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Abstract 

Verbal instructions allow fast and optimal implementation of novel behaviors. Previous 

research has shown that different control-related variables organize neural activity in 

frontoparietal regions during the preparation of novel instructed task sets. Little is known, 

however, about how such variables organize brain activity under different task demands. 

In this study, we assessed the impact of implementation and memorization demands on 

the neural representation of novel instructions. We combined functional Magnetic 

Resonance Imaging (fMRI) with an instruction-following paradigm to compare the effect 

of three relevant control-related variables (integration of dimensions, response 

complexity, and stimulus category) across demands, and to explore the degree of overlap 

between these. Our results reveal, first, that the implementation and memorization of 

novel instructions share common neural patterns in several brain regions. Importantly, 

they also suggest that the preparation to implement instructions results in a strengthened 

coding of relevant control-related information in frontoparietal areas compared to their 

mere memorization. Overall, our study shows how the content of novel instructions 

proactively shapes brain activity based on multiple dimensions and how these 

organizational patterns are strengthened during implementation demands. 
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1. INTRODUCTION 

Instruction following allows humans to implement novel behaviors quickly without prior 

practice, in contrast to other mechanisms such as trial-and-error or reinforcement 

learning. This enhanced efficiency frames such ability as a special instance of humans’ 

cognitive flexibility (Cole, Laurent, & Stocco, 2013). An important yet unanswered 

question is how the brain rapidly reformats and organizes the symbolic information 

conveyed by instructions into efficient action (Brass, Liefooghe, Braem, & De Houwer, 

2017). Recent findings have shown that, when preparing to execute a novel instruction, 

brain activation patterns are organized by the different relevant dimensions of such 

instruction (Palenciano, González-García, Arco, Pessoa, & Ruz, 2019). However, it 

remains unknown whether these activation patterns are triggered by the preparation to 

implement instructions, or if they reflect their mere declarative maintenance.  

Prior studies have reported the pervasive effects of instruction following on behavioral 

and neural markers. The intention to execute a recently encoded instruction induces brain 

activation in areas associated with control and category-selective perceptual processing 

(González-García, Arco, Palenciano, Ramírez, & Ruz, 2017; González-García, Formica, 

Wisniewski, & Brass, 2021), and impacts the neural patterns representing the instructed 

content (Bourguignon, Braem, Hartstra, De Houwer, & Brass, 2018; Muhle-Karbe, 

Duncan, De Baene, Mitchell, & Brass, 2017; Ruge, Schäfer, Zwosta, Mohr, & 

Wolfensteller, 2019). In this line, a recent study (Palenciano, González-García, Arco, 

Pessoa, et al., 2019) showed that, during implementation demands, neural patterns in 

areas such as the inferior frontal gyrus (IFG) are organized by the need to integrate 

information from different dimensions of the instruction (e.g. color and size of the 

stimuli), while patterns in the intraparietal sulcus (IPS) and pre-supplementary motor area 

(pre-SMA) represent the complexity of instructed stimulus-response associations 

(Palenciano, González-García, Arco, Pessoa, et al., 2019). 

Another set of neuroimaging studies from the instruction following literature has focused 

on how the declarative information of the instruction is transformed into a procedural 

format, that is, into an action-oriented proactive binding of relevant motor and perceptual 

information (see Brass et al. 2017 for a review). This transformation (often defined as 

proceduralization) enables a highly accessible task model containing the condition-action 

rules from the instruction ready to be implemented, creating an optimal preparatory and 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.03.08.434338doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434338
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

reflexive-like state that enables a fast and optimal execution (Brass et al., 2017; but see 

Liefooghe & De Houwer, 2017). Interestingly, brain areas linked to novel instruction 

processing (such as the dorsal premotor cortex and middle frontal gyrus) seem to be 

involved also when participants only need to declaratively memorize (but not execute) 

the content of the instruction, although they show higher levels of activation or 

information decodability under implementation demands (Bourguignon et al., 2018; 

Muhle-Karbe et al., 2017). This raises the question of how exactly declarative and 

procedural neural states differ. 

A prominent theoretical proposal of instruction processing puts forward a 3-step model 

of how the information contained in verbal instructions is transformed into action plans 

(Brass et al., 2017). First, the instruction content has to be encoded, building the 

representation of the declarative information and rules that specify the proper response 

(Hartstra, Waszak, & Brass, 2012; Sakai, 2008). Afterwards, a preparation stage takes 

place before response execution (Sakai, 2008), where the task set is assembled, and its 

proactive maintenance induces an adjustment of the features relevant to achieve the task 

(González-García et al., 2017; Muhle-Karbe et al., 2017; Ruge, Jamadar, Zimmermann, 

& Karayanidis, 2013). Finally, the task-set is executed and the action requested by the 

instruction is carried out (Stocco, Lebiere, O’Reilly, & Anderson, 2012). As mentioned 

before, proactive control not only biases perceptual and motor systems to enhance 

processing of upcoming stimuli and relevant responses, but it also organizes neural 

activity according to control-related variables, such as the need to integrate dimensions, 

or response complexity (Cole, Patrick, Meiran, & Braver, 2018; Palenciano, González-

García, Arco, & Ruz, 2019). However, whether the reported proactive organization in 

control-related areas underlies the procedural implementation that ultimately leads to 

execution, or alternatively, the declarative memorization of the novel task demands 

remains unknown. 

The aim of the current study was to test the extent to which proactive pattern organization 

in control-related regions is specific to the proceduralization of instruction content. To 

that end, we adapted an instruction-following fMRI paradigm (González-García et al., 

2017; Palenciano, González-García, Arco, Pessoa, et al., 2019; Palenciano, González-

García, Arco, & Ruz, 2019), in which novel verbal instructions had to be either 

implemented (proceduralized) or memorized (non-proceduralized). Across both 

conditions, the instructions were manipulated according to three variables related with 
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proactive preparation (integration of information dimensions, response complexity and 

target category). Using univariate and multivariate pattern analysis (MVPA; Haxby, 

Connolly, & Guntupalli, 2014) we aimed to explore the strength with which control-

related variables organize patterns of brain activity during both implementation and 

memorization demands (Bourguignon et al., 2018; Muhle-Karbe et al., 2017; Palenciano, 

González-García, Arco, Pessoa, et al., 2019). We expected, first, that the content of 

instructions affected activation patterns during task encoding in several areas in 

implementation and memorization conditions. Specifically, we predicted the engagement 

of the IFG when instructions required the integration of different stimulus dimensions, of 

premotor and motor areas with increased response complexity, and of visual areas when 

dealing with different target categories. Second, we hypothesized higher decoding 

accuracy of such variables in the implementation condition than in memorization. 

2. METHODS 

2.1. Participants 

Thirty-seven students from the University of Granada (Spain) took part in the study (29 

females, 8 males, mean age = 22.97, SD = 3.42). The participants were native Spanish 

speakers, right-handed and with normal or corrected-to-normal vision. They received 

economic compensation (20-35€, depending on performance) for their participation. 

They all signed a consent form approved by the Ethics Committee for Human Research 

of the University of Granada. Two participants were excluded due to excessive head 

movement (> 3mm) and other three due to low performance (< 75% of correct responses), 

resulting in a final sample of 32 participants. The sample size (n=32) was calculated a 

priori with the power analysis software PANGEA (Westfall, 2015), for a power of 0.8 

and an expected effect size of 0.3 (Cohen’s d) in a two-way behavioral interaction (see 

behavioral results).  

2.2. Stimuli, apparatus  

The stimuli consisted of 192 different verbal instructions (taken from Palenciano, 

González-García, Arco, Pessoa, et al., 2019). They all had the same “If …. then …” 

structure and were composed by two conditional statements and two responses (e. g.: “If 

there are two vegetables and one fruit, press A. If not, press L”). A and L corresponded 

to left- and right-hand fingers, respectively. Participants used their middle fingers for one 
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task (e.g., implementation) and the index fingers for other (e.g., memorization). The 

assignation of middle/index fingers to a specific task was counterbalanced across 

participants. All the instructions referred to different features of human faces or food 

items. The different face features were: gender (male, female), emotion (happy, sad), race 

(black, white), and size (large, small), whereas food features were: type (vegetable, fruit), 

color (green, yellow), shape (elongated, rounded) and size (large, small). Every face-

related instruction had a food-related instruction counterpart, which was achieved 

equating gender and food type, emotion and color, and skin color and shape across the 

two categories. Given that targets consisted of a grid of 8 stimuli (see below), instructions 

also specified the number of items from the grid that had to be taken into consideration 

to respond (one, two, or three). Critically, we manipulated the structure of the 

instructions, which differed in three key aspects: 1) Integration of stimuli dimensions 

(within or between dimensions), as instructions could refer to features related to the same 

(e. g.: “If there are two women and one man”; dimension = gender) or different 

dimensions (“If there are two women and one happy person”; dimensions = gender + 

emotion). 2) Response complexity, as responses required could be single (“press A. If 

not press L”) or sequential (“press AL. If not press LA”). 3) Target category, reflecting 

the fact that half of the instructions referred to faces and the other half referred to food. 

These three variables were manipulated in an orthogonal fashion (the level of one variable 

in an instruction was independent from the levels of the other two). Note that these three 

variables were fully crossed within each trial, at the same time in each instruction (e.g., 

“If there are two women and one happy person, press A. If not, press L. would be 

classified as pertaining to integration between dimensions, as having a single response 

and as pertaining to faces). Additionally, task demands were separated in two block types, 

implementation and memorization, similar to previous studies (e.g., Muhle-Karbe et 

al., 2017). In implementation blocks, each instruction could lead to two associated grids 

of target stimuli: one fulfilling the conditions and another one not. All grids consisted of 

combinations of 4 faces and 4 food items, drawn from a pool of 16 stimuli: 8 faces (4 

men, 4 women, 4 happy, 4 sad, 4 white, 4 black, extracted from the NimStim database; 

Tottenham et al., 2009) and 8 food items (4 vegetables, 4 fruits, 4 yellow, 4 green, 4 

elongated, 4 rounded; extracted from Palenciano, González-García, Arco, Pessoa, et al., 

2019). The 16 stimuli could appear in big or small size, generating a pool of 16 items per 

category (32 in total). All grids were generated with a specific combination of stimuli, 

each appearing only once during the whole experiment. 
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In memorization blocks, instructions had the same characteristics as in implementation, 

but targets contained another instruction instead of a grid of stimuli. This target 

instruction could be the same (50%) or different than the one encoded first. Different 

target instructions were created by exchanging either one of the stimulus features from 

the original one (e.g., “If there are two vegetables and one yellow food item” instead of 

“If there are two vegetables and one green food item”, where the feature color changed 

from yellow to green) or the response (e.g., “press A. If not press L” instead of “press 

LA. If not press AL”). In the target screen, the words “different” and “same” also appeared 

to the right and left of the instructions, indicating the keys to press. The response mapping 

of these keys changed across trials to prevent any potential response preparation before 

target onset, similar to preceding studies (Formica, González-García, Senoussi, & Brass, 

2021). In the scanner, the main task was organized in 12 blocks (6 implementation, 6 

memorization), each containing 16 trials (192 in total, 96 implementation and 96 

memorization trials). 

The task was presented through a screen connected to a computer running Matlab with 

the Psychophysics Toolbox (Brainard, 1997), with a set of mirrors mounted on the head 

coil, allowing the participants to see the screen. Responses were given through an MRI-

compatible response pad with middle and index fingers of both hands. 

The independent variables (IVs) of this study were 4. The first one was the task to execute 

(implementation vs. memorization). The other 3 IVs matched the instruction 

manipulations: Integration of Dimensions (within vs. between dimensions), Response 

complexity (single vs. sequential), and Stimuli Category (faces vs. food).  

2.3. Procedure 

The day before the scanning took place, participants attended a practice session where 

they were instructed about the tasks to be performed, and completed at least two blocks 

of each task type (implementation and memorization), with a different set of instructions 

(equivalent in parameters to the set used in the fMRI session). If accuracy in any of the 

two block types was lower than 85%, they had to repeat the tasks. They performed a 

maximum of 3 practice repetitions, and if they did not reach the desired accuracy level, 

they were not invited to the scanning session. In this case, they received payment for the 

time spent in the practice session (at an hourly rate of 5 Euros). Six participants were not 

able to reach the minimum accuracy required and therefore not further tested. 
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In the scanner, at the beginning of each block, a verbal cue indicated the task to be 

performed (implementation vs. memorization). All trials began with an instruction 

(encoding stage; 2.5 s; 25.75º), which needed to be later executed (implementation) or 

remembered (memorization). Then, a fixation point (0.5º) was presented during a jittered 

interval ranging from 4 to 7.5 s (steps of 500 ms, average of 5.75 s). This jitter was 

followed by a target grid (2.5 s; 21º) in implementation trials, and by another instruction 

(2.5 s; 28.5º) in memorization trials. The first and second instructions within each 

memorization trial also differed in font size and case (lower and uppercase for the first 

and second instruction, respectively). This manipulation sought to avoid that participants 

responded same or different based on perceptual invariance or physical changes between 

the two instructions. Participants used the middle fingers for one task (e.g., 

implementation) and the index fingers for other (e.g., memorization). The use of middle 

and index for one task or another (e.g., middle for implementation, index for 

memorization) was counterbalanced between subjects. In both implementation and 

memorization conditions, the trial ended with a jitter of the same characteristics as the 

previous one. In all cases, instructions were always new and were presented only once 

during the entire experiment. The sequence of events is depicted in Figure 1. 

 

Figure 1. Behavioral paradigm. 

Implementation and memorization blocks were presented in alternation, with order 

counterbalanced across participants. The other conditions were equally distributed in all 

blocks and appeared in random order within each block. Jitters were organized so their 
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distribution and the average duration were equated across blocks. Participants spent ~90 

minutes in the scanner, with the main task lasting ~75 minutes. 

2.4. fMRI acquisition, preprocessing and analysis 

Participants’ MRI data were acquired with a 3T Siemens Magneton Trio scanner located 

at the Mind, Brain, and Behavior Research Center (University of Granada, Spain). 

Functional images were collected using a T2*-weighed echo-planar imaging (EPI) 

sequence (TR = 2000 ms, TE = 24 ms, flip angle = 70°). Each volume consisted of 34 

slices, obtained in descending order, with 3.0 mm thickness (gap 20%, voxel size = 3 

mm3). For each participant, a total of 1740 volumes were obtained, in 12 runs of 145 

volumes each. Additionally, we acquired a structural image with a high-resolution 

anatomical T1-weighted sequence (192 slices of 1 mm, TR = 2500 ms, TE = 3.69 ms, flip 

angle = 7°, voxel size = 1 mm3). 

We used SPM12 to preprocess and analyze the data. The first 4 volumes of each run were 

discarded to allow stabilization of the signal. The remaining volumes were spatially 

realigned, unwarped and slice-time corrected. Then, the anatomical T1 was coregistered 

to the realigned functional images and segmented into different brain tissues. The 

deformation fields thus obtained were used to normalize the functional data to the MNI 

space (3 mm3 voxel size). Last, the images were smoothed using an 8 mm Gaussian 

kernel. Multivariate analyses at the individual level (see below) were conducted with non-

normalized and non-smoothed images, and results were then normalized and smoothed 

before whole-brain group level analysis. All analysis, uni- and multivariate, were done 

focusing on the encoding stage of the trial. This was done to avoid potential confounds 

from differences at the target stage in visual (grid of stimuli vs. instruction) and motor 

response levels (single or sequential responses vs. fixed single response) between the 

implementation and memorization conditions. 

2.4.1. Univariate analysis 

For the first level of analysis, a General Linear Model was estimated with separate 

regressors for all the combinations of conditions per run (16 in total, resulting from the 

crossing 2x2x2 of the IVs Integration of Dimensions, Response complexity, and Stimuli 

Category). We defined two events per trial: the instruction and grid, both modeled with 

their duration (2.5s) and convolved with the canonical hemodynamic response function. 
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Every regressor was modelled as a combination of the two trials of the same condition 

per run. Jitters were not modeled and contributed to the implicit baseline. Additionally, 

we included 6 motion parameters and errors (error trials were modelled with the full 

duration of instruction, grid and both jitters) as nuisance regressors. At the second level, 

we performed 2 separated contrasts (t-tests) at the individual level (implementation >/< 

memorization) with the instruction regressor. The individual maps of activation were then 

entered into a second-level (group) analysis. The rationale was to find the brain areas that 

showed increased activation during the encoding of instructions to be implemented vs. 

memorized, and vice versa. Additionally, we used those areas as ROIs for subsequent 

MVPA analysis to study whether they also showed differential strength of patterns related 

to the content of the instructions (see 2.4.3 MVPA: ROI-based decoding). We report the 

results surviving an FWE cluster-level correction of p < 0.05 for multiple comparisons 

(from an initial uncorrected threshold of p < 0.001). 

2.4.2. MVPA: Whole-brain cross-classification 

As we aimed to study how task demands impact the way instructed content is represented, 

we performed multivariate pattern cross-classification (Kaplan, Man, & Greening, 2015) 

between implementation and memorization to find the brain areas that showed similar 

patterns across these conditions. We used these results to obtain a set of ROIs using a 

Leave-One-Subject-Out (LOSO) approach, to avoid circularity (Esterman et al., 2010), 

complementing those resulting from the univariate analysis, to assess the effect of task 

on the patterns generated by the encoding of the instructions. Whereas with the univariate 

results we tried to find brain areas that diverged in activation levels between 

implementation and memorization, with the cross-classification analysis we aimed to find 

regions that coded for both tasks in a similar way. To perform this analysis, first, we ran 

another GLM with the same structure as the one used for univariate analyses but on non-

normalized and unsmoothed data. We estimated trial-wise BOLD responses using a 

Least-Square Separate approach (LSS; Arco, González-García, Díaz-Gutiérrez, Ramírez, 

& Ruz, 2018; Mumford, Davis, & Poldrack, 2014), to gain sensitivity and to reduce 

collinearity between regressors. After that, we performed a cross-classification analysis 

(Kaplan et al., 2015) between implementation and memorization encoding screens using 

a searchlight approach across the brain (sphere’s radius = 4 voxels). In this analysis, if a 

classifier algorithm trained with activation patterns of one task (e.g., implementation) is 

capable of performing successful classifications in another task (e.g., memorization), this 
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is interpreted as evidence of generalizability between tasks, that is, a common encoding 

neural code. For cross-classification, we trained three separated Support Vector 

Machines, one for each instruction variable (integration of stimuli dimensions, response 

complexity and target category), and used them separately to decode between the two 

levels of each variable (within vs. between dimensions, single vs. sequential responses, 

faces vs. food instruction). Crucially, the algorithm was trained (e.g., differentiating 

instructions referring to faces vs. food) in one task (e.g., implementation) and then tested 

in the other one (e.g., memorization). Then, the opposite scheme was performed. Note 

that having different fingers to respond to implementation and memorization could not 

confound or bias the results of this analysis, given that we always decoded classes (e.g., 

faces from food instructions) within each of the two tasks (implementation or 

memorization), and not across them. To cross-validate the classifiers’ performance we 

followed a leave-one-run out scheme, training the classifier in 5 of the 6 runs and testing 

it in the remaining one. This resulted in a 6-fold scheme, with data from each run used as 

the test set once. Then, we averaged the decoding accuracy maps across runs and across 

cross-classification directions and introduced them into a group-level one-sample t-test 

against chance (resulting in three group maps, one for each instruction variable).  The 

resulting areas after correction (thresholded maps at p<.001) were used as candidate ROIs 

(see 2.4.3 MVPA: ROI-based decoding) for the subsequent analysis. In the set of ROIs 

estimated through cross-classification not all the clusters obtained in the group analysis 

were observed across the LOSO iterations in all participants. Because this inconsistency 

could lead to unreliable or biased results, we excluded these regions from further analysis. 

Thus, we only included ROIs found in more than 25 participants (80% of the sample).   

2.4.3 MVPA: ROI-based decoding  

With the previous analyses (both univariate and multivariate), we obtained sets of ROIs 

to test whether the implementation and the memorization demands have an impact on the 

neural patterns generated by verbal instructions. The univariate results used to obtain the 

ROIs were group maps coming from activation differences between implementation and 

memorization. In the multivariate case, we used decoding accuracy maps coming from 

cross-classification between implementation and memorization. To select the ROIs for 

each participant, we followed a LOSO approach. Specifically, we performed group level 

t tests (implementation>memorization, memorization<implementation, and decoding 

accuracy regarding Integration of Dimensions, Response complexity, and Stimuli 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.03.08.434338doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434338
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Category), but excluding that specific participant’s data from the analysis to avoid 

circularity. The significant clusters of each LOSO iteration that matched the areas 

resulting at the group level were used as ROIs for that individual participant. These 

resulting ROIs were inverse normalized to the participants’ native space. Then, in each 

of these ROIs, we performed decoding analysis to classify between the two levels of each 

instruction variable (e.g.: faces vs. food instruction), separately for implementation and 

memorization trials. We followed this entire procedure five times, two for 

implementation>/<memorization and one for each instruction IVs. The result was one 

decoding accuracy value per participant, ROI and task (implementation and 

memorization). Last, we performed Wilcoxon signed-rank test for every ROI and task, to 

test if the classifier showed above chance accuracy, and Wilcoxon signed-rank test 

between tasks for every ROI to assess whether the classification accuracy differed 

between implementation and memorization. All ROI results were Bonferroni-corrected 

with an α threshold of p < .05/number of ROIs to control for multiple comparisons. 

3. RESULTS 

3.1. Behavioral results 

Accuracy and reaction times (RT) were analyzed separately with two four-factor 

repeated-measures ANOVAs: Task Type, Integration of Dimensions, Response 

Complexity and Target Category.  

Behavioral results provided initial evidence of the impact of task demands on the effect 

of instruction dimensions. This was reflected on the three interactions between the task 

and the rest of the variables in RT: task x integration (F1,31 = 36.231, p < 0.001, ηp
2 = 

0.539), task x response (F1,31 = 17.019, p < 0.001, ηp
2 = 0.354), and task x target (F1,31 = 

29.696, p < 0.001, ηp
2 = 0.489). We performed post-hoc tests to better characterize these 

interactions and found that the interaction task x integration revealed smaller differences 

between within- vs. between-dimensions in memorization (p = 0.004, all other ps < 

0.001). In task x response, the interaction was driven by smaller differences between 

single vs. sequential responses in implementation (p = 0.016, all other ps < 0.002). Last, 

the interaction task x target was caused by differences between all levels of the factors 

except between faces and food in memorization (p > 0.1, all other ps < 0.001). A summary 

of the rest of the behavioral main effects can be seen in Table 1 (excluded ANOVA terms 

were all non-significant, neither in accuracy nor RT). The remaining contrasts, not 
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primary to our hypotheses, are detailed in Table 1.  

 

Figure 2. Reaction times as a function of implementation and memorization demands in the three 

remaining instruction variables (Integration of dimension, response complexity and stimuli category). 

Error bars represent Standard Error of the Mean. 

Table 1. Main effects of variables on the behavioral results (* p < .05, ** p < .01, *** p < .001). 

 F p ηp
2 

Task (ACC) 57.203 <.001*** 0.649 

Task (RT) 491.199 <.001*** 0.941 

Integration of Dimensions (ACC) 16 .978 <.001*** 0.354 

Integration of Dimensions (RT) 101 .797 <.001*** 0.767 

Response Complexity (ACC) 9.520 .004** 0.235 

Response Complexity (RT) 0.435 .514 0.014 

Target Category (ACC) 14 .907 <.001*** 0.325 

Target Category (RT) 9.613 0.004** 0.237 

 

It is worth mentioning that responses to implementation were faster but less accurate that 

memorization responses, which could indicate a speed-accuracy trade-off. To rule out 

this option, we performed an additional analysis correlating the differences in accuracy 

and RT between implementation and memorization. This was to check if improvements 

in accuracy were consistently due to a speed response slowdown. The analysis yielded a 

negative non-significant correlation between both measures (r=-0.257, p=0.154, 

t=1.458), which argues against a trade-off explanation of the pattern of the data. 
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3.2. fMRI results 

3.2.1. Univariate  

First, we aimed to look at mean activation differences between implementation and 

memorization at the instruction encoding stage. The implementation of instructions 

(compared to their memorization) increased activation levels in the bilateral fusiform 

gyrus (left: [-33, -37, -31], k=224; right: [33, -37, -31], k = 190), postcentral gyrus 

incurring into supramarginal and Rolandic operculum (right: [48, -19, 17], k = 97; left: [-

54, -22, 14], k = 86), right SMA ([6, -4, 50], k=96), thalamus ([-3, -22, 11], k = 187) and 

right precentral gyrus ([36, -13, 62], k=186). The inverse contrast, 

memorization>implementation, only yielded one cluster of activation in the right angular 

gyrus ([24, -58, 44], k = 225). 

 

Figure 3. Graphic display of the results of the univariate analysis. Red represents the 

areas resulting for the implementation>memorization contrast, and blue for 

memorization>implementation. Color scales reflect peaks of significant t-values (p<.05, 

FWE corrected for multiple comparisons).  
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3.2.2. Multivariate results 

3.2.2.1. Cross-classification results 

As we aimed to explore how task demands impact the way instructed content is 

represented in neural patterns, we used cross-classification to find commonalities 

between those two tasks demands, regarding the three instruction remaining variables 

(Integration of Dimensions, Response Complexity and Target Category). All the results 

are the product of the two-way train and test scheme explained above (2.4.2. MVPA: 

Whole-brain cross-classification). The results of this analysis reveal areas that display 

common codes between the implementation and memorization of instructions. 

For the integration of dimensions, we trained the algorithm to differentiate among within-

dimension and between-dimensions instructions. This analysis revealed a generalizable 

decoding between tasks in the left middle temporal gyrus (MTG; [-57, -58, -7], k = 234). 

When using a less strict statistical threshold (p<0.001, uncorrected), this revealed a cluster 

of activation in the inferior frontal gyrus (IFG; [-57, 23, 17], k = 112).  

For response complexity, the algorithm classified between instructions with single or 

sequential responses, yielding significant results in one larger cluster spanning along the 

left premotor, motor and SMA, incurring in the left parietal lobe and to right premotor 

areas ([-45, -70, -1], k = 4594). Two smaller clusters were found in the left middle frontal 

gyrus (MFG [-27, 56, 23], k = 175), and the right supramarginal gyrus (SMG, [54, -28, 

38], k = 170). 

Last, for target category, we trained the algorithm to differentiate between instructions 

referring to faces and food, with above-chance accuracy results in the left inferior frontal 

gyrus (IFG; [-51, 32, 14], k = 1229), the left MTG ([-42, -43, -25], k = 2069), medial 

superior frontal gyrus (mSFG; [-6, 53, 32], k = 455), and the superior frontal gyrus, medial 

orbital part ([-3, 50, -22], k = 149).  
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Figure 4. Results of the cross-classification for each of the three models. Color scales 

reflect peaks of significant t-values (p<.05, FWE corrected for multiple comparisons). 

3.2.2.2.ROI-based MVPA results 

To investigate if there were differences in pattern organization in the areas that we 

identified, we compared the decoding accuracy for implementation and memorization. A 

significant difference in decoding accuracy would indicate a differential impact of task 

demands on the extent to which the instruction content impacts the observed patterns.  

We first used the set of 8 ROIs based on the univariate results (see above), 7 estimated 

with the contrast implementation>memorization, and 1 with the opposite, 

memorization>implementation. However, none of the 24 paired t-test (8 ROIs x 3 

models: integration, response and target) survived a multiple-comparisons correction (all 

ps > 0.1 after correction, only 3 ps < 0.05 before correction), indicating a lack of evidence 

of differential coding in areas with increased univariate activation in each condition. 

In contrast, we observed differential accuracy on the ROIs identified with the cross-

decoding approach (see Table 2). In all the cases where a t-test was significant, 

differences were due to a higher decoding accuracy in implementation compared to 

memorization of instructions (see Figure 4). 
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Table 2. Results of contrasting decoding accuracy between implementation and memorization 

on cross-classification LOSO-estimated ROIs. All p values are Bonferroni-corrected for 

multiple comparisons. *p<0.05. 

Model of estimation ROI z p 

Integration of dimensions Left MTG (dim) -0.551 0.709 

Response complexity Motor cortices, left MFG 2.347 0.028* 

Target category Left IFG 2.309 0.021* 

 Left MTG (cat) 2.739 0.009* 

 mSFG 0.514 0.304 

 

Figure 4. Decoding accuracy for each ROI for each task. Black dashed line represents 

chance accuracy and the asterisks represent significant p values for the paired t test 

between implementation and memorization tasks (* p < .05, ** p < .01, *** p < .001). 

Error bars indicate Standard Error of the Mean. 
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4. DISCUSSION 

In the present study we examined how task goals impact the neural patterns related to 

different complex instruction variables. We tested if the strength of neural coding for 

attributes related to proactive preparation was modulated by specific demands to 

implement or memorize the instructed content. Using univariate and multivariate analyses 

we assessed how different subsets of prefrontal and parietal areas are engaged by different 

task demands, as well as the influence of those tasks on the neural patterns referring to 

instruction content in those same areas. In addition, with cross-classification analysis we 

found evidence of brain regions that share a common coding across tasks. Critically, our 

results showed that, in regions involved in both conditions, the need to implement an 

instruction induced more decodable patterns of relevant variables compared to 

memorization trials. Taken together, the current results reveal a complex picture where a 

subset of specialized frontoparietal areas set and manage novel instruction content with a 

shared format for implementation and memorization demands, but with different coding 

strengths.  

Strong evidence towards the impact of task demands on instructed performance was 

already found at the behavioral level. Accuracy and RT scores revealed that executing an 

instruction is faster but less accurate than memorizing it. This effect could reflect a better 

preparatory state (faster) in terms of automatic task-set formation and intention-based 

reflexivity (Liefooghe, Wenke, & De Houwer, 2012) for the implementation task, 

whereas such preparatory reflexive responses might take place to a lesser extent in the 

memorization task. A compatible explanation could be that implementation allows to 

stablish precise task-sets, based on specific action plans to apply in the response grid, 

whereas in memorization, action plans are less specific and difficult to prepare in an 

anticipatory manner (for instance, given that response mappings changed on every trial). 

One could argue that our behavioral result could also be explained by a speed-accuracy 

trade-off between the two tasks, but we overruled this possibility with a complementary 

analysis showing that improved accuracy in memorization was not explained by the 

response slowdown. More importantly, our behavioral results evidenced that task 

demands modulated the effect of the three proactive-control related instructions 

manipulations. In line with our predictions, we found a larger effect of these variables on 

trials where the instructions were implemented. It is important to note that even if 

participants did not have to explicitly integrate characteristics pertaining to different 
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dimensions into one single representation, the task-set had to include those characteristics 

for participants to respond correctly to the instructions. The term integration hence refers 

not to an integration of different stimuli per se, but to the combined consideration of 

characteristics coming from different dimensions of stimuli in the service of the same 

task-set. Overall, the behavioral pattern of results suggests that the three variables 

manipulated across our instructions pool were behaviorally relevant for the instructions’ 

execution –to a greater extent than declarative maintenance-, which is also consistent with 

some of the results obtained from neuroimaging data.  

The univariate fMRI results showed a clear distinction between the implementation and 

memorization of a given instruction during the encoding stage, in line with previous 

studies addressing these two processes (Bourguignon et al., 2018; Muhle-Karbe et al., 

2017) and complex instruction following (González-García et al., 2017). Pre-activations 

during encoding of to-be-implemented instructions involved a set of different areas 

related to different dimensions of proactive preparation, such as stimulus category 

(fusiform gyrus), or response preparation (premotor and motor areas). The explanation to 

such preparation could be the greater necessity, compared to the memorization condition, 

to organize in an anticipated manner the task-set to carry out the action described by the 

instruction. These preactivations and pattern organization during implementation 

demands have been at least partially described in previous investigations (González-

García et al., 2017; Palenciano, González-García, Arco, Pessoa, et al., 2019). However, 

compared to previous investigations, our study offers new insight in this regard, given the 

direct comparison to memorization demands. As such, the activity found in the thalamus 

could reflect different processes, like a greater need for error-related control (Ide & Li, 

2011) in a more demanding task like implementation, or the intent to minimize mistakes 

while responding. It could also reflect a finer motor control in implementation, necessary 

for differential preparation for an upcoming single or a sequential response (Prevosto & 

Sommer, 2013), which would not be needed in memorization (in this case, the response 

required was always of single type). Another plausible explanation for the involvement 

of the thalamus during implementation could be the necessity of maintenance of the 

current task-set representations and integration between different information (motor, 

perceptual and abstract) present in different brain regions (Wolff & Vann, 2019), which 

would be less crucial for the memorization task.  

On the other hand, the increased activity found in the memorization condition was linked 
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to the angular gyrus. Previous research in the field of memory has shown the involvement 

of this region in declarative memory (Noonan, Jefferies, Visser, & Lambon Ralph, 2013; 

Seghier, 2013). In the case of instructions, it could indicate recollection of information in 

a declarative format (Liefooghe, De Houwer, & Wenke, 2013) a previous necessary step 

to construct a task-set, with this recollection being produced in both tasks but with the 

subsequent task-set construction being absent in memorization. The lack of an incoming 

task-set formation would make the recollection the final step in the memorization 

encoding process, yielding the observed differences when compared with a full task-set 

formation process in implementation. In turn, the decreased activity in the angular gyrus 

during implementation could be explained by smaller relevance of the declarative format 

in implementation, which is consistent with recent neuroimaging studies (González-

García et al., 2021). The angular gyrus has also been related to semantic processing and 

verbal working memory (Seghier, 2013), and, interestingly, it has been specifically linked 

to retrieval of rule-based schemas and their constituting components (Wagner et al., 

2015). Tentatively, our results could reflect a complex instruction building from its 

simpler constituents in a prior state to execution, prior to the task-set formation, which is 

in line with previous studies of rule compositionality (Reverberi, Görgen, & Haynes, 

2012) and co-activation of simpler rules to perform a complex one (Deraeve, Vassena, & 

Alexander, 2019). 

To identify regions with generalizable neural codes between implementation and 

memorization conditions, we performed cross-classification analysis. We found above 

chance pattern decodability under implementation and memorization contexts in a broad 

extension of frontoparietal regions. In general terms, when cross-classification is 

successfully performed between tasks or cognitive contexts this suggests that the resulting 

areas share a common information code, reflected in neural patterns (Kaplan et al., 2015). 

To ensure avoiding a potential bias driven by response differences between 

implementation and memorization (given that participants used different fingers for each 

one), we discarded the use of an MVPA approach to identify regions with differential 

activity patterns for the two task demands, and employed cross-classification analysis 

instead. We also chose to only use cross-classification given that implementation and 

memorization demands could lead to differential information encoding in neural patterns 

due to the proceduralization of the instructed content in the implementation condition 

(Muhle-Karbe et al., 2017), which would give an overrepresentation of regions in one 
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condition above the other. 

When concurrent deployment of prefrontal and parietal areas is found during task-set or 

rule representation, we refer to the implication of the Multiple-Demand Network (MDN; 

Duncan, 2010), broadly related to task-set implementation (Dosenbach et al., 2006) and 

found in tasks where different rules, stimuli and responses must be represented (Woolgar, 

Jackson, & Duncan, 2016). Our data provide evidence for the existence of a common 

code between implementation and memorization of instructions in the MDN, which may 

seem incompatible with previous research (Bourguignon et al., 2018; Demanet et al., 

2016). However, we argue that these results are not contradictory but complementary to 

ours. Overall, our results suggest that both processes share a common code, but also that 

the coding strength in both situations was sufficiently different to tell them apart. Similar 

pattern commonalities in brain areas between in implementation and memorization have 

been also described in previous studies, revealing a certain degree of similarity in 

frontoparietal activity in implementation and memorization conditions (Muhle-Karbe et 

al., 2017). One central aspect in the instruction-following literature is the transformation 

of the declarative information carried in the instruction into a proceduralized action task-

set (Demanet et al., 2016; Hartstra, Kühn, Verguts, & Brass, 2011; Muhle-Karbe et al., 

2017), which could lead to expect low cross-classification between implementation and 

memorization. Nonetheless, this transformation is thought to primarily take place in the 

so-called preparation stage (Brass et al., 2017; Liefooghe et al., 2013). Because our 

window of analysis focused on the preceding instruction encoding stage to avoid 

decoding confounds due to perceptual stimulation between conditions (see below for 

further discussion), it is reasonable to think that this information transformation is milder 

and both codes are more similar than if we had focused the analysis during this 

preparation stage. However, this approach allowed us to define ROI to test that coding 

difference avoiding undesired confounds. 

One of our hypotheses, based on a previous study (Palenciano, González-García, Arco, 

Pessoa, et al., 2019), predicted neural patterns decodability in the IFG when integration 

of information coming from the same or between different dimensions is needed. 

Contrary to our expectations, this hypothesis was not supported when using a strict 

statistical correction (nonetheless, it is worth mentioning that this pattern was noticeable 

in group results with a lesser strict statistical threshold). Moreover, we found differences 

in pattern strength coding in the MTG, when people integrated information about the 
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same or different information dimensions. Interestingly, prior studies focusing on 

retrieval control of semantic content had described a relationship between the left IFG 

and the MTG where both areas work coordinately in semantic demanding tasks (Davey 

et al., 2016). In our case, this could in fact reflect a controlled retrieval of semantic 

information and its integration to correctly perform the action specified by the instruction. 

It could also be the case that the absence of the IFG in information integration could be 

partially driven by having dimensions and categories that may have not generated enough 

separation between classes to require the involvement of this region in the integration of 

their characteristics. Unfortunately, given that the result of the IFG activation did not 

survive statistical correction, the results from such analysis should therefore be treated 

with caution.  

The variable of response complexity, on the other hand, could be decoded from pre/post 

central gyrus, SMA, and left MFG, including a noticeable part of the IFG. This result is 

relevant due the fact that the IFG, in association with motor and premotor regions, has 

been shown to support actions sequences (Koechlin & Jubault, 2006; Van Opstal, Fias, 

Peigneux, & Verguts, 2009). Our manipulation of response complexity also involves 

sequentiality, as a complex response is sequential by definition. Such sequentiality could 

be a potential source for this pattern decodability in the IFG. Future studies could 

introduce a manipulation to separate complexity from sequentiality and thus tease apart 

their specific effects in the preparatory patterns generated by complex verbal instructions. 

Finally, the ROI analyses complemented the aforementioned ones, to search if, even if 

implementation and memorization share a common code in some regions, there are 

differences in the strength of the coding between conditions. These results yielded a 

complex picture where implementation and memorization demands had differential 

coding strength in those regions where different instruction content (information 

integration, response complexity and stimuli category) is processed. Of the five ROIs 

tested, we found statistical differences in three of them. This pattern of results partially 

supports the hypothesis that the need to implement an instruction influences the neural 

representation of that instruction. One possible explanation for this pattern of results is 

the difference in nature between implemented (proceduralized) and memorized (non-

proceduralized) instructions. The transformation of the information into a task-set in 

implementation could lead to clearly distinguishable representations in this condition, 

while in memorization, the semantic format would lead to less distinct representations, 
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which would be more difficult to differentiate. More subtle differences in memorization 

would need more statistical power to be detected, and it could be that the statistical power 

achieved in our design was enough to detect the larger effects in implementation but 

insufficient for the smaller ones in the memorization condition. Nonetheless, with our 

results we can conclude that both instruction-following and memorization depend on a 

broad set of frontoparietal regions corresponding to the MDN, and both share an early 

common information code but with meaningful differences in their neural patterns.  

It is worth noting that in this study, both univariate and multivariate analysis were 

performed at the encoding stage, while participants read the instruction, thus, minimizing 

possible confounds yielded by differences during the response stage.  This could be one 

key point in explaining some of the observed differences with prior studies characterizing 

the procedural (implementation) and declarative (memorization) processing of 

instructions. Most of these studies focused on the preparation stage, right after instruction 

coding and before the motor response (Bourguignon et al., 2018; González-García et al., 

2017; Muhle-Karbe et al., 2017), given that differences between both tasks are expected 

to be maximum in this stage (Liefooghe et al., 2013). Our paradigm, however, did not 

allow to explore this preparation stage, because of the major differences in visual 

stimulation at the target stage, which probably encouraged different preparation 

strategies. Nonetheless, it would be interesting to explore this possibility in a follow-up 

study, with a paradigm optimized to extrapolate our findings to such preparation stage.  

In sum, the present work examined the extent to which implementing and memorizing 

novel instructions share brain areas and how these two task goals influence the neural 

patterns referring to novel instructions. We show for the first time how these two 

processes can have differential impact on the neural representation of the instruction 

content in a broad set of frontoparietal areas. We also demonstrate that, during the 

encoding of novel instructions, these areas share to certain extant a common code between 

the two tasks. Moreover, we show how flexible coding organizes brain activity based on 

different relevant instruction dimensions, and how this organization might be encoded to 

a greater extent during implementation demands. Altogether, these findings help to 

further clarify the neural mechanisms underlying instruction processing and represents a 

step forward to better characterize the implementation process. 
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