dendrogram),
df that is passed to the functions will be NULL. A sanity check might be performed here to
perform specific action when heatmap cell was not selected.

The format of df is slightly different between click and brush. If it is a click action, df has the
same format as the returned object of selectPosition() (introduced in Section 4), which
looks like the following chunk. It always has one row if the user clicked into the heatmap.

DataFrame with 1 row and 6 columns

heatmap slice row_slice column_slice row_index

<character> <character> <numeric> <numeric> <integer>

1 mat_a mat_a_heatmap_body_1_2 1 2 9

column_index

<integer>

1 8

If it is a brush action, df has the same format as the returned object of selectArea()

(introduced in Section 4), which looks like the following chunk. Each line contains row and
column indices of the selected sub-matrix in a specific heatmap slice of a specific heatmap.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 31

DataFrame with 4 rows and 6 columns

heatmap slice row_slice column_slice row_index

<character> <character> <numeric> <numeric> <IntegerList>

1 mat_a mat_a_heatmap_body_1_2 1 2 7,2,5,...

2 mat_a mat_a_heatmap_body_2_2 2 2 8

3 mat_b mat_b_heatmap_body_1_1 1 1 7,2,5,...

4 mat_b mat_b_heatmap_body_2_1 2 1 8

column_index

<IntegerList>

1 6,7,2,...

2 6,7,2,...

3 1,2,3

4 1,2,3

Note as demonstrated above, after a brush action, values in column row_index and col-

umn_index might be duplicated due to the fact that the selected heatmap slices are in the
same row or column. E.g., in the previous example, the first and the third rows correspond to
the selection in the first row slice, but in two different column slices, thus they have the same
values for row_index. To safely get row indices and column indices of the selected heatmap,
users might need to perform:

R> unique(unlist(df$row_index))

R> unique(unlist(df$column_index))

To receive more information from the Shiny application, the self-defined functions for click_action
and brush_action can also accept four arguments where two additional variables input and
session are passed from server function:

R> function(df, input, output, session) {

+ ...

+ }

If argument action in InteractiveComplexHeatmapOutput() is set to "hover" or "dblclick",
the corresponding argument in makeInteractiveComplexHeatmap() is hover_action or dblclick_action.
Their usages are the same as click_action.

We demonstrate how to self-define click_action in the next example which visualizes a
correlation matrix based on mtcars dataset. In the UI, the default output is replaced with a
new plotOutput. On the server side, a self-defined click_action is defined to draw a scatter
plot of the two corresponding variables that were selected from heatmap (Figure 12). Note
in the example response = "click" is set to simplify Figure 12 so that the sub-heatmap
component is not included in the application. The live version of this example can be found
in htShinyExample(5.5).

R> data(mtcars)

R> cor_mat = cor(mtcars)

R>

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

32 Make Interactive Complex Heatmaps in R

Figure 12: A demonstration of self-defining the output. The heatmap visualizes a corre-
lation matrix based on mtcars dataset. Clicking on a cell draws a scatter plot of the two
corresponding variables.

R> library(circlize)

R> col_fun = colorRamp2(c(-1, 0, 1), c("darkgreen", "white", "red"))

R> ht = Heatmap(cor_mat, name = "Correlation",

+ col = col_fun, show_row_dend = FALSE, show_column_dend = FALSE)

R>

R> ui = fluidPage(

+ InteractiveComplexHeatmapOutput(

+ output_ui = plotOutput("scatterplot", width = 400, height = 400),

+ response = "click")

+)

R> click_action = function(df, output) {

+ output$scatterplot = renderPlot({

+ nm = colnames(mtcars)

+ i1 = df$column_index

+ i2 = df$row_index

+ x = mtcars[, i1]

+ y = mtcars[, i2]

+

+ plot(x, y, xlab = nm[i1], ylab = nm[i2],

+ main = paste0("Correlation = ", sprintf('%.3f', cor(x, y))))

+ })

+ }

R> server = function(input, output, session) {

+ makeInteractiveComplexHeatmap(input, output, session, ht,

+ click_action = click_action)

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 33

+ }

R> shinyApp(ui, server)

There are several other examples in InteraciveComplexHeatmap that demonstrate the use of
self-defining output:

• htShinyExample(5.3): A gene expression matrix is visualized and clicking on the
heatmap prints the corresponding gene ID and other annotations related to this gene.

• htShinyExample(5.4): The heatmap visualizes pairwise similarities of a list of Gene
Ontology (GO) terms. In this example, the click and brush actions are self-defined so
that the selected GO IDs as well as their detailed descriptions are printed.

• htShinyExample(5.6): The heatmap visualizes pairwise Jaccard coefficients for multi-
ple lists of genomic regions. Clicking on the heatmap cell draws a Hilbert curve generated
by the package HilbertCurve (Gu, Eils, and Schlesner 2016b) which illustrates how the
two corresponding sets of genomic regions overlap.

• Section 6 demonstrates a complex Shiny example of visualizing results from a differential
expression analysis where the output is self-defined to link selected genes on heatmaps
to a MA-plot, a volcano plot as well as a table of results only for these selected genes.

Float the output

Instead of occupying static space in the application, the output component can be floated to
the mouse positions by setting output_ui_float = TRUE in InteractiveComplexHeatmapOut-

put(), then clicking, hovering or brushing on the heatmap opens a floating frame that contains
the output. htShinyExample(9.1) demonstrates output floating when mouse action is set
to "hover", "click" or "dblclick", respectively. If the default output is replaced by a
user-defined output by assigning to argument output_ui, the self-defined output can also be
floated. Figure 13 demonstrates an example where clicking or brushing on the GO similarity
heatmap opens a floating frame that contains the information of the corresponding GO terms.
The live version can be found in htShinyExample(9.2).

Compact mode

InteractiveComplexHeatmapOutput() supports a “compact mode” by setting the argument
compact to TRUE, then there is only the original heatmap and the output floats at the mouse
positions if hovering or clicking on heatmap. The following two lines of code are identical.
An example is in htShinyExample(1.11).

R> InteractiveComplexHeatmapOutput(..., compact = TRUE)

R> InteractiveComplexHeatmapOutput(..., response = c(action, "brush-output"),

+ output_ui_float = TRUE)

5.6. Dynamically generate interactive heatmap widget

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

34 Make Interactive Complex Heatmaps in R

Figure 13: Floating output to mouse positions. The heatmap visualizes a GO similarity ma-
trix from an analysis by package simplifyEnrichment. The output for clicking was self-defined
to print the description of the two GO IDs and argument output_ui_float in Interactive-

ComplexHeatmapOutput() was set to TRUE to float the output to mouse positions. Top left
of the output box corresponds to the cell that was clicked.

In previous examples, heatmaps are already generated before generating the interactive appli-
cations. There are also scenarios where the heatmaps are generated on the fly. There might
be following scenarios where heatmap is dynamically generated:

• The heatmap is based on a subset of matrix which is filtered by users, e.g., the expression
matrix for differentially expressed genes filtered by different cutoffs.

• The heatmap annotations are dynamically provided by users.
• The heatmap parameters are changed by users, e.g., the clustering method or the split-

ting variable.
• If there are multiple heatmaps, which heatmaps are going to be drawn is dynamically

selected.

InteractiveComplexHeatmap supports several ways to implement dynamic interactive heatmaps.

Directly use makeInteractiveComplexHeatmap()

The use is very natural. In the next example where the interactive heatmap widget is dynam-
ically generated according to the number of heatmaps that the user selected, makeInterac-
tiveComplexHeatmap() is directly put inside shiny::observeEvent() or shiny::observe()
so that every time value of input$n_heatmap changes, it triggers an update of the interactive
heatmap widget (Figure 14).

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 35

Figure 14: Dynamically generate the interactive heatmap widget. The wiget visualizes a
user-specified number of heatmaps.

R> ui = fluidPage(

+ sliderInput("n_heatmap", label = "How many heatmaps?",

+ value = 1, min = 1, max = 5),

+ InteractiveComplexHeatmapOutput()

+)

R> generate_heatmap_list = function(n) {

+ ht_list = NULL

+ for(i in 1:n) {

+ ht_list = ht_list + Heatmap(matrix(rnorm(100), 10),

+ name = paste0("mat_", i),

+ column_title = paste0("heatmap_", i))

+ }

+ ht_list

+ }

R> server = function(input, output, session) {

+ observe({

+ ht_list = generate_heatmap_list(input$n_heatmap)

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

36 Make Interactive Complex Heatmaps in R

+ makeInteractiveComplexHeatmap(input, output, session, ht_list)

+ })

+ }

R> shiny::shinyApp(ui, server)

More examples can be found in htShinyExample(6.1) and htShinyExample(6.2).

Use InteractiveComplexHeatmapWidget() and InteractiveComplexHeatmapModal()

In the previous example, the UI for the interactive heatmap must be manually created and
it is placed on the application permanently. The function InteractiveComplexHeatmapWid-

get() provides an alternative way to implement this example which dynamically creates the
complete interactive heatmap widget on the fly. To use InteractiveComplexHeatmapWid-

get(), a placeholder by htmlOutput() should be first created on the UI (e.g., in the following
code chunk). On the server side, InteractiveComplexHeatmapWidget() creates the UI and
inserts it to the place defined by htmlOutput(). One advantage of using Interactive-

ComplexHeatmapWidget() is it supports removing the interactive heatmap widget from the
application, which would be useful if the interactive widget is only for temporary use. See
examples in htShinyExample(6.6) and htShinyExample(6.7).

R> ui = fluidPage(

+ sliderInput("n_heatmap", label = "How many heatmaps?",

+ value = 1, min = 1, max = 5),

+ htmlOutput("heatmap_widget")

+)

R> server = function(input, output, session) {

+ observe({

+ ht_list = generate_heatmap_list(input$n_heatmap)

+ InteractiveComplexHeatmapWidget(input, output, session, ht_list,

+ output_id = "heatmap_widget")

+ })

+ }

R> shiny::shinyApp(ui, server)

The second function InteractiveComplexHeatmapModal() is very similar as Interactive-

ComplexHeatmapWidget(). InteractiveComplexHeatmapModal() also dynamically gener-
ates the complete interactive heatmap widget on the fly, but it does not require to allocate
a placeholder on UI, while the widget locates in a new layer above the current layer, as a
so-called “modal dialog”.

Following code demonstrates an example which dynamically creates an interactive widget
of a numeric heatmap or a character heatmap. Live examples can be found in htShinyEx-

ample(6.3), htShinyExample(6.4) and htShinyExample(6.5). The recursive interactive
heatmap introduced in Section 3.4 is also implemented with InteractiveComplexHeatmap-

Modal().

R> ui = fluidPage(

+ radioButtons("select", "Select a matrix:",

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 37

+ choices = c("Numeric" = 1, "Character" = 2)),

+ actionButton("show_heatmap", "Generate_heatmap"),

+)

R> server = function(input, output, session) {

+ observeEvent(input$show_heatmap, {

+ i = as.numeric(input$select)

+ if(i == 1) {

+ mat = matrix(rnorm(100), 10)

+ } else {

+ mat = matrix(sample(letters[1:10], 100, replace = TRUE), 10)

+ }

+ ht = Heatmap(mat)

+ InteractiveComplexHeatmapModal(input, output, session, ht)

+ })

+ }

R> shiny::shinyApp(ui, server)

5.7. Implement the widgets from scratch

InteractiveComplexHeatmapOutput() and makeInteractiveComplexHeatmap() generate
heatmap widgets that contain many pre-defined tools. InteractiveComplexHeatmap also pro-
vides low-level functions that directly return the information of rows and columns that were
selected from heatmap so that users can define how to respond to the events on heatmap and
build their own interactive heatmap widgets completely from scratch. We demonstrate the
usage in the next example where ui and server are defined as follows:

R> ui = fluidPage(

+ ...,

+ plotOutput("heatmap", brush = "heatmap_brush")

+)

R> server = function(input, output, session) {

+ ht_obj = reactiveVal(NULL)

+ ht_pos_obj = reactiveVal(NULL)

+

+ output$heatmap = renderPlot({

+ ...

+ ht = draw(Heatmap(mat))

+ ht_pos = htPositionsOnDevice(ht)

+

+ ht_obj(ht)

+ ht_pos_obj(ht_pos)

+ })

+ observeEvent(input$heatmap_brush, {

+ pos = getPositionFromBrush(input$heatmap_brush)

+ df = selectArea(ht_obj(), pos[[1]], pos[[2]], mark = FALSE,

+ ht_pos = ht_pos_obj(), verbose = FALSE)

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

38 Make Interactive Complex Heatmaps in R

+ # do something with `df`
+ ...

+ })

+ }

There are two points that need to be noted. 1. draw() and htPositionsOnDevice() should
always be executed together and be put inside renderPlot() so that positions of all heatmap
slices can be correctly calculated. 2. Use getPositionFromBrush() to retrieve the positions of
the brushed area on heatmap, then the positions can be sent to selectArea() to correspond
to the original matrix. Similarly, getPositionFromClick() and selectPosition() work
together to retrieve row and column from the matrix that correspond to user’s click on the
heatmap. Runnable examples can be found in htShinyExample(5.7). This method also
works for complex heatmaps, e.g., with row or column splitting, or with multiple heatmaps
and annotations.

htShinyExample(5.8) demonstrates another example which visualizes a 2D density distribu-
tion. When brushing on the density heatmap, the use of makeInteractiveComplexHeatmap()
which actually visualizes a “zoomed subset” might cause a problem that is the densities in
the selected sub-heatmap cannot be distinguished to background if densities are too small
compared to the maximal density value from the complete dataset. To solve this problem,
we reimplement the response of the brush event from scratch which now triggers a new 2D
density estimation only on the subset of the selected data.

6. Case study

Figure 15 demonstrates an interactive heatmap application which visualizes results of differ-
ential gene expression analysis on the airway dataset performed by package DESeq2 (Love,
Huber, and Anders 2014). In the application, the heatmap visualizes expression of genes that
are significantly different from a two-condition comparison, i.e., trt vs untrt (treated vs. un-
treated). The application is arranged in a three-column layout where the original heatmap
locates in the first column, the sub-heatmap and the default output locate in the second col-
umn, and self-defined outputs are in the third column. The heatmap components are specified
separately and the layout is implemented with the shinydashboard package.

In the original heatmap list, there are two additional one-column heatmaps which visualize the
absolute expression level of genes (baseMean) and the fold change between the two conditions
(log2foldChange). To get more comprehensive information of how genes are differentially
expressed when selecting them from heatmap, we defined extra outputs for the click and
brush events on the original heatmaps. As shown in Figure 15, when a subset of genes are
selected from the original heatmap, they are highlighted in a MA-plot which is a scatter plot
of log2foldChange against baseMean where baseMean is in log10 scale and in a volcano plot
which is also a scatter plot of -log10(FDR) against log2foldchange. There is a table of
statistics from DESeq2 analysis for the selected genes is printed below the two plots. Users
can also search in heatmaps to obtain a subset of genes of interest to generate corresponding
MA-plot, volcano plot and table.

In the left sidebar of the application, there are parameters for selecting differential genes as
well as for selecting the number of groups for the k -means clustering applied on the expression
matrix. The whole interactive widget will be updated when specific parameters are selected.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 39

Figure 15: An interactive heatmap application for visualizing results from a differential gene
expression analysis.

The vignette “A Shiny app for visualizing DESeq2 results” in InteractiveComplexHeatmap
gives a detailed explanation of implementing this Shiny application from scratch. Because
differential expression analysis with DESeq2 is widely applied in transcriptomic data analysis,
InteractiveComplexHeatmap implements a generic function interactivate() and a method
dispatched on DESeqDataSet class which is defined by DESeq2 for storing results from differ-
ential expression analysis. Thus, interactive visualization on DESeq2 results can be simply
achieved such as in the following example:

R> library(DESeq2)

R> library(airway)

R> data(airway)

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

40 Make Interactive Complex Heatmaps in R

R>

R> dds = DESeqDataSet(airway, design = ~ dex)

R> dds = DESeq(dds)

R> interactivate(dds)

7. Conclusion

Interactivity on heatmaps greatly facilitates users to capture features which have specific
patterns on heatmaps. In this paper, we described a new R/Bioconductor package Interac-
tiveComplexHeatmap that supports interactive visualization on complex heatmaps. It can
easily export static heatmaps to interactive Shiny applications and it also provides flexible
functionalities for implementing more comprehensive Shiny applications. We believe it will
be a useful tool for effectively interpreting data and developmenting new tools.

8. Acknowledgments

This work was supported by the German Cancer Research Center-Heidelberg Center for Per-
sonalized Oncology (DKFZ-HIPO) and by the Molecular Diagnostics Program of the National
Center for Tumor Diseases (NCT) Heidelberg.

References

Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016).
“Heatmapper: web-enabled heat mapping for all.” Nucleic Acids Research, 44(W1), W147–
W153. doi:10.1093/nar/gkw419.

Barter RL, Yu B (2018). “Superheat: An R Package for Creating Beautiful and Extend-
able Heatmaps for Visualizing Complex Data.” Journal of Computational and Graphical
Statistics, 27(4), 910–922. doi:10.1080/10618600.2018.1473780.

Chang W, Borges Ribeiro B (2018). shinydashboard: Create Dashboards with ’Shiny’. R
package version 0.7.1, URL https://CRAN.R-project.org/package=shinydashboard.

Chang W, Cheng J, Allaire J, Sievert C, Schloerke B, Xie Y, Allen J, McPherson J, Dipert
A, Borges B (2021). shiny: Web Application Framework for R. R package version 1.6.0,
URL https://CRAN.R-project.org/package=shiny.

Cheng J, Galili T (2018). d3heatmap: Interactive Heat Maps Using ’htmlwidgets’ and ’D3.js’.
R package version 0.6.1.2, URL https://CRAN.R-project.org/package=d3heatmap.

Conway JR, Lex A, Gehlenborg N (2017). “UpSetR: an R package for the visualization of
intersecting sets and their properties.” Bioinformatics, 33(18), 2938–2940. doi:10.1093/

bioinformatics/btx364.

Eisen MB, Spellman PT, Brown PO, Botstein D (1998). “Cluster analysis and display of
genome-wide expression patterns.” Proceedings of the National Academy of Sciences, 95(25),
14863–14868.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1093/nar/gkw419
https://doi.org/10.1080/10618600.2018.1473780
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=d3heatmap
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 41

Fernandez NF, Gundersen GW, Rahman A, Grimes ML, Rikova K, Hornbeck P, Ma’ayan A
(2017). “Clustergrammer, a web-based heatmap visualization and analysis tool for high-
dimensional biological data.” Scientific Data, 4(1), 170151. ISSN 2052-4463. doi:10.1038/
sdata.2017.151.

Galili T, O’Callaghan A, Sidi J, Sievert C (2017). “heatmaply: an R package for creating
interactive cluster heatmaps for online publishing.” Bioinformatics, 34(9), 1600–1602. doi:
10.1093/bioinformatics/btx657.

Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha
R, Larsson E, Cerami E, Sander C, Schultz N (2013). “Integrative Analysis of Complex
Cancer Genomics and Clinical Profiles Using the cBioPortal.” Science Signaling, 6(269),
pl1–pl1. doi:10.1126/scisignal.2004088.

Gaujoux R, Seoighe C (2010). “A flexible R package for nonnegative matrix factorization.”
BMC Bioinformatics, 11(1), 367. doi:10.1186/1471-2105-11-367.

Gu Z (2020). Rasterization in ComplexHeatmap. URL https://jokergoo.github.io/2020/

06/30/rasterization-in-complexheatmap/.

Gu Z (2021). ComplexHeatmap Complete Reference. URL https://jokergoo.github.io/

ComplexHeatmap-reference/book/.

Gu Z, Eils R, Schlesner M (2016a). “Complex heatmaps reveal patterns and correlations
in multidimensional genomic data.” Bioinformatics, 32(18), 2847–2849. doi:10.1093/

bioinformatics/btw313.

Gu Z, Eils R, Schlesner M (2016b). “HilbertCurve: an R/Bioconductor package for high-
resolution visualization of genomic data.” Bioinformatics, 32(15), 2372–2374. doi:10.

1093/bioinformatics/btw161.

Gu Z, Eils R, Schlesner M, Ishaque N (2018). “EnrichedHeatmap: an R/Bioconductor package
for comprehensive visualization of genomic signal associations.” BMC Genomics, 19(1), 234.
doi:10.1186/s12864-018-4625-x.

Gu Z, Hübschmann D (2021). “simplifyEnrichment: an R/Bioconductor package for Cluster-
ing and Visualizing Functional Enrichment Results.” bioRxiv. doi:10.1101/2020.10.27.

312116.

Gu Z, Schlesner M, Hübschmann D (2020). “cola: an R/Bioconductor package for consensus
partitioning through a general framework.” Nucleic Acids Research, 49(3), e15–e15. doi:

10.1093/nar/gkaa1146.

Hahsler M, Hornik K, Buchta C (2008). “Getting Things in Order: An Introduction to
the R Package seriation.” Journal of Statistical Software, Articles, 25(3), 1–34. doi:

10.18637/jss.v025.i03.

Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, Natarajan KN, Reik
W, Barahona M, Green AR, Hemberg M (2017). “SC3: consensus clustering of single-cell
RNA-seq data.” Nature Methods, 14(5), 483–486. doi:10.1038/nmeth.4236.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://doi.org/10.1038/sdata.2017.151
https://doi.org/10.1038/sdata.2017.151
https://doi.org/10.1093/bioinformatics/btx657
https://doi.org/10.1093/bioinformatics/btx657
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1186/1471-2105-11-367
https://jokergoo.github.io/2020/06/30/rasterization-in-complexheatmap/
https://jokergoo.github.io/2020/06/30/rasterization-in-complexheatmap/
https://jokergoo.github.io/ComplexHeatmap-reference/book/
https://jokergoo.github.io/ComplexHeatmap-reference/book/
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw161
https://doi.org/10.1093/bioinformatics/btw161
https://doi.org/10.1186/s12864-018-4625-x
https://doi.org/10.1101/2020.10.27.312116
https://doi.org/10.1101/2020.10.27.312116
https://doi.org/10.1093/nar/gkaa1146
https://doi.org/10.1093/nar/gkaa1146
https://doi.org/10.18637/jss.v025.i03
https://doi.org/10.18637/jss.v025.i03
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

42 Make Interactive Complex Heatmaps in R

Kolde R (2019). pheatmap: Pretty Heatmaps. R package version 1.0.12, URL https://CRAN.

R-project.org/package=pheatmap.

Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and disper-
sion for RNA-seq data with DESeq2.” Genome Biology, 15(12), 550. doi:10.1186/

s13059-014-0550-8.

Morpheus (2021). Versatile matrix visualization and analysis software. URL https:

//software.broadinstitute.org/morpheus.

Pagès H, Lawrence M, Aboyoun P (2020). S4Vectors: Foundation of vector-like and list-like
containers in Bioconductor. R package version 0.26.1.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ryan M, Stucky M, Wakefield C, Melott J, Akbani R, Weinstein J, Broom B (2019). “In-
teractive Clustered Heat Map Builder: An easy web-based tool for creating sophisticated
clustered heat maps.” F1000Research, 8(1750). doi:10.12688/f1000research.20590.1.

Schep AN, Kummerfeld SK (2017). “iheatmapr: Interactive complex heatmaps in R.” Journal
of Open Source Software, 2(16), 359. doi:10.21105/joss.00359.

Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler
M, Magnusson A, Moeller S, Schwartz M, Venables B (2020). gplots: Various R Program-
ming Tools for Plotting Data. R package version 3.1.0, URL https://CRAN.R-project.

org/package=gplots.

Wilke CO (2020). gridtext: Improved Text Rendering Support for ’Grid’ Graphics. R package
version 0.1.1, URL https://CRAN.R-project.org/package=gridtext.

Wilkinson L, Friendly M (2009). “The History of the Cluster Heat Map.” The American
Statistician, 63(2), 179–184. doi:10.1198/tas.2009.0033.

Zhao S, Yin L, Guo Y, Sheng Q, Shyr Y (2021). heatmap3: An Improved Heatmap Package.
R package version 1.1.9, URL https://CRAN.R-project.org/package=heatmap3.

Affiliation:

Zuguang Gu
German Cancer Research Center
Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Dis-
eases (NCT)
and
DKFZ-HIPO (Heidelberg Center for Personalized Oncology)
Im Neuenheimer Feld 280
69120 Heidelberg, Germany
E-mail: z.gu@dkfz-heidelberg.de
URL: http://jokergoo.github.io

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://software.broadinstitute.org/morpheus
https://software.broadinstitute.org/morpheus
https://www.R-project.org/
https://doi.org/10.12688/f1000research.20590.1
https://doi.org/10.21105/joss.00359
https://CRAN.R-project.org/package=gplots
https://CRAN.R-project.org/package=gplots
https://CRAN.R-project.org/package=gridtext
https://doi.org/10.1198/tas.2009.0033
https://CRAN.R-project.org/package=heatmap3
mailto:z.gu@dkfz-heidelberg.de
http://jokergoo.github.io
https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

Zuguang Gu, Daniel Hübschmann 43

Daniel Hübschmann
German Cancer Research Center
Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Dis-
eases (NCT)
and
Heidelberg Institute of Stem cell Technology and Experimental Medicine (HI-STEM)
and
German Cancer Consortium (DKTK)
Im Neuenheimer Feld 280
69120 Heidelberg, Germany
and
Department of Pediatric Immunology, Hematology and Oncology, University Hospital Heidel-
berg
69120 Heidelberg, Germany
E-mail: d.huebschmann@dkfz-heidelberg.de

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.03.08.434289doi: bioRxiv preprint

mailto:d.huebschmann@dkfz-heidelberg.de
https://doi.org/10.1101/2021.03.08.434289
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	A brief introduction to ComplexHeatmap
	A single heatmap
	Heatmap annotations
	A list of heatmaps
	High-level plots implemented with ComplexHeatmap
	A complex example

	Export heatmap to a Shiny web application
	The function htShiny()
	Tools in the interactive heatmap application
	Use last generated heatmaps
	Recursive interactive heatmap application
	Applications on other heatmap functions
	Applications on other high-level plots
	Interactivate heatmaps indirectly generated by heatmap(), heatmap.2() and pheatmap()

	Implementation of interactivity
	On the interactive graphics device
	On off-screen graphics devices
	In Shiny web applications

	Shiny web application development
	With one interactive heatmap widget
	With multiple interactive heatmap widgets
	Customize the widgets
	The layout
	Action on single heatmap cells
	Which action to respond
	Separately specify the three UI components

	Work with R Markdown documents
	Self-define the output
	Float the output
	Compact mode

	Dynamically generate interactive heatmap widget
	Directly use makeInteractiveComplexHeatmap()
	Use InteractiveComplexHeatmapWidget() and InteractiveComplexHeatmapModal()

	Implement the widgets from scratch

	Case study
	Conclusion
	Acknowledgments

