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Abstract 

Determining the spatial organization and morphological characteristics of molecularly defined 

cell types is a major bottleneck for characterizing the architecture underpinning brain function. 

We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to 

survey gene expression in brain tissue, as well as a turnkey computational pipeline to rapidly 

process large EASI-FISH image datasets. EASI-FISH was optimized for thick brain sections 

(300 µm) to facilitate reconstruction of spatio-molecular domains that generalize across brains.  

Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens of molecularly 

defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined 

anatomical organization. Mapping cell types in the LHA revealed nine novel spatially and 

molecularly defined subregions. EASI-FISH also facilitates iterative re-analysis of scRNA-Seq 

datasets to determine marker-genes that further dissociated spatial and morphological 

heterogeneity. The EASI-FISH pipeline democratizes mapping molecularly defined cell types, 

enabling discoveries about brain organization. 
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Highlights 

- EASI-FISH enables robust gene expression profiling in thick brain slices  

- A turnkey analysis pipeline for facile analysis of large EASI-FISH image datasets 

- EASI-FISH reveals novel subregions of the lateral hypothalamus 

- Identification of rare cell types based on morphological and spatial heterogeneity 
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Introduction 

Neuronal diversity is a major contributor to brain functions (Zeng and Sanes, 2017). 

Neuronal subtypes (cell types) have been defined based on morphology, connectivity, gene 

expression, electrical properties, and selective functional-response-tuning. The recent emergence 

of low-cost, high-throughput single-cell RNA-Sequencing technology (scRNA-Seq) has enabled 

systematic identification of new cell types in the brain (Saunders et al., 2018; Tasic et al., 2018; 

Zeisel et al., 2018). Molecular definition of cell types provides a way to classify neurons and 

survey neuronal heterogeneity. In addition, marker-genes can be leveraged to selectively 

interrogate the function of specific cell types in neural circuits (Luo et al., 2018).  

Experimental methods and computational analysis pipelines have been developed that 

make scRNA-Seq a ubiquitous and indispensable technique in neuroscience research (Butler et 

al., 2018). However, establishing the spatial organization of cell types predicted by scRNA-Seq 

analysis requires mapping the co-expression patterns of dozens of genes in the same cells in 

three-dimensional (3D) tissue volumes. For widespread usage, methods for spatial analysis of 

gene expression should address several key issues. 1) In situ measurement of gene expression 

should be sensitive, quantitative, and consistent with measurements made by scRNA-Seq. 2) 

Gene expression measurement in tissue samples should be stable and robust to normal storage 

and experimental manipulation. 3) Measurement of gene expression should use widely available 

laboratory equipment. 4) Computational analysis of spatial gene expression should be automated. 

5) Transcripts must be accurately assigned to individual cells. 6) Gene expression analysis 

should be performed in thick tissues to enable 3D mapping of cell types, which will facilitate 

alignment and detailed comparison of samples from different brains and is important for 

establishing generalizable molecular and structural features.  
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Fluorescent in situ hybridization (FISH) is especially well-suited to satisfy these criteria. 

Although multiple methods have been reported (Chen et al., 2015b; Codeluppi et al., 2018; 

Moffitt et al., 2018; Nicovich et al., 2019; Qian et al., 2020; Shah et al., 2016; Wang et al., 

2018), it remains a bottleneck for the vast majority of research labs due to requirements for 

specialized equipment, complex procedures, and challenging multi-step computational analyses. 

Most methods suitable for more than 10 marker-genes require complex experimental setups and 

barcoding/decoding schemes (Chen et al., 2015b; Shah et al., 2016). Attempts to amplify in situ 

RNA by conversion to cDNA also have limited efficiency and may result in nonlinear 

amplification (Ke et al., 2013; Wang et al., 2018). Additionally, most methods suffer from 

optical crowding, which limits accurate RNA quantification, and are restricted to single-cell-

layer tissue sections (10-20 µm), obscuring three-dimensional (3D) relationships of cell types to 

brain structure (Hashikawa et al., 2020). 

To overcome these limitations, we developed Expansion-Assisted Iterative-FISH (EASI-

FISH) with multi-round multiplexed RNA-FISH in 300 µm thick brain sections. Expansion 

microscopy (ExM) (Chen et al., 2015a; Tillberg et al., 2016) is advantageous for high-resolution 

imaging in thick tissue. Imaging thick tissues also enables dozens of cell layers to be included in 

a single sample, allowing 3D reconstruction of tissue volumes. This tissue thickness is also well-

suited for post hoc analysis of tissues obtained from other experimental modalities, such as brain 

slice recordings and in vivo imaging. We also developed a turnkey analysis pipeline that allows 

for rapid and automated data processing, facilitating adoption of high-plex FISH in thick tissue 

as a routine laboratory method for tissue analysis. 

We applied EASI-FISH to the mouse lateral hypothalamus (LHA), a brain region that has 

been studied for decades as an important motivational center regulating ingestive, social, arousal, 
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and autonomic functions (Bernardis and Bellinger, 1993; Petrovich, 2018; Stuber and Wise, 

2016). Despite extensive functional investigation, the understanding of the LHA is limited by 

poor anatomical definition. Some LHA parcellations, based on differences in cellular density or 

axonal projections, have been reported in rat (Geeraedts et al., 1990; Veening et al., 1987), but 

these have not been adopted for segregation of LHA cell types. Here, we performed EASI-FISH 

using molecularly defined cell type markers identified from LHA scRNA-Seq datasets and 

uncovered an unexpected parcellation of the LHA not previously predicted from cell density 

measurements. This includes unreported laminar structures to which different cell types 

segregate. EASI-FISH also reveals morphological diversity of neuronal types in this region. 

Iterative use of EASI-FISH and scRNA-Seq allowed us to further subdivide spatially separated 

members of a transcriptional cluster with distinct marker-genes. Taken together, our results 

demonstrate the capability of the EASI-FISH data acquisition and analysis pipeline, in 

combination with scRNA-Seq data, to readily access an unprecedented view of the organization 

of cell types in the LHA that underlies the multifaceted functions of this important brain area.   

 

Results 

EASI-FISH protocol development 

We designed and implemented EASI-FISH (Figure 1A) in thick tissue sections from 

cortex, central amygdala (CEA), and LHA by building on expansion microscopy enhanced 

smFISH (exFISH) (Chen et al., 2016), where tissue is physically expanded by embedding in a 

swellable hydrogel (Chen et al., 2015a; Tillberg et al., 2016). Uniform expansion is achieved by 

proteolytic digestion of the embedded tissue, while preserving RNA via covalent attachment to 

the hydrogel mesh. Anchored mRNAs are available for detection by FISH methods, including 
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amplification with the hybridization chain reaction (HCR) (Figure 1A and 1B). Proteolytic 

digestion and volumetric expansion (2× linear expansion) reduces tissue autofluorescence (95% 

reduction) and light scattering, yielding a composite material that is refractive index-matched for 

water immersion objective lenses. Expansion also increases the effective imaging resolution, 

increasing the number of individual RNA molecules that may be resolved per cell (Figure 1C). 

We optimized the exFISH procedure for improved detection accuracy and robust sample 

processing across multiple rounds. First, to covalently anchor RNA molecules to the hydrogel, 

we used the bis-nitrogen mustard, Melphalan, instead of the exFISH linker, Label-IT. Like 

Label-IT, Melphalan is an alkylating agent with a primary amine available for conjugation to 

NHS esters, but it is widely available through major chemical vendors, 50 times less expensive 

than Label-IT, and has two alkylating moieties per molecule. After reacting Melphalan with the 

succinimidyl ester of 6-((Acryloyl)amino)hexanoic Acid (Acryloyl-X, SE), the product 

(MelphaX) is applied to tissue and reacts with nucleotides, functionalizing them for 

incorporation into a tissue-gel network by polymerization of the acryloyl “tails” (Figure 1D). 

Importantly, RNA retention with Melphalan was comparable to Label-IT, as measured by spot 

count (Figure S1A). Furthermore, Melphalan significantly increased the brightness of individual 

spots (Figure 1E) and reduced the autofluorescence background compared with Label-IT 

(Figure 1F). This improved the signal-to-noise ratio by 25%, which increases spot detection 

sensitivity (Figure 1G).  

Tissue clearing and isotropic expansion depends on protein digestion. We optimized this 

step for thick tissue by inclusion of the ionic detergent, sodium dodecylsulfate, in the protease 

digestion as well as by increasing tissue expansion in the digestion step through reduced salt 

concentration. This led to greatly improved and rapid optical clearing and reagent penetration 
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through 300-µm-thick tissue volumes compared to the original exFISH protocol (Chen et al., 

2016) (Figure S1B).  

For amplification of FISH signal, we chose to use the hybridization chain reaction (HCR) 

(Dirks and Pierce, 2004) as the probe and amplification oligos are short (50-100nt) and can 

therefore rapidly penetrate into thick tissue. In contrast, another FISH signal amplification 

method, RNAscope (Wang et al., 2012), did not show sufficient reagent penetration in thick 

tissues (Figure S1C-D).  We adopted HCR v3.0 (Choi et al., 2018), which requires binding of 

two adjacent probes for signal amplification, thereby reducing non-specific spots. We also 

optimized the hybridization conditions (probe concentration, wash conditions, etc.) to improve 

detection specificity (see Methods and Figure S1E). 

Selective plane illumination fluorescence microscopy (SPIM or ‘light sheet microscopy’) 

provides a decisive advantage for rapidly imaging in large tissue samples. SPIM avoids 

photobleaching of out-of-focus fluorophores and accelerates image acquisition ~100-fold 

compared with confocal microscopy. Image acquisition in EASI-FISH samples with single 

transcript sensitivity following HCR amplification was readily performed with a turnkey SPIM 

microscope (Zeiss Z.1 microscope, also see Methods).  

We found that HCR spots were susceptible to light-induced fragmentation, producing 

mobile spots, which reduced spot detection fidelity. Fragmentation could be reduced to 

acceptable levels either by reducing laser intensity or by including anti-fade compounds such as 

p-phenylenediamine (PPD), though the latter method reduced the initial brightness of AlexaFluor 

546 to an unacceptable level (see Methods, Supplemental Information movie 1, Table S2 and 

Figure S1H for details). We observed fast fluorophore photobleaching using commercial HCR 

probes conjugated with AlexaFluor-647. To improve photostability, we custom-labelled the 
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corresponding HCR amplification hairpins with the photostable far-red dye JF-669 (Grimm et 

al., 2017) (Figure 1H and 1I).  

For most neuroscience applications, dozens of marker-genes are sufficient to map the 

distribution of neuronal cell types. In our approach, three transcript species were detected in each 

imaging round, compatible with the spectral capabilities of most standard fluorescence 

microscopes. Each round of FISH can be analyzed independently and thus allows flexibility and 

robust experimental design. To perform multiple rounds of FISH, we adapted a stripping and re-

probing strategy that uses DNase I to remove probes and HCR amplification product from each 

previous round (Figure S1F) (Lubeck et al., 2014). For round-to-round registration and cell 

segmentation, we used cytosolic RNA stained with DAPI (4′,6-diamidino-2-phenylindole), 

which we refer to as cytoDAPI (Xu et al., 2020). Although DAPI is primarily used as a DNA 

stain, after DNase treatment it provides a good near-UV cytosolic stain that is abolished by 

RNase treatment (Figure S1G). With these improvements, EASI-FISH allows robust, high 

quality and multiplexed FISH imaging of thick tissue volumes (1 mm × 1 mm × 0.3 mm in pre-

expansion dimensions) (Figure 1J).  

 

EASI-FISH data processing 

Multi-round, high resolution imaging of thick tissue specimens for EASI-FISH produces 

multi-terabyte images that present analysis challenges. Therefore, we built computational image 

processing tools to handle these large datasets in a consistent and efficient manner (Figure 2A 

and 2B).  
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Stitching 

 For EASI-FISH, acquiring a native sample volume of 1 mm × 1 mm × 0.3 mm requires 

collecting an image 8-times this volume after 2-fold expansion. For imaging these large volumes, 

multiple sub-volumes (tiles) were sequentially acquired, followed by computational stitching 

into a single large image. We used an Apache Spark-based high-performance stitching pipeline 

(Gao et al., 2019). The pipeline automatically performs a flat-field correction for each tile to 

account for intensity variations across the light sheet. It then derives the globally optimal 

translation for each tile that minimizes the sum of square distances to competing optimal 

pairwise translations estimated by phase-correlation (Preibisch et al., 2009) (Figure S2A).  

Round-to-round registration 

Next, image volumes across each round of FISH were aligned. In EASI-FISH tissue, 

DAPI-stained RNA provided cytosolic contours that were used for round-to-round alignment. 

Because sample handling could cause small deformations and 3D shifts in field-of-view (FOV) 

during image acquisition, we developed a robust and fully automated non-rigid registration 

pipeline. The analysis pipeline first performed fast global affine transformation using a feature-

based random sample consensus (RANSAC) algorithm (Fischler and Bolles, 1981) (Figure 

S2B). The image volume was then divided into overlapping blocks and another round of feature-

based affine transformation was performed before a fast 3D deformable registration 

(Yushkevich, 2016) was applied to each block. The pipeline is highly accurate, with 99% ± 0.8% 

structural similarity between fixed and nine moving image volumes (see Methods, Figure S2C), 

and it is more than 10-times faster compared to other deformable registration methods (e.g. 

ANTs) (Yushkevich, 2016).  
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Cell segmentation 

DAPI-stained RNA provided a cytosolic signal that was suitable to generate cell 

segmentation masks, which were then used to assign transcripts to individual cells. The high 

accuracy of the registration pipeline allowed us to apply cell segmentation masks from a single 

round of imaging to all other rounds, which simplified analysis and reduced computation time.  

Accurate segmentation of in situ-stained volumetric (3D) fluorescence image data has 

been a long-standing challenge that can considerably degrade the accuracy of multiplexed FISH 

analysis pipelines. Most approaches use thin tissue sections and an assumption of a single cell 

layer, which is often invalid.  To overcome this challenge, we developed a deep learning-based 

automatic 3D segmentation pipeline, called Starfinity (Figure 2C). Starfinity is an extension of 

StarDist, an earlier cell detection approach (Schmidt et al., 2018; Weigert et al., 2020) and is 

based on the dense prediction of cell border distances and their subsequent aggregation into pixel 

affinities (see Methods). After generating appropriate training data, a Starfinity model was 

trained to predict cell body shapes from DAPI-stained RNA images, outperforming several other 

segmentation and machine-learning based methods (Figure S2D and Table S3). We manually 

inspected ~5% of automatically segmented cells from 4 samples (a total of ~4,000 out of 80,000 

cells) and found that 93% of cells were properly segmented, 4% of cells over-segmented, 1% of 

cells under-segmented, and 2% of cells were contaminated by neighboring cells (Figure S2E). 

Because most over-segmented cells (62%) can be identified and rapidly corrected post hoc by 

quantitative and semi-automated criteria (see Methods), the final estimated segmentation 

accuracy was 95.5%. 
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Spot detection 

Imaging EASI-FISH processed tissue using the Zeiss Z.1 microscope produces higher 

background intensity than confocal microscopy due to light-sheet excitation beam thickness. 

Therefore, we adapted Airlocalize (Lionnet et al., 2011) for spot detection because it implements 

a local background correction step that subtracts background fluorescence surrounding each spot 

that is associated with out-of-focus spots (Figure 2C). To rapidly process >10 terabytes of image 

data, we developed hAirlocalize (high throughput spot detection based on Airlocalize) to 

accelerate the spot detection process by breaking the image volume into overlapping blocks and 

processing each in parallel.  

For cells with very high gene expression, where single spots cannot be resolved even 

with ~2× linear expansion, we measured the total intensity per cell and converted the integrated 

intensity to spot counts based on measured well-isolated single spot intensities for these genes 

(see Methods). We validated this approach with low and medium expressed genes when 

comparing the estimated spot count with hAirlocalize measurements (Figure S2F). Based on 

scRNA-Seq, we found that gene expression variability between cells goes up with mean 

expression level (Figure S2G), such that spots for a given gene may be resolvable in some cells 

but not others. Therefore, we chose a spot density threshold to determine whether to use 

hAirlocalize spot counts or total-intensity-estimated spot counts for a given gene in each cell (see 

Methods).    

To enable portability and reusability of the EASI-FISH analysis described above, we also 

built a self-contained, highly flexible, and platform agnostic computational pipeline which 

supports end-to-end EASI-FISH data analysis. The image analysis pipeline is freely available, 
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open source, and modular. It can rapidly process large datasets greater than 10 TB in size with 

minimal manual intervention (see Methods).  

 

EASI-FISH is sensitive and stable 

Using this analysis pipeline, we evaluated the performance of EASI-FISH. RNA 

detection efficiency with EASI-FISH was 81% ± 14% as measured by targeting single transcripts 

with two colors of interleaved 10-probe sets (Figure S1I), comparable to other methods (Chen et 

al., 2016; Chen et al., 2015b). To determine the sensitivity of EASI-FISH, we analyzed genes 

from the lateral hypothalamus (LHA) with low expression levels according to scRNA-Seq. Low-

expressed genes, Klhl13 (RNA-Seq UMImean=48) and Igf1 (UMImean=15), are co-expressed in all 

melanin-concentrating hormone (Pmch)-expressing neurons in the LHA, so we used the fraction 

of Pmch+ neurons in which we cannot detect these genes as an estimate of false negative rate at 

the cell level. Among the Pmch+ neurons that were analyzed, 34/34 (100%) expressed Klhl13 

and 38/41 (93%) expressed Igf1 with an average background-subtracted spot count per cell of 

195 for Klhl13 and 41 for Igf1 (Figure S1J), indicating a low dropout (false negative) rate with 

EASI-FISH.  

  False positive spots could contribute to marker-gene spot counts by incorrect HCR 

amplification, spot fragmentation, or true RNA puncta detection in en passant neuronal 

processes that are adjacent to the cell body. Because we used HCR3.0, incorrect HCR 

amplification was low (1 per 3000 µm3). For analysis of false positive background spots, we 

selected genes that were known to be mutually exclusive, for example, in the LHA, cells 

expressing Tacr3 have undetectable levels of Pdyn and vice versa based on scRNA-Seq (see 

Methods and below). Detection of these two genes with EASI-FISH showed complementary 
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expression patterns in the LHA, with a very low spot count of Pdyn and Tacr3 in Tacr3+ and 

Pdyn+ cells, respectively (1 per 50 µm3, ~30 spots/cell) (Figure S1K). We observed a similarly 

low false positive background detection rate for mutually exclusive genes for Slc17a7 (Vglut1) 

and Gad1 in cortical neurons (Figure 1K and L).   

Spot count measurements were highly reproducible across multiple rounds (Figure S1L), 

between replicates of EASI-FISH experiments from different animals (Figure S1M) and were 

also highly correlated with scRNA-Seq data (r=0.96, p=0.0081, based on measurement of 

Klhl13, Igf1, Pdyn and Tacr3). High RNA retention was observed when re-probing for the same 

targets after at least 7 rounds, even with an elapsed time of more than 40 days (93.5%, n = 4 

genes averaged based on measurements from 6 animals, 2 brain regions: LHA and CEA) (Figure 

S1N), demonstrating excellent RNA stability. Taken together, EASI-FISH showed high 

reproducibility between samples, minimal RNA loss across hybridization rounds, good 

correlation with scRNA-Seq data, high sensitivity, and a low drop-out rate.  

 

Application of EASI-FISH for profiling LHA molecular markers 

We applied the EASI-FISH sample processing and data analysis pipeline for in depth 

examination of the spatial distribution and morphological properties of molecularly defined cell 

types in the LHA. We performed scRNA-Seq on manually picked LHA neurons and combined 

this data with published LHA scRNA-Seq data collected with droplet-based methods (Mickelsen 

et al., 2019; Rossi et al., 2019) to determine consensus cell clusters across three datasets (Figure 

S3A). Clustering analysis of the combined data identified 17 glutamatergic Slc17a6 (encoding 

Vglut2)-expressing clusters (labeled as e1-e17) and 17 GABAergic Slc32a1 (encoding Vgat)-

expressing clusters (labeled as i1-i17) (Figure S3B-E). Each cluster included cells from at least 
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2 of the 3 datasets. A combinatorial set of 24 marker-genes was selected for the subsequent 

EASI-FISH experiment based on specificity to map major cell types (Table S5 and 

Supplemental Information fig.1). 

We used EASI-FISH to profile these marker-genes in tissue volumes (1 mm × 1 mm × 

0.3 mm) taken from the tuberal LHA in three 8-week-old C57BL6/J male mice (Figure 3A). The 

tuberal LHA is associated with eating, drinking, and arousal, and it corresponds to the area used 

for the scRNA-Seq tissue samples. Ten rounds of 3-plex FISH (24 total unique genes) were 

performed on these samples, including repeat-rounds (for validation) at the end of the data 

collection sequence to assess sample stability (Figure 1M). Consistent with initial EASI-FISH 

characterization, measurements in these samples showed excellent RNA retention (90%, n = 2 

genes, 3 mice) between round 1 and round 9, even with low-expression transcripts (Figure 1N 

and Figure S1O). Consistent with our initial optimization analysis (above), there was high 

correlation with scRNA-Seq UMI measurements across 24 marker-genes (r=0.86, p=8.4 × 10-8), 

and the EASI-FISH pipeline detected an average of 13 (±1.6)-fold more molecules per cell 

compared to scRNA-Seq UMI counts (Figure 1O). In these large LHA samples, the false 

positive detection rate was low, as measured by spot counts from marker-genes that showed 

orthogonal expression patterns (Figure S1P). 

Using the EASI-FISH analysis pipeline, we identified a total of ~86,000 cells from three 

specimens. Incomplete cells on the tissue surface were removed from downstream analysis, 

leaving 66,488 (77%) cells (details in Table S6). Among these cells, 55% (36,423 cells) were 

neurons, based on expression of the neuronal marker Map1b, and the remaining Map1b– cells 

were classified as non-neurons (Figure 3B).  
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We used a de novo approach to identify cell types in the LHA based on 24-plex marker-

gene expression. Consistent with scRNA-Seq (Figure S3A), there was a dichotomy among LHA 

neurons based on the expression of Slc17a6 (Vglut2) and Slc32a1 (Vgat). Therefore, we grouped 

neurons into Slc17a6-expressing (45%, 16,394 cells) and Slc32a1-expressing (55%, 20,029 cells) 

for further analysis (Figure 3C, D). Among these neurons, 79% could be classified based on 

differential expression of marker-genes, while 7% of Slc17a6+ neurons (n=2787) and 14% of 

Slc32a1+ neurons (n=5034) showed low or no expression of marker-genes other than Map1b, 

Slc17a6, Slc32a1, Gad1 and were grouped as unclassified clusters from each type (Ex-25 and 

Inh-23). Clustering Slc17a6+ neurons by marker-genes separated them into 24 molecularly 

defined clusters, (Figure 3E, Figure S4A, S4C and Supplemental Information fig.2) and the 

Slc32a1-expressing population was clustered into 22 molecularly defined neuronal subtypes 

(Figure 3F, Figure S4B, S4D and Supplemental Information fig.3) marker-gene. These 

molecularly defined clusters were detected in all three animals (Figure S4A, B), except Inh-1, 

which was located medially and was only captured in two out of the three samples because of 

slight medial-lateral spatial differences at the edge of the field of view. Gene expression within 

identified molecularly defined clusters was also highly correlated across biological replicates 

(Figure S4E), indicating no batch effects for EASI-FISH measurements and analysis. Among 

the molecularly defined clusters, Inh-3, Inh-15, and Inh-21 clusters were dominated by cells from 

the zona incerta (ZI), Ex-12 and Ex-23 were enriched for cells from the entopeduncular nucleus 

(EP) (Supplemental Information fig.4 and 5, also see Methods).  FISH clusters from these 

large LHA datasets were correlated with scRNA-Seq data (Figure S4F, G), and all scRNA-Seq 

clusters were represented in the FISH dataset (Figure S4H, I, p <0.05).  
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Spatial reconstruction of LHA reveals molecularly defined subregions 

The LHA is one of the largest and most intensively studied regions in the hypothalamus. 

However, previous studies do not demarcate subregions of the lateral hypothalamus in mouse 

(Franklin, 1997; Lein et al., 2007), and, in the rat, only limited parcellation has been proposed by 

combining cytoarchitectural and connectivity information (Geeraedts et al., 1990; Hahn et al., 

2019; Hahn and Swanson, 2010, 2015; Veening et al., 1987).We found that many molecularly 

defined neuronal cell types were intermingled in the mouse tuberal LHA region. An average of 

16 molecularly defined cell types were present within a neighborhood of 50 µm radius (Figure 

S5A), with the predominant cell type accounting for only 27% of the cells, on average (Figure 

S5B).  

Computational LHA parcellation 

Typically, fine neuroanatomical parcellation has been performed based on examining 

differences in local cell density and drawing boundaries “by eye”. Because the EASI-FISH 

pipeline provides detailed molecular information along with high resolution spatial information, 

we pursued a fully automated machine learning approach to identify LHA subregion boundaries 

by combining the molecular, spatial, and cell density information in these datasets. We also 

prioritized reproducibility of the computational parcellation by only accepting consensus regions 

that can be automatically aligned across samples from multiple mice. 

To examine the structural organization of the LHA, we leveraged the hierarchy of the cell 

type gene expression profiles using the neurotransmitter transporters Slc17a6 and Slc32a1 as 

well as the transcription factors Otp and Meis2 (Figure S5C and D) that have important 

developmental and cell specification functions in the LHA (Romanov et al., 2020). We observed 

a central Meis2-expressing wedge within the LHA that bisected Otp-enriched areas near the 
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fornix and the ZI (Figure 4A), which were further subdivided by Slc17a6 and Slc32a1 (Figure 

4B).   

To execute an unbiased parcellation of the LHA, we developed a computational approach 

with the following steps: 1) automated volumetric segmentation based on spatial distribution of 

cells co-expressing combinations of Otp, Meis2, Slc17a6 and Slc32a1; 2) rigid registration of the 

segmented volumes to align samples from biological replicates; 3) generation of a consensus 

parcellation across multiple samples; 4) further parcellation based on the distribution of 

molecularly defined cell types (Figure 4C). All steps were performed using the entire image 

volume, which we present for display purposes using axial projections of 4 sub-volumes (Figure 

4A-C). 

First, for tissue volumes from each animal, we plotted the spatial distribution of cells 

selectively expressing Otp/Meis2 and Slc17a6/Slc32a1 and applied a spatial density based 

smoothing (see Methods, example images shown in Figure 4A and 4B). We then classified each 

neuron into broad cell classes (Otp/Slc17a6, Otp/Slc32a1, Meis2/Slc17a6, Meis2/Slc32a1) based 

on the relative spatial enrichment of the two pairs of genes (example images shown in Figure 

4C-i) and used Gaussian mixture models for 3D segmentation of the imaged tissue volumes 

(example images shown in Figure 4C-ii).  

Before assessing the generalization of the LHA parcellation across animals, we 

performed rigid alignment on segmented tissue volumes from three animals to account for 

geometric differences during sample collection and imaging. The degree of alignment was 

validated on fiducial landmarks (ZI, EP and the fornix) (averaged intersection over union (IoU) 

between LHA1 and LHA3: 0.71; between LHA2 and LHA3: 0.76) as well as spatial distribution 

of marker-genes (Figure S5E). To estimate the consensus anatomical parcellation, we performed 
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Simultaneous Truth and Performance Level Estimation (STAPLE) (Warfield et al., 2004), which 

eliminated discordance at boundaries of the segmented subregions (Figure 4C-iii).  

Computational parcellation based on Otp, Meis2, Slc17a6 and Slc32a1, defined 5 zones 

in the LHA (Figure 4C-iv and Figure 4D), most of which have not been described. Two 

prominent bands run diagonally at an approximately 60-degree angle from each other. The dorsal 

diagonal band (LHAd-db) runs directly below the ZI and is enriched for excitatory neurons 

(Figure 5A). A suprafornical diagonal band (LHAs-db) runs dorsal and lateral to the fornix and 

is enriched in inhibitory neurons (Figure 5B). The diagonal bands surround the wedge-like 

Meis2-enriched excitatory subregion in the dorsal lateral region (LHAdl), which is flanked 

laterally by the EP. The medial fornical area (LHAfm) is intermixed with excitatory and 

inhibitory neurons, with a higher fraction of inhibitory neurons (Figure 5D). The subregion 

lateral to the fornix (LHAfl) is enriched for excitatory neurons (Figure 5E). In the posterior 

portion of the tissue volume, the LHAd-db and LHAdl transition away, leaving this portion of 

the volume not well demarcated by the above 4 genes. Instead, this region is enriched for 

hypocretin (Hcrt+) neurons (Supplemental Information fig.4), an important neuropeptide 

secreting population, which is enriched in a diagonal band running in the same direction as the 

LHAd-db. We defined this sixth subregion at the caudal aspect of the LHA volume the 

hypocretin neuron enriched-diagonal band (LHAhcrt-db).  

The subregions in the LHA that we identified by Otp, Meis2, Slc17a6 and Slc32a1 co-

expression coarsely tracked with neuronal density in this region (Figure S5F). For example, a 

dense group of neurons running from the fornix to the ZI was noted previously in the rat brain 

and named the suprafornical LHA (Hahn et al., 2019; Hahn and Swanson, 2010, 2015). 
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However, we discovered that consideration of molecular identity revealed a more intricate 

structural organization that was subdivided between the LHAfm, LHAs-db, and LHAd-db. 

 

Neuronal cell types in LHA subregions 

Next, we considered the relationship of molecularly defined cell types to these LHA 

subregions. Although molecularly defined cell types were highly intermingled, they were not 

randomly distributed in the LHA (Complete Spatial Randomness testing, p-value<0.05, Table 

S1). Most cell types (45/48, chi-square test, p<0.05) were spatially enriched in one or more of the 

LHA subregions (Figure 4E, Figure 5A-E, Table S7 and Figure S5G), with high correlation 

between animals (Figure S5H). Additional differential spatial enrichment of molecularly defined 

cell types was observed within LHAfl and LHAs-db, allowing further division into 9 LHA 

subregions (dotted lines in Figure 4D and Figure S5I-J).   

To make sure the parcellations proposed above were not unique to the four marker-genes 

used to generate them, we also looked at the molecularly defined cell type distribution in the 

LHA independently by measuring 1) spatial overlaps and 2) distances to averaged nearest 

neighbor (ANN) cell types (see Methods). The spatial overlaps between molecularly defined cell 

types were calculated as the number of overlapping voxels selected cell clusters occupy divided 

by the total number of voxels occupied by both clusters. Grouping the molecularly defined cell 

types based on their fractional overlap, we found that subsets of molecularly defined cell types 

clustered to regions that correspond to LHAs-db, LHAd-db, LHAfl and LHAfm (Figure S6A-

B). Consistent with this, when we grouped cell types based on ANN distances, cell types 

enriched in the same subregions were clustered together (Figure S6C). Taken together, the 3D-
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molecular organization of LHA subregions can be determined with either a limited set of marker-

genes for broad cell classes or a larger set of marker-genes for individual cell types.  

 

LHAd-db 

 The LHAd-db contains a mixture of mainly excitatory and a few inhibitory cell types. 

Excitatory cell types Ex-13 (Gpr101/Calb1–), Ex-15 (Th/Trh–), Ex-19 (Nrgn/Otp) and Ex-22 

(Otp/Gpr101–) are primarily localized to LHAd-db (Figure 5A). Ex-10 (Gal/Slc17a6) is also 

enriched in this subregion, but unlike the other cell types, Ex-10 forms a band around the LHAd-

db (Figure 5A). In addition, a variety of inhibitory cell types are present in LHAd-db that are 

also distributed in the adjacent ZI and LHAs-db (Figure 4E). Some broadly distributed 

inhibitory cell types are also observed in LHAd-db, such as Inh-4 (Gpr101/Gpr83), Inh-10 

(Tac2/Gpr101), and Inh-16 (Calb2/Nrgn–) (Figure 4E). 

LHAs-db 

Most LHAs-db cell types are inhibitory, with small population size clusters Inh-2 

(Sst/Th), Inh-6 (Tac2/Tac1), Inh-12 (Tac2/Nrgn) and Inh-20 (Meis2/Calb2low/Nrgn) almost 

exclusively localize to this subregion (Figure 5B). Several LHAs-db clusters are also found in 

the ZI, such as Inh-9 (Nts/Meis2), Inh-13 (Tac1/Tac2–), Inh-17 (Calb2/Nrgn) and Inh-19 

(Meis2/Calb2high) (Figures 4E and 5B). There is only scattered contribution from excitatory cell 

types, none of which were primarily located in LHAs-db.  Examination of the spatial positioning 

of molecularly defined cell types within the LHAs-db revealed additional spatial segregation. 

Inh-2, 6, 9, 17 and 19 are enriched in the medial part of the LHAs-db and Inh-12 is primarily 

concentrated in the lateral part of the LHAs-db (Figure 4D and S5I), while Inh-13 and Inh-20 

are more evenly distributed. 
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LHAdl 

LHAdl is a relatively cell-sparse zone (Figure S5F), which is largely comprised of 

excitatory cell types similar to those in the adjacent EP: Ex-14 (Gad1/Meis2), Ex-18 

(Gad1/Tac1–), Ex-20 (Tac1/Gad1), and Ex-23 (Slc17a6/Slc32a1/Sst–) (Figure 4E and 5C). 

LHAfm 

A mix of excitatory and inhibitory cell types are localized in the LHAfm, although there 

is a higher fraction of inhibitory neurons. Inhibitory cell types enriched in this subregion are Inh-

1(Sst/Otp), Inh-8 (Col25a1/Otp–), Inh-18 (Nts/Meis2–/Gpr101–), and Inh-22 (Calb1high). 

Excitatory cell types are Ex-3 (Trh/Tac1), Ex-9 (Tac1/Nrgn), and Ex-17 (Gpr101/Calb1) 

(Figure 4E and 5D). Because the LHAfm is at the border of the dissection region for scRNA-

Seq analyses, there appears to be a larger number of cells lacking specific marker-genes (i.e., Ex-

25 and Inh-23). Some of the LHAfm cell types are also shared with the adjacent medial-ventral 

LHAfl, such as Ex-6 (Tac1/Nrgn) and 7 (Otp/Calb2) (Figure 5D). 

LHAfl 

LHAfl is primarily comprised of excitatory cell types with major Trh-expressing cells 

(Ex-4, Ex-8, Ex-11) and Ex-5 (Sst/Slc17a6), Ex-6 (Tac1/Nrgn–), Ex-7 (Otp/Calb2) (Figure 4E 

and 5E). Examination of the spatial positioning of molecularly defined cell types within LHAfl 

revealed additional segregation of this region into 3 subdomains (Figure 4D and S5J). Ex-4, Ex-

6, Ex-7 are located medial-ventrally (LHAfl-mv) and Ex-11 dorsal-laterally (LHAfl-dl), with 

additional poorly classified excitatory neurons (Ex-25) in the ventral lateral subdomain (LHAfl-

vl) (Figure S5J). In addition, there is a sparse distribution of inhibitory cell types, such as Inh-11 

(Gal). Another two inhibitory cell types (Inh-8 and Inh-22) that were primarily localized in the 

LHAfm also had some representation in the LHAfl-mv.  
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Molecularly defined cell types enriched in the same subregions are typically spatially 

intermixed, based on average distance to nearest neighbor (ANN) analysis (Figure 5F-J). But 

segregation of some cell types within these subregions is also evident, which supports the 

additional subdivisions of LHAs-db and LHAfl noted above (Figures 4D and 5G, J).  

Transcriptional relatedness of spatially clustered cell types 

For molecularly defined cell types enriched in the same subregion, some corresponded to 

the same scRNA-Seq clusters. For example, in the LHAd-db, Ex-13 and Ex-19 both have high 

correlation with seq-e9 (Otp/Gpr101) from scRNA-Seq (Figure S4G), revealing additional 

heterogeneity within scRNA-Seq clusters. However, many molecularly defined cell types in the 

same subregion corresponded to transcriptionally distant scRNA-seq clusters. For instance, both 

Ex-4 and Ex-6 were enriched in LHAfl, but Ex-4 is a Trh+ subpopulation, whereas Ex-6 was 

characterized as a Tac1+ subpopulation (Figure 3E and S4G). Additionally, instances of 

intermingled excitatory and inhibitory cell types were common in all regions, such as Ex-3 and 

Inh-8 in the LHAfm and Ex-13, Ex-19 and Inh-4 in the LHAd-db. Taken together, this revealed 

the cell type distribution across 9 topographically organized LH subregions and showed 

groupings that are likely relevant to the diverse functions attributed to this complex brain region. 

Marker-gene spatial distribution 

Notably, despite the observation that some cell types showed restricted distribution in the 

LHA, most individual marker-genes (except Hcrt) were not restricted to a single subregion 

(Supplemental Information fig.6 and Figure S6D). Thus, co-expression relationships between 

multiple marker-genes are essential to reveal the underlying spatial organization of molecularly 

defined cell types. To determine how well combinatorial marker expression could predict spatial 

positions in the LHA, we trained a random-forest regression model with 24 marker-gene 
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expression to predict the spatial positions (in x, y and z coordinate) of neurons. We found that 

combinatorial expression of 24 marker-genes explained 60 ± 2% of spatial variation. Hcrt, Pmch 

and Trh appeared as top features, but excluding any of these 3 genes only reduced prediction 

accuracy by ~5%, showing that the model was not dominated by individual genes (Figure S6E). 

Exclusion of Otp, Meis2, Slc17a6, and Slc32a1 did not substantially decrease the prediction 

accuracy either (exclude Otp/Meis2: 57 ± 2%, exclude Slc17a6/Slc32a1: 57 ± 1%, exclude 

Otp/Meis2/Slc17a6/Slc32a1: 54 ± 2%) (Figure S6F), indicating that the spatial variation we 

observed was not dominated by these four genes.  

 

Axonal inputs to LHA subregions 

The LHA is highly interconnected with other brain areas. We analyzed the localization of 

afferent axonal projections into LHA subregions by mapping this detailed LHA parcellation onto 

the expert-annotated Common Coordinate Framework (CCF) from the Allen Mouse 

Connectivity Atlas (Oh et al., 2014). We found that most axonal inputs were not broadly 

distributed across the LHA. The greatest selectivity was between the LHAdl and LHAfl regions, 

which were largely mutually exclusive in their input patterns. We found that some axonal inputs 

to the LHA mapped onto specific LHA subregions (Figure 5K). For example, CEA projections 

were enriched in the LHAd-db; VTA projections were enriched in LHAdl, MEA projections 

were enriched in the LHAfm, and MM, NDB projections were enriched in LHAfl (Figure 5L).  

 

Neuropeptide cell types in the LHA 

The LHA is well known for diverse neuropeptide-expressing cell types, which display 

considerable heterogeneity in their somatic morphology (Shimono et al., 1985). scRNA-Seq 
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suggested that many of the neuropeptide-expressing cell types can be further subdivided by co-

expression of additional marker-genes. With EASI-FISH, we identified groupings that were also 

spatially distinct. The EASI-FISH analysis pipeline with Starfinity also recovered somatic size 

and shape measurements. In many cases, cell types expressing a common neuropeptide gene 

could be subdivided by additional marker-genes that were associated with morphological 

differences.  

Pmch+ neurons and Hcrt+ neurons 

Pmch+ and Hcrt+ neurons are two well-known populations in the LHA that are involved 

in feeding and sleep-wake behaviors. Within the tissue volume that we analyzed, 83% of Pmch+ 

neurons were in the LHA and 17% in the ZI. Pmch+ neurons could be subdivided into two 

populations based on Cartpt expression that encodes a neuropeptide that regulates energy 

homeostasis (Cartpt+: 77%, 388/501 neurons; Cartpt–: 22%,113/501), which was largely 

consistent with scRNA-Seq data (Mickelsen et al., 2019). Nearly all Pmch+ neurons in the ZI 

were Cartpt+ (99%). Within the LHA, we observed distinct spatial distributions of the two 

Pmch+ subpopulations, with the Pmch/Cartpt– neurons enriched in the LHAdl, while the 

Pmch/Cartpt+ population segregated into a medial population and a ventral lateral population 

(Figure 6A). More than 92% of Pmch+ neurons analyzed by EASI-FISH co-expressed Gad1 and 

Slc17a6, consistent with scRNA-Seq data and previous report (van den Pol et al., 2004).  Most 

PMCH neurons (77%) co-expressed the obesity-related GPCR, Gpr83, and there was a 2-fold 

greater frequency of Gpr83 co-expressing cells in the Cartpt+ population (Pmch/Gpr83 co-

expression: Cartpt+: 87%, Cartpt–: 43%). 

Hcrt+ neurons were spatially restricted in the LHA samples we examined and were 

enriched in a dorsal diagonal band that was caudal to the LHAd-db. Our manually picked 
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scRNA-Seq dataset contained many Hcrt+ neurons, revealing two main subdivisions based on 

the expression of Calb2 and Nts. The majority of Hcrt+ neurons (93%, 593/640) expressed 

Calb2, with a small population expressing Nts (5%, 31/640). The remainder of Hcrt+ neurons 

were negative for both markers (2%, 16/640), which were enriched in a more caudal position. 

Although there were some spatial differences in the distribution of Hcrt+ subtypes, they were 

largely intermingled (Figure 6B).  

Trh+ neurons 

The thyrotropin-releasing hormone (Trh)-expressing neurons in the LHA have been 

implicated in promoting arousal behaviors (Horjales-Araujo et al., 2014). EASI-FISH identified 

four prominent Trh-expressing cell types (Ex-3, Ex-4, Ex-8 and Ex-11), which were spatially and 

molecularly distinct (Figure 6C). Consistent with scRNA-Seq data, 97.6% (1483/1519) of Trh-

expressing neurons co-expressed Otp and were found in Otp zones (LHAfm and LHAfl). 

Compared to scRNA-Seq data, where two Trh+ clusters were identified, EASI-FISH revealed 

additional molecular heterogeneity within Trh-expressing neurons that were spatially segregated. 

Ex-3 was spatially enriched in the LHAfm, had high expression of Trh, and co-expressed Calb1 

and Tac1. In contrast, Ex-4, Ex-8, and Ex-11 were positioned lateral to the fornix in the LHAfl. 

Ex-4 was enriched in the LHAfl-mv subdomain and co-expressed Th and Calb2. Ex-8 and Ex-11 

were intermingled in a separate position in the LHAfl-dl subdomain and were discriminated by 

expression of Gpr83 and Synpr, respectively (Figure 2E). In addition to spatial differences, the 

four Trh cell types also showed different cell volumes, with larger cell bodies in Ex-3 and Ex-8 

relative to Ex-4 and Ex-11 (Figure 6D and E).  
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Sst+ neurons 

For Sst-expressing populations, we identified one excitatory (Ex-5) and three inhibitory 

(Inh-1, Inh-2 and Inh-5) cell types in the imaged LHA volume. These populations were spatially 

separated, with Ex-5 enriched in the LHAs-db and LHAfl, Inh-1 enriched in the LHAfm, and 

Inh-2 enriched in the LHAs-db. Inh-5 was diffusely dispersed across multiple LHA subregions 

(Figure 6F). Inh-1 had the highest Sst expression level (Figure 3F), and co-expressed Gpr101 

and Nrgn. The excitatory Sst+ cluster Ex-5 and inhibitory cluster Inh-2 had larger cell bodies 

than Inh-1 and Inh-5 (Figure 6G and H). In addition, many neurons in the Ex-5 cluster were less 

convex compared to the inhibitory Sst neuron clusters (Figure 6G and H). We also observed co-

expression of Sst in a subset of the Trh-expressing cluster Ex-4 and Trh in the Sst-expressing 

cluster Ex-5. Ex-4 and Ex-5 differed in their Th expression, with Trh-expressing cells in the Ex-5 

negative for Th.  

Nts+ neurons 

Nts+ neurons in the LHA have been examined repeatedly using functional perturbations 

during behavior, as well as with other methods (Kempadoo et al., 2013; Patterson et al., 2015). 

Nts was expressed in several transcriptionally distinct excitatory (Ex-16) and inhibitory (Inh-9, 

Inh-14, Inh-18) cell types in the LHA. Ex-16, the single Slc17a6-expressing Nts+ population, 

was enriched in the dorsomedial region and was more anterior than the inhibitory populations 

(Figure 6I). Inh-9 was spatially enriched in the ZI and LHAs-db and was characterized by Meis2 

co-expression. Inh-14 was enriched in a dorsal diagonal band that spatially overlapped with 

Hcrt+ neurons (33% overlap) and co-expressed Gpr101 and Galanin.  Inh-18 was more spatially 

dispersed in the LHA.  
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Slc17a6/Slc32a1 co-expressing populations 

Our image volume also included the glutamate and GABA co-releasing populations (Ex-

12) in the entopeduncular nucleus (EP), which have been reported previously (Wallace et al., 

2017). 62% (742/1188) of Slc17a6/Slc32a1 EP neurons in our image volumes co-expressed Sst 

(Figure S7A). Interestingly, we also identified a cluster of this dual neurotransmitter cell type in 

the anterior part of the LHAd-db (Figure S7B and C).  

 

 Somatic morphology in the LHA 

Automatic 3D segmentation with Starfinity did not impose convexity constraints and thus 

allowed us to characterize the cell body volume and somatic morphological diversity in the LHA 

in an unbiased manner (Figure 7A and B). Pmch+ and Hcrt+ neurons were the primary large 

neuronal populations in this region. These neurons were ~ 2.5-fold larger in cell body volume 

than the average LHA neuron volume (Pmch+: 3412±76.1 µm3, Hcrt+: 3690±40.6 µm3, average 

LHA excluding Pmch+ and Hcrt+ neurons: 1533±3.5 µm3) (Figure 7C). Excluding the Pmch+ 

and Hcrt+ cell types, we found that the Slc17a6+ neurons (1624±6 µm3) on average are close to 

250 µm3 larger in volume than Slc32a1+ neurons (1389±3 µm3) (p<0.0001).  Neuronal somatic 

volume was positively correlated with total RNA content, as indicated by cytosolic DAPI 

staining (r=0.93, p=0) and expression of the neuronal cytoskeleton-related gene, Map1b (r=0.82, 

p=0) (Figure S7D and E).  

We also evaluated 3D somatic shape based on cellular aspect ratio and solidity 

measurements (Figure S7F). To identify cells with the most extreme shapes (Figure 7D), we 

selected for cells with low aspect ratio (elongated, <0.7) and solidity (less convex, <0.7). This 

revealed a higher fraction of irregular somatic shapes in Slc17a6+ neurons (6%) compared to the 
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Slc32a1+ neurons (2%). Neurons with most irregular shapes were enriched in the LHAfl region 

(Figure S7G).  

 

Iterative refinement of cell type marker-genes 

Further spatial and morphological variations were observed in these identified 

molecularly defined cell types, which raised the question of whether they can be subdivided. For 

example, we found that the distribution of cell sizes in cell type Ex-10 (Slc17a6/Gal) had a long 

tail of large neurons (Figure 7E). In addition, this cell type was spatially enriched in two 

subregions (LHAd-db and LHAfl-vl) (Figure 7F), with the large neurons primarily in the 

LHAfl-vl subregion. This raised the possibility that this is a distinct but rare cell type.  

To test this hypothesis, we subdivided the most similar scRNA-Seq cluster and identified 

Oxytocin (Oxt) as the top differentially expressed gene between the subdivided scRNA-Seq 

clusters (Figure 7G). To examine whether Oxt can be used to separate this population from the 

mediodorsal Slc17a6+/Gal+ subpopulation, we probed for Slc17a6, Gal and Oxt with EASI-FISH 

in a new sample to independently validate the existence of this population. Indeed, Oxt 

expression was detected in a small group of neurons in the ventral lateral part of the LHA.  

Consistent with our predictions, these neurons had large cell bodies (3089±140 µm3) and co-

expressed Slc17a6 and Gal (100%, 13/13) (Figure 7H). Taken together, this showed how spatial 

and morphological measurements can facilitate the discovery of rare cell types with unusually 

large cell bodies, using a limited number of marker-genes. 
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Discussion 

           We report a resource that includes new methods and a turnkey computational analysis 

pipeline for multi-round FISH datasets in thick sections of brain tissue. EASI-FISH enables 

quantitative in situ measurements of gene expression with cellular resolution using commercial 

laboratory equipment in a format that includes single RNA puncta counts, detailed spatial 

information, and morphological characteristics of the underlying cells. We demonstrated EASI-

FISH in the portion of the LHA that is associated with eating, drinking, arousal, and sleep. We 

characterized the molecular, spatial, and morphological diversity of LHA neurons and 

discovering an unanticipated degree of anatomical organization.  

 EASI-FISH bridges a gap between commonplace single-round 3-plex FISH experiments 

and highly specialized methods for obtaining spatial gene expression information from 100s-

1000s of genes. To prioritize ease-of-use, we chose to use non-barcoded sequential probing, 

where transcripts are amplified and distinguished using different fluorophores. Each round of 

FISH can be analyzed independently, which allows flexibility and tolerance in experimental 

design. Although the number of marker-genes scales linearly with the number of rounds, non-

barcoded sequential probing removes constraints on gene selection based on expression levels 

and requirements for voxel-precision alignment from round-to-round (Moffitt et al., 2018; Shah 

et al., 2017). Spot-to-spot alignment is likely possible using this method, which would facilitate 

barcoding methods and greatly increase throughput for the number of genes that could be 

probed, but this would also increase imaging complexity and analysis requirements.  

The Starfinity cell segmentation method improves 3D morphological reconstruction of 

cells, which is a key aspect of multiplexed FISH analysis. The EASI-FISH analysis pipeline is 

highly distributed and flexible. Individual computational components can be exchanged for 
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others, such as alternative 3D segmentation methods (e.g. Cellpose (Stringer et al., 2021)). 

Although the analysis reported here was initially performed on an LSF compute cluster, the 

pipeline is containerized so that it can also be executed on a standard high-performance 

workstation or public cloud platforms. The convenient tissue processing, image registration, and 

image analysis tools offered by this resource should enable widespread laboratory adoption of 

high-multiplex FISH methods. 

 EASI-FISH was developed for 300-µm-thick tissue sections. This thickness is suitable 

for aligning samples from different subjects. We found that using thick tissue sections was 

critical for mapping the novel structural subdivisions that we discovered in the LHA across 

multiple animals. In addition, it allowed identification of LHA parcellation that showed the 

greatest inter-subject consensus. This is important because we found structural variability in the 

LHA spatio-molecular domains, so it was necessary to establish common features. Tissue 

thickness around 300 µm is also consistent with typical dimensions for other neuroscience data 

collection modalities that could be potentially combined with EASI-FISH, for example brain 

slice recordings or in vivo two-photon calcium imaging (Xu et al., 2020). Application to thicker 

tissue sections is possible but data sizes become considerably larger, especially in light of tissue-

expansion, creating challenges for data storage and manipulation. 

We chose to demonstrate EASI-FISH in the LHA because it has been intensively studied 

for decades but there has been limited progress towards neural circuit principles in this brain 

region (Burdakov and Karnani, 2020; Carus-Cadavieco et al., 2017; Kosse and Burdakov, 2018; 

O'Connor et al., 2015). This is, in part, related to the rudimentary understanding of LHA 

structural organization as well as the fact that single marker-genes are insufficient to represent 

discrete cell types. Applying EASI-FISH to the LHA, we found a remarkable level of 
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subregional parcellation into which distinct cell types were selectively localized. The EASI-FISH 

pipeline generated high-quality quantitative spatial gene expression data, which enabled a 

machine learning approach to identify LHA subregions based on combinations of four marker-

genes. We examined the high-level organization of the LHA using Otp and Meis2 expression, 

because there was an established role for these genes in specifying large areas of the 

hypothalamus during development (Ferran et al., 2015; Romanov et al., 2020). Within these 

domains, we found distinct patterns of Vgat and Vglut2 expression. Consistent with the 

parcellation based on combinations of these four genes, we observed that many individual 

molecularly defined cell types were highly enriched in just one of these specific spatial 

subregions. Past efforts at parcellation of the rat LHA have not elucidated most of the regions 

that we examined (Geeraedts et al., 1990; Hahn, 2010; Hahn and Swanson, 2010). For example, 

as with prior work in the rat brain, we found evidence for a suprafornical cell dense zone (Hahn 

and Swanson, 2010) in the mouse. However, consideration of molecularly defined cell type 

information subdivided this suprafornical cell density into distinct, molecularly defined laminar 

structures that extended laterally, distorted by fiber bundles going through this region. More 

generally, molecularly defined cell types are increasingly appreciated as a fundamental unit of 

brain organization. Thus, brain parcellation should incorporate organizational principles that are 

reliant on cell type distributions, which requires detailed spatial analysis of cellular multi-gene 

co-expression relationships. 

The hypothalamus is well known for magnocellular neurons, including Pmch+ and Hcrt+ 

neurons in the LHA (Croizier et al., 2013; de Lecea et al., 1998; Elias et al., 1998; Li and de 

Lecea, 2020; Qu et al., 1996; Sakurai et al., 1998; Skofitsch et al., 1985). The high-quality 

segmentation of the EASI-FISH pipeline allowed us to examine the relationship of marker-gene 
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expression to cell size and somatic morphology in this region. With morphological analysis of 

LHA cell types, we demonstrated that Ex-10 (Th/Gal) could be subdivided to reveal an Oxt-

expressing subpopulation that defined a spatially segregated set of large magnocellular neurons. 

This is another advantage of the simple multi-round EASI-FISH method where a few dozen 

marker-genes can be mapped and efficiently analyzed, leading to generation of new hypotheses 

about transcriptionally defined cell types. These hypotheses can be examined by re-analysis of 

the scRNA-Seq dataset, and because of high RNA stability after gel-anchoring, additional 

marker-genes can be subsequently probed on the brain region under investigation. More 

generally, the output of the EASI-FISH analysis pipeline provides a comprehensive summary of 

molecular and morphological cellular heterogeneity in the lateral hypothalamus. This approach 

will be similarly useful in other brain regions, especially poorly subdivided subcortical areas in 

hypothalamus and hindbrain. 

A clear challenge in neuroscience is to establish the functional importance of the different 

cell types in complex brain areas, for example by immediate-early-gene analysis (Kim et al., 

2019; Moffitt et al., 2018) or by genetically targeting reporters and perturbation tools (Fenno et 

al., 2020). Our analysis of the LHA highlights the extent of spatial diversity in cell types and 

axonal inputs that should be taken into account for investigating LHA function. Thus, detailed 

examination of LHA function will be dependent on convenient and robust multi-gene co-

expression analysis for all aspects of the LHA. In addition, the boundaries of these structures 

change along the anterior-posterior axis, which could be mapped in the future with assistance 

from a more anatomically distributed scRNA-Seq LHA dataset and by extending the EASI-FISH 

method throughout the LHA. Based on this, EASI-FISH fills an important gap in neural circuit 

research by facilitating a seamless extension of cell type analysis generated in dissociated 
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neurons to any experimental modality that requires information about in situ anatomical 

localization. These attributes of EASI-FISH make it well-suited to transform the currently 

complex spatial analysis of ≥30-plex gene expression into a routine procedure that can be readily 

integrated with other high information data streams. This will lower the barrier for the field to 

make rapid progress towards extending the molecular revolution in neuroscience to functional 

and systems analysis, which is essential for understanding the interplay between neural coding 

and molecular properties in behavior and disease. 

 

 

Data and Code Availability  

We are committed to open science with the scientific community. Details on software 

(github.com/multiFISH/EASI-FISH) and pipeline (https://github.com/JaneliaSciComp/multifish) 

generated for EASI-FISH data processing can be found on Github. Example dataset and 

Starfinity training data and model used in this manuscript can be found on figshare 

(https://doi.org/10.25378/janelia.c.5276708). All data generated with EASI-FISH can be 

accessed from figshare at https://figshare.com/s/72cec70e8a057bc749f0. Custom codes used in 

the LHA study are provided at github.com/multiFISH/LHA_analysis.  
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Figure 1 EASI-FISH method 

(A) Schematic of the EASI-FISH platform. (B) Example image of gene expression detected by 

EASI-FISH. Scale bar: 10 µm. (C) Axial projection and single-plane images of Gad1 expression 

in two cortical neurons before (1× expansion factor) and after expansion (2× expansion factor). 

Scale bar: 5 µm (pre-expansion length). (D) Chemical structure of Melphalan and chemical 

reaction with Acryloyl-X, SE to produce MelphaX, which reacts with mRNA and can be 
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incorporated into a hydrogel matrix. (E) Prkcd and Slc32a1 spot fluorescence intensity with 

RNA anchoring by Label-IT (0.1mg/ml) or Melphalan (0.1mg/ml). (F) Representative images 

and (G) quantification of signal-to-noise ratio (SNR) of images where Gad1 mRNA was 

detected in cortex using different RNA anchoring methods. Scale bar: 5µm. The SNR was 

defined as the ratio of mean pixel value to the standard deviation of pixel values. (H) 

Representative images and (I) quantification showing photostability comparison between 

hairpins conjugated with Alexa-fluor 647 (AF-647) and Janelia-Fluor 669 (JF-669). Scale bar: 5 

µm. (J) 3D rendering of a thick tissue volume generated by EASI-FISH with 2 rounds of 3-plex 

FISH. Scale bar:100 µm. fx: fornix. (K) Representative image and (L) quantification of Slc17a7 

and Gad1 expression in the cortex. Scale bar: 10 µm. (M) Representative image from 8 rounds 

of 3-plex EASI-FISH (aligned) in one LHA tissue volume with 24 marker-genes (single optical 

plane shown). Imaged tissue dimension: 0.8 mm × 0.8 mm × 0.3 mm before expansion. Scale 

bar:100 µm. fx: fornix. (N) Spot count with EASI-FISH in round 1 and round 9 for the same 

gene (Meis2). (O) Correlation analysis for 24 marker-genes between EASI-FISH spot counts and 

scRNA-Seq UMIs from the LHA. **** p < 0.0001. Error bars: SEM. Statistics: Table S1. 
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 Figure 2 EASI-FISH analysis pipeline 

(A) EASI-FISH data processing workflow. (B) Representative images showing stitching, 

registration, segmentation and spot detection in large image volumes. Scale bar: 100 µm. (C) 

Example of segmentation with Starfinity (3D view: 3D rendering of segmented cell body shape, 

segmentation: single optical plane) and representative Airlocalize-enabled spot detection in cell 

highlighted with green square. Scale bar: 10 µm. 
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Figure 3 EASI-FISH for profiling LHA molecular markers 

(A) Imaged region from LHA mapped onto the coronal mouse brain atlas. Image credit: Allen 

Institute.  (B) Spatial organization and proportion of excitatory and inhibitory neurons and non-

neurons in the imaged LHA region (total: 66,488 cells, 3 mice). Each dot indicates the centroid 
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position of a cell. Image dimensions are pre-expansion. Scale arrows: 150 µm. EP: 

entopeduncular nucleus, fx: fornix, ZI: zona incerta (C-D) t-distributed stochastic neighbor 

embedding (tSNE) plot for (C) excitatory and (D) inhibitory neurons in the LHA, with cell types 

color-coded by cluster. (E-F) Expression (spot counts) of 24 FISH marker-genes in the (E) 

excitatory and (F) inhibitory clusters, shown by violin plots.  
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Figure 4 Spatial reconstruction of LHA reveals spatio-molecularly defined subregions 
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(A-B) Selective neighborhood enrichment of (A) Otp/Meis2 and (B) Slc17a6/Slc32a1. Each dot 

indicates the centroid position of a neuron. Panels are 60 µm axial projections of sub-volumes. 

From left to right: anterior to posterior (rostral→caudal).  (C) Automated workflow for 3D 

molecular parcellation. C-i: Classify regions based on their relative enrichment for Otp, Meis2, 

Slc17a6 and Slc32a1. C-ii: 3D segmentation with Gaussian Mixture Models. C-iii: Consensus 

parcellation map after rigid registration across animals. C-iv: Boundaries from unified map are 

smoothed. Neighboring brain regions (ZI and EP) are shaded in gray in Figure 4A, B and C-i 

and highlighted with dotted line in C-ii and C-iii. Data from one animal (LHA3) was shown in 

Figure 4A, B, C-i and C-ii.  (D) Spatio-molecular parcellation of the LHA, including additional 

subdivisions based on molecularly defined cell types. From left to right: anterior to posterior 

(rostral→caudal). ZI: zona incerta; EP: entopeduncular nucleus; fx: fornix; LHAd-db: LHA 

dorsal diagonal band; LHAdl: LHA dorsal lateral region; LHAs-db: LHA suprafornical diagonal 

band; LHAfm: LHA medial fornical region; LHAfl: LHA lateral fornical region. Solid lines 

indicate parcellations based on Otp, Meis2, Slc17a6, and Slc32a1 expression. Annotations in 

gray and boundaries in dotted lines indicate subdomains within LHAs-db and LHAfl based on 

spatial segregation of molecularly defined cell types. Annotations in gray/italic indicate 

transition zones. Hcrt subdivision is shaded in light blue. Image scales are in physical units 

before expansion. Scale arrows in Figure 4A-D: 150 µm. (E) Excitatory and inhibitory cluster 

enrichment in the parcellated subregions, as compared to shuffling cell type identity (top, see 

Methods).  
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Figure 5 Molecularly defined cell types and axonal inputs are enriched in LHA subregions 

(A-E) Top molecularly defined clusters enriched in (A) LHAd-db, (B) LHAs-db, (C) LHAdl, 

(D) LHAfm, (E) LHAfl subregions. As in Figure 4, panels are 60 µm axial projections of sub-

volumes. From left to right: anterior to posterior (rostral→caudal).  The labels indicate the 

middle z positions of the sub-volumes. Segmentation masks for cells belonging to the 

highlighted molecularly defined clusters are colored accordingly. Maximum intensity projections 

of cytosolic DAPI staining are shown in light gray. Image dimensions are before expansion. 

Scale arrows: 150 µm. (F-J) Average distance to nearest neighbor among molecularly defined 

cell types enriched in LHAd-db, LHAs-db, LHAdl, LHAfm and LHAfl, as shown in A-E. Rows 

represent molecularly defined cell types that were used to look for nearest neighbor and columns 

represents the corresponding molecularly defined cell types from which the nearest neighbor was 

identified (see Methods for detail). (K) Quantification of axonal input in LHA subregion as 

measured by mean fluorescence intensity (z-score normalized) based on data from the Allen 

Brain Atlas Connectivity database. (L) Representative images showing differential projections in 

the LHA subregions from the central amygdala (CEA), ventral tegmental area (VTA), medial 

amygdala (MEA), diagonal band nucleus (NDB) and medial mammillary nucleus (MM).  
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Figure 6 Molecular and spatial organization of major neuropeptide neurons in the LHA.  

(A) Based on Cartpt expression and location, Pmch+ neurons can be subdivided into two 

populations. Max projected coronal section and sagittal section are shown with Cartpt+ 

population in green and Cartpt– population in red. Each dot represents the centroid position of a 

neuron. (B) Hcrt+ neuron subpopulations are spatially intermixed.  (C) Trh-expressing neurons 

can be subdivided into 4 molecularly defined clusters. Left: Spatial distribution of Trh-
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expressing neuronal clusters. Right: Percent of Trh-expressing neurons in each cluster. (D) The 

Trh+ clusters are also separable by soma volume. (E) Representative images showing the cell 

body morphology from Trh+ subtypes, as highlighted by arrowheads. (F) Sst-expressing neurons 

can be subdivided into 4 clusters.  Left: Spatial distribution of Sst-expressing neuronal clusters. 

Right: Percent of Sst-expressing neurons belonging to each cluster. (G) Cell body volume (top) 

and shape (bottom) differences among the Sst-expressing clusters. (H) Representative images 

showing the soma morphology from Sst+ subtypes, as highlighted by arrowheads. (I) Nts-

expressing neurons can be subdivided into 4 clusters. Left: Spatial distribution of Nts-expressing 

neuronal clusters, representative coronal sections are shown to highlight the diverse anterior-

posterior distribution of Nts+ clusters. From left to right: anterior to posterior (rostral→caudal). 

Right: Percent of Nts-expressing neurons belonging to each cluster. Image dimension in physical 

units before expansion. Scale arrows: 150 µm. **** p < 0.0001. Statistics: Table S1. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.08.434304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434304
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 
 

 

Figure 7 Morphological diversity in the LHA 

(A-B) Somatic volume and morphological characteristics in (A) excitatory and (B) inhibitory 

clusters. Dotted lines in each plot indicate average measurements in the excitatory or inhibitory 

clusters. Unpaired two sample t-test (parametric) was used to compare soma size within each 

cluster to the population average. Unpaired two sample Wilcoxon test (non-parametric) was 

shown here to compare soma solidity and aspect ratio of molecularly defined clusters to the 

population average. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. Statistics: Table S1. (C) 

Representative images showing soma size diversity in the LHA. (D) Representative images 
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showing soma shape diversity in the LHA. Scale bar in C and D: 10 µm. (E) Soma volume, 

shape and marker-gene expression in Ex-10 cluster.  (F) Spatial distribution of soma size (top 

panel), Galanin (Gal, middle panel) and Th (bottom panel) expression in the Ex-10 cluster. A 

subpopulation of Ex-10 cluster is spatially enriched in the LHAfl subregion with large somata. 

(G) The scRNA-Seq cluster that corresponds to Ex-10 was further subdivided into two 

subclusters and differentially expressed gene, Oxt was identified. Gene expression (UMIs) in 

corresponding scRNA-Seq subclusters are shown here. (H) Oxt marks the Ex-10 subpopulation. 

Top: Representative single plane image showing the spatial distribution of Ex-10 subpopulation 

marked by Oxt expression. Scale bars: 100µm. Bottom: zoom-in of the white box in the top 

image showing co-expression of Slc17a6 and Galanin (Gal) in the Oxt subpopulation. Scale bar: 

25 µm.  
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Figure S1 optimization of EASI-FISH protocol, related to Figure 1 

(A) Ezr, Prkcd and Slc32a1 spot counts detected with different RNA anchoring methods (Label-

IT or Melphalan). (B) EASI-FISH was optimized to eliminate light scattering in large tissue 

specimens (0.8 mm × 0.8 mm × 0.3 mm), as demonstrated by a continuous distribution of signal 

intensity across the x, y and z axes compared to original ex-FISH protocol (Chen et al., 2016). 

For exFISH, signal intensities were still compromised at the 0.8 mm position in x and y because 

that is not the edge of the tissue (tissue volume used here was bigger than 0.8mm × 0.8mm in x 

and y dimension). Shading denotes standard deviation (SD) around mean. (C) Representative 

images showing RNAscope detection of Slc17a7 in 300µm EASI-FISH cortical sample. A small 

field of view on the right edge of the tissue-gel sample is shown here. Left: schematic showing 

where the representative image volume (middle and right) was taken, middle: single optical 

plane from the image volume, right: side-view of the image volume. Scale bar: 100µm. (D) 

Signal intensity quantification of the image volume shown in C.  Shading denotes standard 

deviation (SD) around mean. (E) EASI-FISH is optimized for high specificity, as indicated by 

minimal spot detection in the absence of RNA (ii), low non-specific binding/HCR initialization 

of hairpins in the absence of probes (iii), and low spot detection in the absence of the target gene, 

GFP (iv, Sst detection as positive control) as compared to control (i). Scale bar: 25 µm. (F) HCR 

products are completely eliminated with DNase 1 (middle panel) and can be re-probed (bottom 

panel) without signal loss, shown as z-projection.  Scale bar: 10 µm. (G) DAPI staining of DNA 

(left) and RNA (middle) in EASI-FISH samples. Note that cells with low RNA content can have 

very weak DAPI RNA staining. Right panel: no DAPI staining in tissue in the absence of 

oligonucleotides (DNase and RNase treatment). Scale bar: 25 µm. (H) Representative image 

(left) and quantification (right) showing rapid photobleaching of Alexa-fluor 546 (AF-546) in the 

presence of anti-fade. (I) EASI-FISH detection efficiency assessed by co-localization of 

interleaved HCR probes targeting the same gene, Gad1. (J) EASI-FISH false negative detection 

as indicated by co-detection of low expressors Klhl13 and Igf1 in PMCH neurons from the LHA. 

(K) EASI-FISH false positive detection in mutually exclusive genes.  Left: UMIs of mutually 

exclusive genes based on scRNA-Seq, Right: Spot counts in these genes with EASI-FISH. (L) 

Reliable detection of the same gene (Gad1) across 3 rounds of FISH in cortex. Representative 

images on the left and quantifications on right. Scale bar: 5 µm. (M) Reliable spot detection of 

the same gene (Gad1) in biological replicates. (N) Spot count of Slc32a1 and Nrgn in round 1 
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and round 8. (O) RNA stability and (P) false positive detection in the LHA samples used for 

EASI-FISH demonstration. *** p<0.001. Statistics: Table S1. 
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Figure S2 EASI-FISH data processing pipeline, related to Figure 2 

(A) Representative multi-tile images after stitching. Left: Representative single plane image after 

tile-tile stitching. White grids indicate the dimensions of each tile with overlaps. Right: zoom-in 

of region highlighted in red box (left) to demonstrate overlapping regions after stitching. Scale 

bar: 50 µm. (B) Schematic illustration (cartoon images) of the round-to-round registration 

pipeline. (C) Representative images showing registration of 9 rounds of EASI-FISH images 
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based on RNA-staining (DAPI). Round 2 was used as the fixed round (shown in red). Structural 

similarity to fixed round is shown. Scale bar: 50 µm. (D) Segmentation comparisons among 

Ilastik in combination with watershed (left), StarDist (middle) and Starfinity (right). 

Representative segmentation errors are highlighted by arrows. Thick arrows indicate under-

segmentation errors (cell-cell merges); Arrowheads indicate under-detection errors; Thin arrows 

indicate StarDist-specific errors due to star-convexity constraints. (E) Representative 

segmentation errors in Starfinity, over-segmentation (one cell was split into multiple labels), 

under-segmentation (multiple cells assigned the same label), contamination (segmentation 

boundaries not properly drawn), highlighted with white arrows. (F) Spot count comparison 

between Airlocalize and integrated intensity-based estimation in low-expressor-cells (Slc32a1). 

(G) Gene expression level variation, shown as log10 (standard deviation), as a function of average 

gene expression log10(average UMI/cell) in scRNA-Seq population. Statistics: Table S1. 
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Figure S3 scRNA-Seq analysis of LHA molecularly defined cell types 

(A) tSNE plot of scRNA-Seq data showing Map1b, Slc17a6, and Slc32a1 expression in the LHA 

neurons. (B-C) 17 molecularly defined cell types identified from the Slc17a6+ population. (B) 

tSNE plot for Slc17a6+ clusters in the LHA, with cells color-coded by cluster. (C) Hierarchical 

analysis of the Slc17a6+ clusters. (D-E) 17 molecularly defined cell types are identified from the 

Slc32a1+ population. (D) tSNE plot for Slc32a1+ clusters in the LHA, with cells color-coded by 

cluster. (E) Hierarchical analysis of the Slc32a1+ clusters.  
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Figure S4 EASI-FISH for profiling LHA molecular markers, related to Figure 3 

(A-B) tSNE plot of showing sample-to-sample variations in Slc17a6+ and Slc32a1+ clusters 

(from left to right: LHA1, LHA2 and LHA3), see Figure 3C-D for cell type correspondence. (C-

D) Heatmap and hierarchical analysis of marker-gene expression for (C) Slc17a6+ and (D) 

Slc32a1+ molecularly defined cell types.  (E) Correlation analysis of marker-gene expression 

between samples for the molecularly defined cell types. (F-G) Correlation analysis between 

EASI-FISH clusters and scRNA-Seq neurons. (H-I) Correlation analysis between EASI-FISH 

clusters and scRNA-Seq clusters based on average marker-gene expressions. The pairwise 

Pearson correlation coefficients were computed using the z-score normalized spot count of 

EASI-FISH and the normalized UMIs from scRNA-Seq data. 
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Figure S5 Spatio-molecular parcellation of the LHA, related to Figure 4 and Figure 5 

(A) Neighborhood complexity analysis of the number of neuronal types within a 50 µm radius of 

each neuron. (B) Neighborhood purity analysis for the fraction of neurons that are part of the 
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most abundant cluster within the neighborhood (50 µm radius).  (C) Relative Otp/Meis2 

neighborhood enrichment analysis across three samples. LHA1 and LHA2 were aligned to 

LHA3 with rigid registration. (D) Relative Slc17a6/Slc32a1 neighborhood enrichment analysis 

across three samples. (E) Correlation analysis of marker-gene spatial distributions across 

samples. Image volumes were first aligned and then binned to 10 × 10 × 4 bins.  The number of 

marker-gene positive cells in each bin was calculated and used for the correlation analysis. (F) 

Spatial neuronal density (top), Slc17a6+ neuronal density (middle) and Slc32a1+ neuronal 

density (bottom) in the LHA, computed using kernel density estimation (kde). (G) Molecularly 

defined cell type compositions in LHA subregions.  (H) Correlation analysis of molecularly 

defined cluster spatial distribution across samples. Fraction of molecularly defined neuron 

clusters in each subregion was used for the correlation analysis. (I) Relative molecularly defined 

cluster enrichment in the medial and lateral part of the LHAs-db, as indicated in Fig 4D. (J) 

Selective molecularly defined cluster enrichment in the LHAfl subdomains, as indicated in Fig 

4D.   
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Figure S6 Molecularly defined cell types are enriched in LHA subregions, related to Figure 

4 and Figure 5 

(A) Molecularly defined cell types grouped by their fractional overlap. (B) Molecularly defined-

cluster-occupancies in the LHA. Colormap indicates the number of clusters occupying each 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.08.434304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434304
http://creativecommons.org/licenses/by-nc-nd/4.0/


60 
 

location.  (C) Average nearest neighbor analysis between molecularly defined cell types. (D) 

Spatial distribution of marker-gene expression in parcellated LHA subregions. (E) Random 

forest regression models were used to predict the spatial position of neurons based on all 24 

marker-genes. The prediction accuracy with all 24 marker-genes were calculated and compared 

to that with 23 marker-genes, with the selected marker-gene removed. (F) Prediction accuracy of 

neuronal spatial position in the presence or absence of Otp, Meis2, Slc17a6, Slc32a1.    
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Figure S7 Morphological measurements of molecularly defined clusters, related to Figure 7  

(A) Expression of selected genes in Slc17a6 and Slc32a1 co-expressing neurons.  (B) Spatial 

distribution of Slc17a6 and Slc32a1 co-expressing cluster, Ex-12. Majority of these neurons are 

in the entopeduncular nucleus (EP), with a small cluster in the LHAd-db. (C) Representative 

image highlighting the Slc17a6 and Slc32a1 co-expressing neurons in the EP and LHA. Left: 

Representative single optical plane image showing Slc17a6 and Slc32a1 expression in the LHA.  

Scale bar: 100µm. Right: zoom-in of region highlighted in blue box (left) to show the 

Slc17a6/Slc32a1 neurons in the LHA, Scale bar: 50µm. (D) Correlation between total RNA 

content and soma size. (E) Correlation between pan-neuronal marker, Map1b expression and 

soma size. (F) Schematic showing 3D morphological measurement (solidity and aspect ratios) 

performed in Figure 7A. (G) Density analysis of neurons with low convexity. Image slice of 
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every 60 µm shown as representative images.  From left to right: anterior to posterior 

(rostral→caudal). Scale arrow: 150 µm. Statistics: Table S1.  
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Materials and methods 

All methods for animal care and use were conducted according to National Institutes of 

Health guidelines for animal research and approved by the Institutional Animal Care and 

Use Committee (IACUC) at Janelia Research Campus.  

EASI-FISH protocol  

1) Reagents and chemicals: 

MelphaX: Melphalan (Cayman Chemicals) was dissolved to 2.5 mg/ml in anhydrous DMSO 

(Sigma). Acryloyl-X, SE (Thermo Fisher, 20770) was dissolved in anhydrous DMSO (10 

mg/ml). 4 parts of Melphalan stock was combined with 1 part of Acryloyl-X, SE stock and 

reacted overnight with shaking at room temperature to make Melphalan-X (2 mg/ml). Aliquots 

were stored at -20 ℃ in a desiccated environment and used at 1 mg/ml by diluting in MOPS 

buffer (20 mM, pH 7.7).  

Sodium Acrylate (4M): The purity of commercial sodium acrylate was variable, so we made 

sodium acrylate by reacting acrylic acid (Sigma) with NaOH. Briefly, in a fume hood, acrylic 

acid (5.5 ml) was mixed with nuclease free water (4.5 ml). 10 M NaOH (7.2 ml) (Fisher) was 

added gradually to prevent excessive heating. Then 1M NaOH (Fisher) was added dropwise until 

the pH reached 7.6-7.8. Water was added to reach a final volume of 20 ml.  

Stock-X: 4M Sodium Acrylate (4.6 ml), 50% Acrylamide (w/v in water, 1 ml) (Sigma, A9099), 

2% N, N'-Methylenebisacrylamide (1.5 ml) (Sigma, M7279), 5M NaCl (8 ml), 10 × PBS (2 ml), 

Nuclease Free Water (1.8 ml). Aliquots were stored at -20 ℃.  

ExM gel solution: Before gelation, Stock-X was mixed with 0.5% 4-Hydroxy-TEMPO (Sigma, 

176141), 10% TEMED (Sigma, T22500) and 10% APS (Sigma, A3678) at a ratio of 94:2:2:2. 
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Proteinase K digestion buffer: 50 mM Tris-HCl (pH 8), 50mM NaCl, 1 mM EDTA, 0.5% 

Triton X-100 and 0.3% SDS.  

DNase 1 Buffer: 10 mM Tris-HCl (pH 8), 2.5 mM MgCl2, 0.5 mM CaCl2.  

Poly-L-Lysine coating solution: Photo Flo 200 (3.2 µl, EMS 74257) was added to Poly-L-

Lysine (1.6 ml. Pelco, 18026) to make the Poly-L-Lysine coating solution. 

HCR hairpin conjugation with custom fluorophores: We custom conjugated the photostable 

fluorophore JF-669, NHS (Tocris, 6420) to amine-modified hairpin oligos from Molecular 

Instruments. Briefly, 100 mM amine-modified hairpin oligos (h1 and h2) (5 µl each) were air-

dried with SpeedVac for 30 min. Dried oligos were dissolved in 0.1 M sodium bicarbonate (3 µl) 

(pH 8-9).  JF-669, NHS (0.1 mg) was dissolved in DMSO (2 µl) and reacted to amine-modified 

oligos overnight in the dark at room temperature. Excess JF-669, NHS was removed with 

QIAquick Nucleotide removal kit (Qiagen, 28304) and the conjugated JF-669 hairpins were 

reconstituted with nuclease free water to a final concentration of 60 ng/ml (3 mM). 

2) Tissue fixation and preparation: C57Bl/6 male mice (8 weeks old) were used for all FISH 

experiments described in this study. Animals were anesthetized with isoflurane and perfused 

with RNase-free PBS (15ml) followed by ice-cold 4% paraformaldehyde (PFA) (50 ml). Brain 

tissue was dissected and fixed in 4% PFA overnight before sectioning on a vibratome. Brain 

coronal slices (300 µm) were sectioned and stored in 70% ethanol at 4℃ for up to 6 months.  For 

the lateral hypothalamus experiment, LHA region (~2.5 × 4 mm) around Bregma -1.355 to -

1.155 was cut out using anatomical landmarks as boundaries, including the mammillothalamic 

tract (mtt), zona incerta (ZI), fornix and optic tract. For ease of orientation and optimal imaging, 

the tissue was cut as a rectangle. An RNase-free paintbrush was used for tissue handling.  
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3) RNA anchoring, gelation and Proteinase K digestion: The tissue slice was rehydrated in 

PBS at room temperature (RT) (2 × 15 min) and incubated in MOPS buffer (20 mM, pH 7.7, 30 

min). Tissue was incubated overnight (37 ℃) in MOPS buffer (50 µl) with 1 mg/ml MelphaX 

and 0.1mg/ml Acryloyl-X, SE. The next day, tissue was rinsed in PBS (2 × 5 min) and placed in 

a 9 mm wide × 0.5 mm deep gasket (Invitrogen) on a glass slide that was previously coated with 

Poly-L-Lysine (1 µl) and allowed to dry. Gel solution was freshly made (see recipe above) and 

kept on ice. Tissue was equilibrated with gel solution (40 µl, 3 × 10 min) at 4 ℃. A coverslip 

was used to seal the gasket and gel was allowed to form at 37 ℃ for 2 hours. The coverslip and 

gasket were then removed to recover the tissue-gel. The tissue-gel was trimmed to a rectangle 

shape, with a corner cut to help with orientation. Tissue-gel samples were then transferred into a 

2 ml Eppendorf tube and digested overnight (37 ℃) in Proteinase K buffer (750 µl) with 7.5 µl 

of 800U/ml Proteinase K (NEB, P8107S). After digestion samples were trimmed again and 

washed in PBS (4 × 15 min).  

4) DNase digestion: Tissue-gel samples were equilibrated in DNase buffer (750 ml) for 30 min 

and then incubated with RNase-free DNase1 (2.7 Kunitz units/µl, 50 µl) (Qiagen) in DNase 

buffer (450 µl) at 37℃ for 2 h. After DNase digestion, samples were washed in PBS (4 × 15 

min) to remove DNase1. DNase 1 treatment (2 × 2 h) was performed prior to FISH to completely 

digest nuclear DNA.  

5) In-situ Hybridization and HCR: For hybridization, tissue-gel samples were first equilibrated 

in hybridization buffer (500 µl) for 30 min at 37 ℃. Samples were then hybridized with probe 

sets (10 nM each probe) in hybridization buffer (300 µl) overnight at 37 ℃. The next morning, 

samples were washed in probe wash buffer (2 × 15 min, then 3 × 30 min), followed by PBS (6 × 

30 min) at 37 ℃. Samples were left in PBS overnight at room temperature for hybridization 
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chain reaction (HCR) the next day or stored in 4 ℃. For HCR, samples were first equilibrated in 

amplification buffer (500 ml) for 30 min. Hairpins (3 mM) (conjugated to AF-488, AF-546, JF-

669) were snap-cooled in a PCR thermocycler (95 ℃ for 90 seconds then cooled at room 

temperature for 30 min). To initiate HCR, hairpins h1 and h2 were mixed and diluted to 30 nM 

in 300 µl fresh amplification buffer. Samples were then left in the dark for HCR reaction at room 

temperature for 3 h. After HCR, samples were first washed in 5 × SSCT (5 × SSC + 0.1% 

Tween) (2 × 30 min), then washed in 0.5 × SSCT (0.5 × SSC + 0.1% Tween) (2 × 30 min) and 

stored in 0.5 × SSC at 4℃ before imaging. All HCR 3.0 probe and hairpin oligos were purchased 

from Molecular Instruments. Gad1 HCR 3.0 probes used for assessing the detection efficiency of 

EASI-FISH were designed based on (Choi et al., 2018) and purchased from IDT.    

6) Image acquisition, sample handling and multiplexing: All samples were imaged on a Zeiss 

Lightsheet Z.1 microscope. A 20× water-immersion objective (RI=1.33) was used for imaging 

with 1× zoom. Single-side illumination was used to reduce light exposure and imaging time.  

Images were collected at 0.23 × 0.23 × 0.42 µm voxel resolution (post-expansion) with two 

tracks: the 488 nm and 669 nm channels were collected together followed by dual-track 

collection of 546 nm and 405 nm channels. For large volume imaging, each image tile was 1920 

× 1920 pixels (438.5 µm × 438.5 µm, post-expansion) in size with around 1500 z-slices, with 

overlap between tiles set to 8%. For imaging of the lateral hypothalamus samples, zona incerta, 

the fornix and optic tract were used to guide selection of field of view (FOV).  4 × 4 tiles were 

taken from the LHA tissue-gel sample (usually 2-3mm in x and y dimension).  

Before imaging, samples were stained in PBS with 5 µg/ml DAPI (2 × 30 min). At this 

concentration and in the absence of DNA, DAPI stains the RNA in the cytoplasm. Samples were 

mounted to a Poly-L-Lysine coated 8mm glass coverslip (Harvard Apparatus) that was glued to a 
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custom-made plastic holder and imaged in PBS (Expansion factor: 2×). After image acquisition 

the probes and HCR products were removed using DNase1 (see above) with samples attached to 

the holder. To remove samples from the holder for re-hybridization, they were incubated at room 

temperature in 10% dextran sulphate (500 ml) (Fisher Scientific) in PBS for 30 min. A 

paintbrush can be used to assist with gel removal.  Note that all units discussed in this paragraph 

regarding pixel size and image size were in post-expansion units.  

We found that HCR spots were susceptible to light-induced fragmentation, producing 

mobile spots of reduced brightness (wigglers). Wigglers were difficult to detect without time-

resolved imaging and led to false positive spots outside of cell bodies. Carefully controlling the 

light dose (reduced laser power and exposure time) alleviated light-induced fragmentation of 

HCR spots. Anti-fade compounds, such as PPD and DABCO also reduced spot fragmentation 

(Table S2). However, note that antifade compounds dramatically increased the bleaching rate of 

one of the commercially available HCR hairpin fluorophores (AF-546) (Figure S1H). 

EASI-FISH data processing 

Large volumetric EASI-FISH datasets were collected on a Zeiss Lightsheet Z.1 

microscope and saved as single multidimensional (multi-tile, multi-channel, z-stack) CZI files.  

For stitching, we also export a metadata file (MVL format) that includes tile configurations, 

which were later converted into a JSON format.  

1) Image Stitching: We used a previously developed flat-field correction and stitching package 

(Gao et al., 2019) that enabled rapid processing of 3D image tiles with Apache Spark based high 

performance computing environments (https://github.com/saalfeldlab/stitching-spark). The flat-

field correction was based on corrected intensity distributions using regularized energy 

minimization (CIDRE) (Smith et al., 2015), where the flat-fields were calculated for each tile 
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and channel independently and applied to each tile stack prior to stitching. The tiles were then 

stitched through translation to maximize cross-correlations in overlaps (Preibisch et al., 2009) 

from the DAPI channel. The same transformation was applied to the other three image channels. 

Stitched image volumes were then exported and saved into N5 format. This flat-field correction 

and stitching pipeline enabled rapid and automated data processing. All flat-field correction, 

stitching, and data export were executed on HHMI Janelia’s LSF computing cluster.  

2) Image Registration: After stitching, the DAPI channels were used again for registration of 

multi-round image volumes. To enable rapid and robust data processing, we developed a 

registration package that combined random sample consensus (RANSAC) (Fischler and Bolles, 

1981) based feature matching with non-symmetric, diffeomorphic image registration, called 

Bigstream (https://github.com/GFleishman/bigstream). First, a Difference of Gaussian (DoG) 

filter was applied to 8 × 8 × 4 down sampled (1.84 × 1.84 × 1.68 µm) image pairs and local 

maxima above a selected threshold were selected as features, matched with RANSAC and affine 

transformed. After applying this global affine transformation to 4 × 4 × 2 down sampled (0.92 × 

0.92 × 0.84 µm, post-expansion) image volumes, the transformed image volumes were split into 

256 × 256 × 256 pixel-chunks with 12.5% spatial overlaps along each boundary for further 

processing. Another round of feature selection and affine transformation was performed on each 

image chunk at 0.92 × 0.92 × 0.84 µm (post-expansion) scale, followed by deformable 

registration. For better integration with the rest of the image processing pipeline, we created an 

implementation in Python of the non-symmetric diffeomorphic registration algorithm from the 

Greedy software package (Yushkevich, 2016). This enables in-memory data sharing of objects 

produced by different steps of the pipeline and thus avoids data saving in intermediate steps. It 

also guarantees compatibility of object formats such as transforms. (Yushkevich, 2016)All 
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registration steps on image chunks can be executed in parallel. The global affine, piecewise 

affine, and piecewise deformable transforms were composed to a single displacement vector 

field stored in N5 format. Both forward transform and inverse transforms were computed. The 

forward transform maps on-grid-positions from the fixed coordinate system to corresponding 

(potentially off-grid) locations in the moving coordinate system and is required for resampling 

moving image data to match fixed image data. The inverse transform maps on-grid-positions in 

the moving coordinate system to (potentially off-grid) locations in the fixed coordinate system 

and is required for moving explicit positional data (such as detected FISH spot coordinates) from 

the moving coordinate system to the fixed coordinate system. For assessing the registration 

accuracy, mean structural similarity index (SSIM) (Wang et al., 2004) between the moving and 

fixed image was computed.  

3) FISH Spot detection: The spot detection approach was based on Airlocalize (Lionnet et al., 

2011) and optimized for large image volumes (see below). Briefly, for Airlocalize, the images 

were first passed through a Difference of Gaussian (DoG) filter and global background 

subtracted. Next, a pre-detection step was performed that identifies local maxima above 

threshold within a 5-pixel radius, which was used to estimate the rough spot position. Then a 

local background correction was performed based on background estimation around each spot 

and a 3D Gaussian fit was used to estimate the spot location as well as the spot fluorescence 

intensity. Airlocalize was originally written in MATLAB and works best for epifluorescence and 

confocal image data (~1 GB in size).  

For large image data associated with the EASI-FISH data collection pipeline, we 

developed a high-throughput version to allow for distributed data access and processing. In order 

to integrate it with other parts of the EASI-FISH pipeline, we compiled Airlocalize (with minor 
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modifications) into a Python package for distribution. Large image volumes were split into 

overlapping chunks (~1GB in size, 10% overlap in z and 5% overlap in x and y). Spot detection 

on each chunk was performed simultaneously in parallel. The detected spots from individual 

image chunks were combined, with repetitive detections removed. Detected spot positions and 

intensities were exported as a single CSV file. All spot detection procedure was performed on 

full resolution images. Linear spectral unmixing was applied to images acquired in the red 

channel (AF546) to correct for bleed-through from the co-acquired DAPI channel before spot 

detection. 

  We called this Airlocalize-based high-throughput spot detection approach hAirlocalize, 

and it is available at https://github.com/multiFISH/EASI-FISH. After spot detection from each 

EASI-FISH round, the inverse transformation matrix acquired from the registration step (see 

above) was applied to the spot point cloud to transform spots to fixed image coordinate. Spot 

detection and warping were confirmed by visual inspections.  

4) 3D soma Segmentation: To achieve automatic and accurate detection and segmentation of 

cells in 3D image volumes, we developed a deep learning-based segmentation method based on 

the previously published 3D StarDist approach (Weigert et al., 2020). In a first step, StarDist 

predicts for each pixel its cell center probability and its radial distances to the nearest cell 

borders. In a second step, it selects the center point of each cell and uses the radial distances at 

this point to create a star-convex polyhedra that approximates the cell outlines. While this 

approach provides high detection accuracy in situations with many crowded and dense objects, 

the resulting segmentation masks are imprecise for non-convex cell shapes which could lead to 

unwanted misallocation of FISH spots. To address this problem, we retained the center 

probability and distance prediction step from StarDist, but afterwards aggregated pixel affinity 
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maps from the densely predicted distances, an approach that we called Starfinity. The final 

segmentation masks were obtained by applying a watershed segmentation on the affinity maps 

while using the thresholded center probability as seeds. We trained such a Starfinity model with 

annotated cells from 3 different brain areas (LHA, CEA and cortex) using an iterative approach.  

Manual annotation was performed using Paintera (https://github.com/saalfeldlab/paintera).  First, 

image stacks with 248 intact cells were manually annotated at full resolution (0.23 × 0.23 × 0.42 

µm) to train a Starfinity model. Then from the prediction, we selected for images where cells 

were mistakenly segmented and corrected the errors in these images manually. We then feed the 

corrected annotations (827 cells) to train the model.  For both training and predictions, images 

were down-sampled (4 × 4 × 2-fold) to increase the receptive field of the model, make the pixel 

resolution approximately isotropic, and reduce computational demands. The training and 

prediction were based on the cytosolic DAPI channel. The trained model gave a segmentation 

accuracy of 93%, with 4% over-segmentation errors, 1% under-segmentation errors and another 

2% contaminated by neighboring cells.  

After Starfinity segmentation, a semi-automated approach was used to further correct 

over-segmentation errors. Over-segmented ROI pairs were automatically flagged and merged 

based on the following criteria: 1) very high gene expression correlation between ROIs (Pearson 

Correlation Coefficient greater than 0.998, this cutoff was determined by maximum Youden's 

index calculated on manually inspected data); 2) the centroid positions of the selected ROI pair 

were less than 23 µm (pre-expansion) apart and the two ROIs were touching/connected; 3) At 

least one of the ROIs had to be greater than 600 µm3 in size, to avoid merging of neuronal 

fragments with non-neurons or fragments from surrounding neuronal processes, which were 

usually small. For ROI pairs both greater than 1500 µm3 in size (average soma size in this 
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region) and ROIs that had more than one matches, the corresponding ROI pairs were ranked 

based on their correlation coefficient and inspected manually (less than 15% out of all flagged 

ROI pairs).  This method was estimated to eliminate 62% over-segmentations errors, bringing 

down the total over-segmentation error to less than 2%.   

5) End-to-end analysis pipeline  

To enable easy adoption of EASI-FISH, we built a self-contained, highly distributed, and 

platform agnostic computational pipeline for analyzing EASI-FISH data. The pipeline was built 

using Nextflow, with all software containerized, which makes it portable and reproducible.  The 

pipeline can be executed out-of-the box on multiple platforms, including stand-alone 

workstations and the IBM Load Sharing Facility (LSF) computing cluster. It could also be 

adapted to execute on other batch schedulers (such as SLURM) and on cloud platforms (e.g. 

Amazon Web Services, Google Cloud).  

The pipeline is also highly flexible. We provide an end-to-end pipeline for EASI-FISH 

users to analyze their imaging data and directly translate over 10 terabytes of image data into 

spot counts per cell. The EASI-FISH steps (stitching, registration, segmentation, spot detection, 

etc.) in the pipeline are modularized, allowing flexibility for users to select only the necessary 

modules for their specific application. Furthermore, each module is containerized using Docker, 

and can therefore be easily substituted with a different implementation or algorithm. 

The pipeline is openly available at https://github.com/JaneliaSciComp/multifish and 

includes extensive documentation and automatic download of example data sets for push-button 

replication. Monitoring of task execution and resource utilization is available through the use of 

the Nextflow Tower web UI.   
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For analysis of an example dataset (35GB, 4 channels, 600 z-slices for each EASI-FISH 

round), we provide the processing time below for each step on a stand-alone workstation (128GB 

RAM, 40 cores). For data that is larger than 100GB, we recommend usage of cluster or cloud for 

improved data parallelization and speed.  

 image scale 
Stand-alone 
workstation 

(8h total) 

LSF cluster 
(3h total) 

Stitching full resolution 2.5h 1.5h 

Registration 4 × 4 × 2 or 
8 × 8 × 4 ds 0.5h 1.5h 

Spot detection full resolution 7.5h 
(2.5h/channel) 1.5h 

Segmentation 4 × 4 × 2 ds 0.2h 0.2h 
Post-processing -- 0.05h 0.05h 

 

Although this breakdown shows the time for each step, it is important to note that, once 

the stitching step is finished, the subsequent steps (registration, segmentation, and spot detection) 

can be performed simultaneously in parallel.  The pipeline can be used to analyze multi-round 

EASI-FISH experiment all at once. Users can also choose to interleave the data collection and 

analysis with minimal modification. This way, the time lag between data acquisition and analysis 

will be negligible and users can start running through the pipeline once two rounds of EASI-

FISH data have been acquired.  

6) Visualization: The stitched and registered volumetric image data was visualized with Fiji 

plugin N5 Viewer (https://github.com/saalfeldlab/n5-viewer) based on BigDataViewer (Pietzsch 

et al., 2015) for interactive browsing of multichannel multiscale N5 datasets. More flexible 

visualization options, including overlaying with segmentation mask, inspection of detected spots, 

ROIs and spots queries were performed using Napari (https://github.com/napari/napari) with 

custom scripting in python.   
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7) Post-processing:  

With the segmentation masks from the DAPI channel and spot extracted from FISH 

channels, extracted spots from each FISH channel were then assigned to individual ROI to obtain 

the spot count for each FISH channel (gene). We also performed the following steps for 

improved data quality.  

a. Filter ROIs: Cells on the edge of the field of view that were only partially captured in 3D or 

failed to be captured in one or more EASI-FISH image rounds were removed from the analysis. 

Additionally, we observed autofluorescence in the red channel on the surface of the specimen in 

later rounds (>7) and excluded part of the specimen (~30-50µm pre-expansion, from the top 

surface along the z-axis) from the downstream analysis. After this procedure, 77% of detected 

ROIs were used for the following analysis (Table S6).  

b. Lipofuscin spots: We observed autofluorescence puncta-like signals in the tissue-gel samples 

that are likely lipofuscins. Lipofuscins are lysosomal storage bodies, and their presence could 

lead to false positive spot detection. We took advantage of the fact that lipofuscins had a broad 

excitation/emission spectrum and can therefore be identified by signal colocalization in more 

than one channels. In the current application, the 488 nm and 669 nm channels were acquired at 

the same time and were used to identify lipofuscin spots by signal colocalization. We identified 

and spots whose centroid positions were within a radius of 3 pixels (345 nm, pre-expansion) 

between the 488 nm and 647 nm channels and subtracted these spots for all FISH channels. For 

genes with high expression levels (spot count exceeding 200 per cell, detected in round 4 to 

round 10), we chose to use the median lipofuscin spot counts for that cell across all rounds to 

avoid subtraction of real spots due to high spot density in both channels. 
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c. Dense spots: For highly expressed genes, the integrated fluorescence intensity was used 

instead to estimate spot counts. First, we analyzed the distribution of spot fluorescence intensity 

from the hAirlocalize output for each gene. The spot intensity followed a right-skewed 

distribution. Outliers with high intensity values were likely detection of multiple spots in cells 

with high expression. The mode of the distribution was used as an estimate for single spot 

intensity for any given gene. Spot counts in any given cell was calculated by dividing the sum of 

fluorescence intensity in that cell with the estimated single spot intensity. We compared the 

estimated spot counts with hAirlocalize spot counts for genes that showed low or medium 

expression levels (less than 200 spots/cell) in the majority of cells and that the two measurements 

were highly correlated and comparable in the low to medium spot density range. Figure S2F 

showed Slc32a1 as an example, the least-square linear regression fitting to the data indicates a 

slope of 1.03 and R2 of 0.93.  Because intensity-estimated spot counts can be sensitive to 

background fluorescence in cells with low gene expression, we chose to use hAirlocalize 

measurement in these cells. And for cells with spot density higher than 0.01spot/voxel 

(corresponding to spot separation less than 3.3µm apart), we applied the intensity-estimated spot 

counts. 

d. Neuronal morphological analysis: Taking advantage of the accurate 3D segmentation, we 

measured the morphological properties of neuronal cell body (soma) with segmentation mask 

using scikit-image implementation of regionprops. The spatial position of each neuron was 

defined as the centroid coordinate of the segmentation mask. Solidity was a measure of the 

overall concavity and was defined as the neuronal cell body volume divided by its convex hull.  

The aspect ratio was defined as the length ratio between the major axis and the minor axis of the 

neuron.  Other measurements that were not being discussed here, but have been performed 
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include major axis length, minor axis length, neuronal density around each neuron, orientation, 

extent and whether a neuron is in direct contact with a non-neuron.  

All measurements reported here were in pre-expansion unit in µm, unless otherwise 

noted. 

 

Single-cell RNA sequencing 

The single-cell RNA sequencing was focused on the suprafornical LHA and its 

surrounding areas. For single cell dissociation and collection, we used transgenic animal Agrp-

IRES-Cre × Ai9 crosses, where the tdTomato-labeled AGRP neurons extend a prominent set of 

axonal projections to the suprafornical region of the LHA (Betley et al., 2013) and provide a 

useful signal for visually guided dissection of the targeting brain region. The manual sorting 

procedure to isolate non-fluorescent cell bodies from micro-dissected brain slices was similar to 

previously described (Hempel et al., 2007). Briefly, we sectioned 300 Pm coronal slices from 

male Agrp-IRES-Cre × Ai9 mice (age 6-8 weeks) and used the tdTomoato fluorescence signal 

from AGRP neuron axon bundle terminal in the LHA to identify the boundaries of the LHA and 

then manually dissected with spring scissors. The dissected tissue sections were then subject to 

protease digestion, after which cells were dissociated. Dissociated neurons from 7 animals were 

pooled and intact neurons were manually selected into individual wells based on size. Sorted 

single cell was lysed with 3 µl lysis buffer (0.2% Triton X-100 (Sigma) and 0.1 U/µl RNase 

inhibitor (Lucigen)) and cDNA libraries were prepared using the Smart-SCRB chemistry as 

described previously (Cembrowski et al., 2018; Xu et al., 2020). Barcoded cDNA libraries were 

then pooled and sequenced on a NextSeq 550 high-output flowcell with 27 bp in read 1 to obtain 

the barcode and UMI, and 125 bp in read 2 for cDNA.  PhiX control library (Illumina) was 
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spiked in at a final concentration of 15% to improve color balance in read 1. Libraries were 

sequenced to an average depth of 135,025 ± 38401 (mean ± S.D.) reads per cell. 

Sequencing alignment was performed similar to (Gur et al., 2020).  Sequencing adapters 

were trimmed from the sequencing reads with Cutadapt v2.10 (Martin, 2011) prior to alignment 

with STAR v2.7.5c (Dobin et al., 2013) to the M. musculus GRCm38.90. genome assembly from 

Ensembl (ensembl.org). Gene counts were generated using the STARsolo algorithm 

(https://github.com/alexdobin/STAR/blob/master/docs/STARsolo.md). Gene counts for the 

subset of barcodes used in each library were extracted using custom R scripts.  

 

scRNA-Seq analysis and marker-gene selection for EASI-FISH 

Analysis of the single-cell RNA sequencing data, including filtering, variable gene 

selection, dimensionality reduction and clustering was performed with Seurat (v2.3.4) (Butler et 

al., 2018; Satija et al., 2015) in R (v3.4.3). First, cell doublets/multiplets and low-quality cells 

were filtered based on the total number of detected genes (1,500-7,500), relative abundance of 

mitochondrial transcripts (percent.mito < 0.055) and number of unique molecular identifiers 

(nUMI) per cell (< 2 × 105) respectively. Genes expressed in less than 3 cells were also removed. 

The resulting dataset consisted of 1507 cells and 17535 genes. The filtered dataset was then log-

normalized and scaled, while regressing out the effects of latent variables including nUMI, and 

percent.mito. Next, we performed principal component analysis (PCA) and used the first 31 

principal components for downstream analysis. For clustering, we used the graph-based 

clustering approach implemented in Seurat, with the original Louvain algorithm and 10 

iterations. Non-neuronal cells were identified and removed from the dataset before further 

analysis.   
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The remaining 1,425 cells were processed similar to what was described above and 4 

neuronal cell types were identified, whose preliminary identities were assigned based on unique 

expression of enriched genes: Group 1 (70%, 1043 cells) consisted primarily of cells with high 

levels of the neuropeptide Hcrt, Group 2 (15%, 227 cells) was a heterogenous population best 

characterized by common expression of Sparcl1, Group 3 (10%,  151 cells) contained a high 

percentage of cell strongly expressing Nts, and Group 4 (4.5%, 67) was defined by very high 

levels of Pmch. Assessment of differential gene expression between neuronal cell types was 

performed using the FindAllMarkers function in Seurat (Wilcoxon rank sum test, logfc.threshold 

= 0.55, min.pct = 0.25), with p-values adjusted based on the Bonferroni correction. The full list 

of enriched genes for each major neuronal subclass is provided in Table S4.  

To identify marker-genes for EASI-FISH, we started with the list of differentially 

expressed genes as outlined in Table S4. We applied a series of selection criteria designed to 

allow classification of a maximum number of unique cell types using the fewest number of genes 

possible. As such, in addition to limiting our search to genes with an adjusted p-value cutoff of at 

least 0.05 and an average log-fold change of 0.55 or over, we also specifically selected markers 

with as close to binary “on/off” expression patterns in the cell type of interest as possible, based 

on high percentage of marker positive cells in the target population compared to low percentage 

of marker positive cells outside the target population (displayed as pt.1 and pt.2 in Table S4, 

respectively). While not explicitly used as a limiting factor for the selection of marker-genes in 

this experiment, we found that a value of 0.4 for the ratio of minimum difference in the fraction 

of detection between the two groups to be an informative rubric for aiding in selection of marker-

genes with close to binary characteristics. We also looked for genes that could further split the 

HCRT and PMCH neurons as they are well known neuropeptide secreting neurons with 
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important functions. Using these parameters, alongside manual inspection of the Allen brain ISH 

atlas (Lein et al., 2007) for cross-validation, we settled on the following genes to represent the 

neuronal cell types of greatest value and highest confidence given the number of assessed cells in 

the scRNAseq dataset: Hcrt, Bdnf, Calb2, Nts, Gpr83, Pmch, Cartpt, Tac2. Additionally, 

Slc17a6 and Slc32a1 were included to specify excitatory and inhibitory neurons respectively and 

Map1b was used as a pan-LHA neuronal marker. Due to the over-representation of specific 

neuronal cell types (e.g HCRT neurons) and under-representation of some neuronal cell types 

(e.g inhibitory neurons) in this dataset (likely due to bias during hand sorting), we chose to 

supplement the marker list with those identified in a recently published dataset (Mickelsen et al., 

2019). Additional genes were selected for inclusion in an effort to represent a broader diversity 

of cell types in the LHA. The collected final list of marker-genes are listed in Table S5. We 

acknowledge that this is not the only combination of genes that could feasibly serve to represent 

these molecularly defined cell types.  

 

Integration of scRNA-Seq datasets 

In order to obtain a broader diversity of molecularly defined cell types in the LHA, we 

integrated our scRNA-Seq data with published LHA scRNA-Seq datasets (Mickelsen et al., 

2019; Rossi et al., 2019). Processed gene count expression matrices were directly downloaded 

from Gene Expression Omnibus (GEO). For the Mickelsen et al. dataset, female and male mice 

were combined. For the Rossi et al. dataset, only control groups were included and combined. 

Integration of multiple scRNA-Seq datasets was performed using Seurat (v3.2.0) (Stuart et al., 

2019).  First of all, similar to described above, data were filtered based on the number of features 

and total RNA counts to eliminate doublets and cells with low quality. Genes that were 
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expressed in less than 5 cells in the dataset were removed from the analysis. Non-neurons were 

then removed from the three datasets before data integration based on highly variable features. 

4,418 cells from the Mickelsen et al. dataset and 2,087 cells from Rossi et al. dataset were 

included for integration with our dataset. Clustering analysis was performed similar to described 

above and the Silhouette score was used to determine the optimal resolution for cluster numbers. 

To identify the optimal k parameter (neighborhood size) for clustering, we ran a bootstrap 

analysis by randomly selecting 80% of cells 100 times and performing the analysis described 

above. The Jaccard similarity coefficient was used for evaluation. The bootstrap analysis was 

performed in R using the scclusteval package (Tang et al., 2020) with modifications.   

 

Assessment of EASI-FISH method 

For assessment of detection efficiency, Gad1 was labelled with interleaved probe sets 

conjugated to different fluorophores (10 probes in each set). Assuming probe independence from 

the two probe sets, the detection efficiency with 10 probes/set can be measured as the square root 

of colocalization efficiency. We found that 65 ± 2 % spots colocalized when we probe Gad1 with 

two independent probe sets, corresponding to 81 ± 1.4% detection efficiency.  

To test detection sensitivity of the EASI-FISH method, we focused on a single neuronal cell 

type from the scRNA-Seq dataset, the PMCH neurons. We identified genes that are selectively 

expressed in this population at various levels (Table S4). Klhl13 (UMImean=48) and Igf1 

(UMImean=15) were selected specifically due to their unique high levels of expression in most of 

PMCH neurons (high pct.1) and relative absence in other cell types (low pct.2), as well as their 

absolute low levels of gene expression as indicated by UMI counts.  
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FISH cluster analysis 

First, neurons were identified using a two-components Gaussian Mixture Model (GMM) 

based on spot count of LHA pan-neuronal marker, Map1b with probability greater than 0.7. 

36,423 out of 66,488 cells were identified as neurons in this way. Clustering analysis was 

performed on z-score normalized spot counts of 24 marker-genes. Unlike the scRNA-Seq 

analysis, no logarithmic transformation was applied to minimize the weight of false positive spot 

detection. Similar to described above, principal component analysis (PCA) was performed, and 

graph based SNN clustering analysis implemented in Seurat was used for an initial clustering 

using all marker-genes. Like the scRNA-Seq analysis, this separated neurons into Slc17a6 and 

Slc32a1 populations. Subsequent clustering was performed on Slc17a6 and Slc32a1 populations 

separately. For Slc17a6 population, Map1b and Slc17a6 were excluded from the PCA and 

clustering analysis as they were not considered variables. For Slc32a1 population, non-variable 

genes (widely expressed: Map1b, Slc32a1; not expressed: Bdnf, Cartpt, Trh, Pmch, Hcrt) were 

excluded from PCA and clustering analysis. The Silhouette score, SC3 stability index and 

Jaccard similarity coefficient as calculated by bootstrapping 80% of the data 100 times (same as 

above) were used to choose clustering parameters: the nearest neighbourhood size k and 

resolution to maximize the number of stable clusters (k parameter chosen for Slc17a6 cells: 20, k 

parameter chosen for Slc32a1 cells: 10). Cell types with averaged total spot counts from all 

genes below 20 percentiles of all neurons were aggregated and assigned as the poorly classified 

cluster due to lack of marker-genes. Using this cutoff, 80% of neurons from the Slc17a6 

population (Ex-1 to Ex-24) and 74.5% of neurons from the Slc32a1 population (Inh-1 to Inh-22) 

were classified. tSNE was used for visualization with perplexity of 50 for Slc17a6+ population 

and 40 for Slc32a1+ population.  
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LHA boundaries and neighboring brain regions 

The zona incerta (ZI) is characterized by high density inhibitory neurons with small and 

regular cell bodies (Kawana and Watanabe, 1981; Kolmac and Mitrofanis, 1999). Therefore, we 

drew boundaries between the ZI and the LHA based on neuronal density, morphology, as well as 

Slc17a6 and Slc32a1 expression. The entopeduncular nucleus (EP) is enriched for 

glutamate/GABA co-releasing somatostatin neurons (Wallace et al., 2017), which were used to 

identify boundaries for EP. The fornix was identified based on its location, circular profile, and 

lack of cell bodies.   

 

Spatial mixing analysis of molecularly defined cell types 

The neighborhood complexity and purity analysis were similar to what has been 

described previously (Moffitt et al., 2018). Briefly, the neighborhood complexity was defined as 

the number of distinct other molecularly defined cell types within the neighborhood of any given 

neuron. The neighborhood purity was defined as the fraction of neurons within the neighborhood 

that were part from the most abundant molecularly defined cell type. A 50 µm radius 

surrounding any given neuron was used as the neighborhood for this analysis.   

 

Regional enrichment of selected marker-genes  

To compute the selective regional enrichment for Otp/Meis2, we first counted the number 

of Otp+ and Meis2+ neurons within a 50 µm radius neighborhood of any given neuron. The 

selectivity index for Otp/Meis2 is calculated as (Otp+
num – Meis2+

num) / (Otp+
num + Meis2+

num).  

For Slc17a6/Slc32a1, the same procedure was performed based on the number of Slc17a6+ and 

Slc32a1+ neurons in the neighborhood, except for cells that co-expressed Slc17a6 and Slc32a1, 
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which were excluded from the analysis. This procedure was advantageous compared to an image 

smoothing filter as it preserved the neuronal density information, which was useful for 

segmentation later.  

 

Automatic segmentation of the LHA 

The initial segmentation of the LHA was based on expression of two pairs of genes 

Otp/Meis2 and Slc17a6/Slc32a1. We first classified neurons into 4 classes based on their 

regional enrichment for these four genes (Class 1: Slc17a6+/Otp+; Class 2: Slc32a1+/Otp+; Class 

3: Slc17a6+/Meis2+; Class 4: Slc32a1+/Meis2+) and then used Gaussian Mixture Models (n 

components=50) implemented in scikit-learn to generate the 3D segmentation (1µm isotropic 

voxel resolution). This segmentation was performed separately on each LHA volume. Then, the 

segmentation masks from LHA1 and LHA2 were aligned to LHA3 using the rigid registration 

implemented in Greedy (Yushkevich, 2016). The fiducial landmarks (ZI, EP and fornix) and 

spatial distribution of marker-genes from three animals were used to cross validate the 

registration. The simultaneous truth and performance level estimation (STAPLE) (Warfield et 

al., 2004) implemented in SimpleITK was used to generate a unified atlas with a probability 

threshold of more than 0.9. Disconnected regions that were from the same molecularly defined 

class (1-4) were further split and assigned unique ROIs. Small ROIs (< 0.5 × 106 µm3) were 

removed and the segmentation boundaries were smoothened with a Gaussian filter (sigma=30). 

Detailed segmentation procedures can be found at https://github.com/multiFISH/LHA_analysis. 

 

Average distance to nearest neighbor (ANN) analysis 
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The nearest neighbor of each neuron was queried using kdtree (scipy) and the average 

distance to the nearest neighbor in each molecularly defined cell type was defined as the mean 

distance of neurons in a given cell type to its nearest neighbor. Note that neuron number in each 

molecularly defined cell type is different, therefore it is not a one-to-one relationship (e.g. 

multiple neurons can have the same nearest neighbor), and the ANN between cell type A and cell 

type B can be different depending on which cell type was queried.  

 

Spatial distribution of molecularly defined cell types  

First, to determine the spatial distribution of molecularly defined cell types (whether they 

were clustered, dispersed or uniformly distributed), we compared the cell types with a CSR 

(complete spatial randomness) process and performed a Monte Carlo test of CSR (Cressie; 

Waller). We simulated the CSR process by randomly sampling cells in the data 1,000 times to 

generate a distribution of the averaged distance to nearest neighbor under CSR (ANNCSR). The 

number of random sampled cells was matched to that in each molecularly defined cell type. The 

ANN from each molecularly defined cell types (ANNMol) was calculated and compared to the 

CSR distribution to calculate the p-value. We found that all (48/48) of the molecularly defined 

cell types were spatially clustered (ANNMol<ANNCSR, p<0.05) compared to a CSR process 

(Table S1).  

Second, to determine whether the molecularly defined cell types were enriched within 

proposed subregions, we used an approach similar to the Quadrat statistic (Cressie; Waller), 

instead of quadrat, the proposed anatomical parcellations were used for this analysis. One 

hypothesis was that the unequal distributions of molecularly defined cell types within proposed 

LHA subregions was due to differences in cell/point densities in these subregions. To test this, 
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we simulated the distribution by shuffling neurons' molecular identity 1000 times to compute the 

distribution of the χ 2 statistics for each cell type. The χ 2 statistic from the observed molecularly 

defined cell types was compared to the distribution of expected χ 2 statistics under the above 

hypothesis to calculate the p values (Table S1).  

Last, to determine which subregion the given molecularly defined cluster was enriched 

in, we performed the permutation test, where we shuffled the position of neurons from each 

molecularly defined cell type 1,000 times and calculated the distribution of regional enrichment 

for any given molecularly defined cell type. The observed fraction of neurons enriched in a given 

subregion from each molecularly defined cell type was compared to the expected distribution 

from the random process to calculate the p values (Table S7).  

 

Fractional overlap analysis of molecularly defined cell types 

To determine the molecularly defined cluster enrichment, we first calculated the local 

neuronal density of each molecularly defined cell type using kernel density estimation (kde) 

(scipy). The segmentation mask for each molecularly defined cell type was generated by 

thresholding the resulting density at the 95th percentiles.  The binarized segmentation masks can 

be combined to generate a pixelated image with 'intensity values' at each voxel representing the 

number of overlapping cell types.  This overlaid image was used to further subdivide the LHAfl 

and LHAs-db subregions. The segmentation masks generated for each molecularly defined 

neuronal type was used to calculate the fractional overlap between pairs of molecularly defined 

clusters. The overlap fraction was defined as the number of pixels occupied by both cell types 

divided by the total number of pixels occupied by either cell type.  

Prediction of spatial position with gene expression 
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To determine whether neuronal spatial position could be predicted based on 

combinatorial expression of marker-genes, we trained a multi-output Random Forest regressor to 

predict the spatial positions of neurons. First of all, gene expression data were normalized (z-

score) to a normal distribution with similar scale ranges for improved model performance. We 

trained the random forest regressor using the z-score normalized expression of 24 marker-genes 

as input and the x, y, z positions (pre-expansion, in µm) as output.  The prediction performance 

was evaluated using 10-fold cross-validation and random permutation cross-validation (Shuffle 

& Split). Both coefficient of determination (R2) and the explained variance regression score were 

calculated, and they were identical when rounded to 2 decimal places.  For absolute 

measurement, the predicted position using this model can be, on average, ± 105 µm off from the 

true position. To evaluate the importance of individual genes and their combinations in 

predicting neuronal position, models were trained and tested by removing one or combinations of 

features (genes) and same as described above, cross validation was used to evaluate the 

predictive power of the model based on R2 score. To evaluate the statistical significance, we 

shuffled the relationship between the gene expression and neuronal position 1000 times and 

compared the prediction accuracy of our model to the distribution of prediction accuracy from 

shuffled data to calculate the p value.    

 

Cross-correlation analysis between biological replicates  

To determine whether findings presented here were reproducible across animals, we 

performed cross-correlation analysis on 1) molecularly defined cell type gene expression (Fig 

S4F), 2) marker-gene spatial expression (Fig S5E), 3) molecularly defined cell type spatial 

distribution (Fig S5H) between biological replicates. For molecularly defined cell type gene 
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expression, averaged marker-gene expressions in any given molecularly defined cell type were 

used to calculate the correlation coefficient. For the spatial distribution of marker-genes and 

molecularly defined cell types, correlation analyses were performed on tissue volumes after rigid 

alignment. For gene expression spatial distribution, gene expression per cell were binarized and 

cells with spot count greater than 30 were defined as positive for any given gene. The image 

volumes from different animals were discretized into 100µm × 100µm × 100µm bins and 

number of positive cells for any given gene was used to generate the correlation coefficient. For 

molecularly defined cell type distribution, instead of number of positive cells for any given gene, 

number of cells from any given molecularly defined cluster in each bin was used for cross-

correlation. All correlation analyses were performed by comparing LHA1 and LHA2 to LHA3 

and p value < 0.05 were reported here.  

 

Connectivity analysis  

To determine whether neuronal inputs to the LHA follow the regional parcellation, we 

looked at dataset collected from the Allen Mouse Brain Connectivity database. We utilized the 

spatial search function from the Allen Brain Atlas API and selected for experiments meeting the 

following criteria: 1) rAAV-EGFP tracing in wildtype animals for broad neuronal cell type 

tracing; 2) density of projection signal (ratio of thresholded fluorescence pixel over all pixels in 

the structure) greater than 0.1 in the LHA (6350, 5850, 6850 in the reference space was chosen 

as the LHA target location). 148 experiments met these criteria. Affine alignment was applied to 

transform the LHA parcellation map to the reference atlas based on fiducial landmarks (ZI, EP 

and fornix). Mean fluorescence intensities in each LHA subregions were extracted from the 148 

experiments. For multiple experiments from the same injection site, cross-correlation analysis 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.08.434304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434304
http://creativecommons.org/licenses/by-nc-nd/4.0/


88 
 

was performed to remove outliner experiments, which is mostly likely due to variations in 

injection site.  Additionally, experiments with injection site in the LHA and its neighboring brain 

regions (AHN, VMH) were removed as there could be strong signal spread from the injection 

site to the LHA.  This allowed us to examine a total of 64 different brain regions that projects to 

the selected LHA target location and their relative projection intensities in proposed LHA 

subregions.   

 

Statistics 

Statistical analyses were performed in Python or Prism GraphPad and described in 

method, figure legends and Table S1.  

 

Figures and scales 

All scales (scale bar and scale arrows) in the text, figures and figure legends were 

converted to pre-expansion unit in µm.   
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