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Abstract:  

One model for how cells integrate cis-regulatory information is that different classes of core 

promoters respond specifically to certain genomic environments. We tested this model using a 15 

genome-integrated massively parallel reporter assay (MPRA) to measure the activity of hundreds 

of diverse core promoters at four genomic locations and, in a complementary experiment, six 

core promoters at thousands of genomic locations. While genomic locations had large effects on 

expression, the relative strengths of core promoters were preserved across locations regardless of 

promoter class, suggesting that their intrinsic activities are scaled by diverse genomic 20 

environments. The extent of scaling depends on the genomic location and the strength of the core 

promoter, but not on its class. Our results support a modular genome in which genomic 

environments scale the activities of core promoters.  

One Sentence Summary:  

Genomic environments have consistent effects on gene expression that depend on the 25 

strength, but not the class of core promoter. 
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Main Text:  

Cells carry out complex programs of gene expression by integrating information stored in 

locally acting cis-regulatory sequences (CRSs) and the genomic environment. We define the 30 

genomic environment as the distal enhancers in 3D space and the chromatin landscape at a 

genomic location. These properties influence a gene’s local CRSs, which can be separated into 

two categories, the core promoter and its proximal regulatory sequences (Fig. 1A). The core 

promoter is the ~100bp region around the transcription start site which is responsible for 

accurately positioning RNA polymerase II and binding general transcription factors (TFs) (1, 2). 35 

The adjacent regulatory elements, sometimes called proximal promoters or proximal enhancers 

(2, 3), bind to TFs and modulate core promoter activity. How the cell integrates information from 

a gene’s core promoter and its larger genomic environment is crucial to understanding how cell-

type specific regulatory programs are achieved.  

 40 

One model for how the cell integrates core promoter and genomic information is through 

the ‘promoter compatibility’ hypothesis. In this model, core promoters with different sequence 

elements respond specifically to distinct genomic environments containing different enhancers 

and chromatin features (4–23). Alternatively, core promoters and genomic environments could 

contribute independently to gene expression, and specificity is achieved via other mechanisms 45 

(24–28). A strong prediction of the promoter compatibility hypothesis is that the relative 

strengths of core promoters will change at different genomic locations because the distal 

enhancers and chromatin environments at different locations will be compatible with different 

types of core promoters. Here, we tested the promoter compatibility hypothesis by assaying 

hundreds of core promoters at four different genomic locations and by assaying six core 50 

promoters across ~1000 genomic locations.  
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Results 

Measurement of diverse core promoter activities at different genomic locations 

We created a library of reporter genes driven by diverse core promoters. The library 

contains 676 core promoters spanning a variety of promoter features from Haberle et al. (20), 55 

including TATA, DPE and TCT motifs, CpG islands and housekeeping (hk) and developmental 

(dev) promoters (Table S1, Data S1). To provide redundancy in the measurements, we included 

ten copies of each individual core promoter in the library, each with a unique barcode (promoter 

BC; pBC) in the 3’ UTR. Because basal expression of the core promoters was expected to be 

weak, we included a common proximal enhancer directly upstream of the core promoters to 60 

boost expression (Methods).  

 

Using patchMPRA (parallel targeting of chromosome positions by MPRA), we measured 

the expression of the core promoter library in parallel at four genomic locations previously 

shown to have diverse expression levels and chromatin marks in K562 cell lines (Fig. S1 and 65 

Table S2) (29). Each cell line contains a single ‘landing pad’ at a different genomic location. 

Each landing pad has a unique genomic barcode (gBC) indicating its location in the genome and 

a pair of asymmetric Lox sites to facilitate site-specific recombination of the library. We pooled 

the four landing pad lines and integrated the library into the cells by cotransfection with CRE 

recombinase (29). When a library member recombines into a landing pad it produces a transcript 70 

with two unique barcodes in its 3’ UTR; a pBC specifying the core promoter and a gBC 

indicating its genomic location. By tabulating the pBC-gBC pairs in the mRNAs from the pool 

we obtained expression measurements for every core promoter at each genomic location in 

parallel (Fig. 1B). 

 75 
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We obtained reliable measurements of every core promoter at all four genomic locations. 

We recovered 70-80% of all promoter barcodes and 99% of all promoters at all landing pads 

(Figs. S2A-B). Biological replicates showed high reproducibility (average Pearson’s r = 0.87) 

(Figs. 1C and S2C) and the locations of the landing pad had large effects on library expression 

that were consistent with previous studies (compare Fig.1D to Fig. S3; (29) indicating that the 80 

genomic environment is not drastically altered by a diverse core promoter library. The data 

allowed us to compare the effects of the four genomic environments on the different classes of 

core promoters. 

 

The effects of genomic locations on core promoters 85 

The promoter compatibility hypothesis predicts that different classes of promoters will 

respond to the same genomic environment differently. In contrast to this prediction, the genomic 

effect was similar on all promoter classes: more permissive genomic locations boosted the 

expression of all promoter classes regardless of their motif composition or their hk or dev 

designation (Fig. 2A and Fig. S4A). However, the magnitude of the genomic effect is not the 90 

same for all promoter classes. We focused on the hk/dev classification of promoters because 

there is the most evidence for separation of function of these two classes (6, 12) and because 

there are sufficient numbers of promoters in each class for further analysis. We performed 

ANOVA to quantify the contribution of the genomic location and core promoters to gene 

expression and found that the genomic location has a larger effect on dev promoters than hk 95 

promoters (Fig. 2B). For hk promoters, genomic location and core promoters contribute ~25% 

and ~65% respectively. In contrast, for dev promoters, genomic location contributes ~55% while 

core promoters contribute only ~36%. This result suggests that genomic location has a larger 

effect on dev promoters than hk promoters. 
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 100 

We further examined whether hk and dev core promoter activities are scaled by different 

genomic environments. We define scaling as the degree to which core promoter activities 

correlate between genomic locations. High correlations between genomic locations indicate that 

the rank order of core promoter activities is preserved across genomic locations. While promoter 

activities were highly correlated between genomic locations regardless of the class of promoter 105 

(Pearson’s r = 0.74 - 0.9, Spearman's ρ = 0.72 - 0.88) (Fig. 2C), dev promoters were consistently 

less correlated than hk promoters (Fig. 2D). We further divided the promoters into smaller 

subclasses containing different motifs and/or CpG island classifications and showed that even 

within the hk or dev classes, each subclass had substantial differences in correlations between 

genomic locations (Fig. S4B). Taken together these results suggest that genomic environments 110 

scale the activities of all core promoters, but that the quantitative extent of scaling can differ 

between promoter classes. 

 

Intrinsic promoter strength explains differences between promoter classes 

A striking difference between hk and dev promoters in our library is that they have different 115 

mean levels of expression—hk promoters are consistently stronger than dev promoters at all 

genomic locations (Fig. 2A and S5A). Thus, we tested if the different effects of genomic 

environments on hk and dev promoters was due to their differences in strength. We divided all 

core promoters into strong or weak bins based on their strengths and sampled equal numbers of 

hk and dev promoters within each bin to avoid confounding the results by hk/dev class. Plotting 120 

the effect of genomic position on strong and weak promoters showed that the direction of the 

effect was the same, but that there were larger differences between genomic locations for weak 

promoters (Fig. 3A). We quantified the contributions of genomic locations and promoters within 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.08.434469doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434469
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

7 

 

strong and weak bins respectively and found that the genomic environment has a larger impact 

on weak promoters compared to strong promoters (Fig. 3B). For strong promoters, genomic 125 

environments and core promoters contribute almost equally to gene expression (~42% and ~46% 

respectively), but for weak promoters, genomic environments contribute ~73%, while core 

promoters contribute only ~15%. Weak promoters are also consistently less correlated than 

strong promoters (Fig. 3C). This analysis suggests that the difference between hk and dev in Fig. 

2B is due to their differences in strength. Finally, we sampled a set of hk and dev promoters with 130 

similar average strengths (Fig. S5B) and compared their correlations across genomic locations. 

Using only this subset of promoters, correlations across genomic locations are comparable 

between hk and dev promoters (Fig. S5C). The differences in how genomic locations scale the 

activities of each core promoter subclass is also largely explained by the average strength of each 

promoter class (Fig. S5D). These data show that the observed differences between different 135 

promoter classes is a consequence of promoter strength, rather than a feature of the hk/dev 

distinction.  

 

Given the importance of the interaction between promoter strength and genomic location, 

we next asked if core promoter strengths, as measured in the genome, reflect the promoters’ 140 

intrinsic activities. If this is true, then the measurements in the genome should correlate with 

measurements on plasmids, assuming that plasmids represent a neutral environment that reflect 

the intrinsic activities of core promoters. Thus, we performed an episomal MPRA on the core 

promoter library in K562 cells. The plasmid measurements are well-correlated with expression at 

each genomic location (r2 = 0.59-0.76; Figs. 3D and S6A), indicating that the relative intrinsic 145 

activities of core promoters are preserved when integrated into the genome. Promoter activity on 

plasmids is also a good predictor of activity in the genome (adjusted r2 = 0.78; Fig. S6B). These 
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results demonstrate that genomic locations scale the intrinsic activities of strong and weak 

promoters to different extents, suggesting that the main role of diverse core promoter motifs is to 

set the intrinsic strength of the promoter rather than direct specific interactions with the genomic 150 

environment.   

 

Core promoter scaling is a genome-wide phenomenon 

We next asked if the scaling of core promoters we observed at the four genomic locations 

holds at diverse locations across the genome. We selected six core promoters (three hk and three 155 

dev) spanning a range of expression levels and motifs within each class (Table S3). We then 

measured their activities across the genome using the TRIP (Thousands of Reporters Integrated 

in Parallel) assay (Fig. S7A, 30). Each core promoter was fused to a unique barcode (pBC) in its 

3’UTR and cloned upstream of a reporter gene into a PiggyBac transposon vector for random 

delivery into the genome. TRIP libraries were generated by incorporating >105 random barcodes 160 

(tBCs) onto each core promoter reporter plasmid. After transposition, every genomic integration 

generates an mRNA with a pBC and tBC specifying the identity of the core promoter and its 

location in the genome respectively. This double barcoding strategy allowed us to pool promoter 

libraries into a single TRIP experiment in K562 cells. The replicates were highly correlated 

(Pearson’s r2 = 0.96, Fig. S7B). In total, we mapped 41,083 unique integrations in the genome, 165 

ranging between 6078-7418 integrations per promoter (Table S3, Data S2). 

Genomic positions have large effects on core promoter activities, with expression ranging 

more than 1000-fold for the same promoter across genomic locations (Fig. 4A). However, even 

with these large effects of genomic location, the rank order of promoter strengths is preserved 

across locations and correlates with mean expression in the landing pads (Figs. 4B and S7C), 170 

which suggests that the effect of different genomic locations is to scale intrinsic promoter 
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activities. To compare different promoters in the same genomic environment, we identified 1278 

genomic regions in which at least 4 of the 6 promoters had integrated <5kb from each other (in 

separate cells) (Data S3). These genomic regions are located across the entire genome and span 

diverse chromHMM annotations (31, 32) (Figs. S8A-B). Across these locations, expression 175 

consistently increases from the weakest (dev2) to strongest (hk1) promoter (Figs. 4C-D), 

showing that the relative strengths of core promoters are preserved across >1000 genomic 

locations with 1000-fold differences in expression. The expression of the promoters in each 

region also correlates well with expression in the landing pads, with >60% of locations having r 

> 0.7 (Fig. S8C), and a linear model assuming independent effects of genomic region and 180 

promoter explains ~54% of the variance in the data (Fig. S8D). Thus, measurements of 

integrated promoters across diverse genomic positions demonstrates that core promoter scaling is 

a genome-wide phenomenon. 

 

Non-linear scaling of core promoters by genomic environments  185 

We next explored the relationship between core promoter strength and genomic 

environments in the TRIP data. We ranked the TRIP genomic regions based on mean promoter 

expression and plotted the expression of the promoters (Fig. 5A). As expected, all six core 

promoters increase expression as genomic environments become more permissive. However, the 

rates at which their expression changes are different for strong and weak promoters. In less 190 

permissive regions, strong promoters increase rapidly, but then level off in more permissive 

regions. In contrast, weak promoters increase slowly in less permissive regions and then sharply 

in more permissive regions. To ensure that hk1 expression in activating regions is not saturated 

due to the dynamic range limits of TRIP, we tested hk1 with an upstream enhancer and it was 
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expressed at still higher levels (Fig. S8E). Thus, promoters with different strengths do not 195 

respond to differences in genomic environments in the same way.  

 

Interestingly, the curves in Fig. 5A separate by the intrinsic strength of the core promoters 

and not by their hk or dev identity. To emphasize this point we calculated the correlations 

between the curves of each promoter and show that the promoters cluster based on their intrinsic 200 

strengths, with the stronger promoters (dev1 and hk1) in one cluster and the others in another 

(Fig. S9A). Integrations within 5kb of endogenous hk or dev promoters in K562 also showed no 

preference for hk or dev promoters respectively (Fig. S9B). This result again highlights that a 

promoter’s strength, not class, determines its interaction with genomic environments. 

 205 

The differences in the way core promoters respond to genomic environments in Fig. 5A also 

demonstrate that genomic environments do not scale promoter activities linearly. Although the 

rank order of core promoters is preserved across the genome, the fold change between strong and 

weak core promoters is different in different parts of the genome (Fig. 5A). To quantify the 

effects of different genomic environments, we identified three clusters of TRIP genomic regions 210 

that appear to have different levels of activity (Fig. 5B). While the clusters are defined by their 

average differences in core promoter expression, the extent of scaling is also different in each 

cluster (Fig. 5C). This difference in scaling is due to differences in the contributions of genomic 

location and promoter effects in the three clusters. In regions of the genome with low activity, 

genomic location contributes ~23% to gene expression while core promoters contribute only 215 

~12%. In the cluster with high activity, genomic location also contributes about ~24%, but core 

promoters contribute ~31%, suggesting that differences in expression at these locations depend 

more on core promoter strength. In the cluster with medium activity, the core promoter 
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contribution is much larger, explaining ~64% of the variance compared to ~16% by genomic 

location (Fig. 5D). Thus, the strength of the genomic environment determines how much it will 220 

contribute to gene expression, resulting in non-linear scaling of promoter activities across the 

genome. 

 

Genomic environments with different strengths have different chromatin states and sequence 

features 225 

Finally, we asked what features of each cluster distinguish them from each other by 

overlapping our genomic regions with existing epigenomic datasets and sequence features. 

Previous studies have shown that reporter genes integrated into the genome tend to take on the 

chromatin state of the integration site (33, 34). In general, cluster activity is correlated with 

chromatin marks associated with active transcription (H3K27ac, H3K4me3) and transcriptional 230 

activity (PolII binding, CAGE-seq) (Figs. 6A-C, S10A), while accessible chromatin (ATAC) and 

CpG methylation do not separate the clusters (Figs. S10B-C). This suggests that the three 

clusters are mainly distinguished by their level of transcriptional activity. We also used sequence 

features to classify the clusters using gapped k-mer SVMs comparing two clusters at a time (35, 

36). The SVMs performed well, with five-fold cross-validated AUCs ranging from 0.8 to 0.9 235 

(Figs. 6D-F and S11A-C). Scrambling the cluster annotations led to essentially random 

predictions by the SVM (Figs. S11D-E). To further validate the model, we used the trained SVM 

to predict the cluster type of other TRIP integrations that were not in the 5kb region analysis. As 

expected, clusters that were predicted to be more active also showed higher expression (Fig. 

S11F). To identify the motifs that separate the clusters, we performed de novo motif enrichment 240 

and identified CG-rich sequences in the more active clusters (Fig. S11G). Similarly, the CG 

content of each sequence increases from low to high activity clusters on average (Fig. 6G). Motif 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.08.434469doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434469
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

12 

 

enrichment using known TF position weight matrices did not identify any obvious enriched TF 

motifs, suggesting that the clusters are not defined by any single TF. However, when we scanned 

each sequence for known TF motifs, we find that sequences in more active clusters have more 245 

TF motifs than less active clusters on average (Fig. 6H). This result suggests that the differences 

between clusters is partially explained by the number of TFs binding in each cluster.    

 

Discussion 

We present a framework for dissecting the contributions of core promoters and genomic 250 

locations to gene expression. Using this framework we found that the intrinsic activities of core 

promoters are preserved across diverse genomic locations, and are consistent with their activities 

on plasmids. Contrary to the promoter compatibility hypothesis, hk and dev promoters scale 

similarly across genomic locations when normalized for differences in strength. These results 

suggest a general lack of specificity between core promoters and their genomic environments. 255 

While promoter compatibility has been observed for specific promoter-genomic environment 

pairs (4–8), our results suggest that such interactions are relatively rare or have smaller effects 

than the effects of genomic scaling. In this model sequence-specific or protein-specific 

interactions between core promoters and genomic environments contribute less to gene 

expression than the independent effects of core promoters and genomic environments. This 260 

model suggests a modular genome compatible with the evolution of gene expression by genome 

rearrangements (37, 38). In a modular genome, core promoters will function in new genomic 

locations without having to evolve the machinery for a new set of specific interactions at each 

location.  

 265 
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Although core promoters are scaled across the genome, scaling is not a simple linear 

combination of genomic position effects and promoter effects (29). Instead, the scaling factors of 

strong and weak promoters change in different genomic environments (Fig. 5E). These data 

suggest that different core promoter sequence features set the strength of the promoter, which in 

turn determines how it interacts with the genomic environment. Our data is also consistent with 270 

recent simulations showing how promoters starting from different states can have different 

responses to increasing enhancer contact frequency (39). In the future, this relationship will 

allow us to predict gene expression by measuring core promoter strength and genomic 

environment activity independently.  

 275 
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Fig. 1. 455 

Measurements of core promoter library at four genomic locations by patchMPRA. (A) 

Schematic of gene regulation by the core promoter, adjacent cis-regulatory sequences and the 

genomic environment. (B) Schematic of patchMPRA method (see Methods for details). BFP: 

blue fluorescent protein; TK: thymidine kinase; gBC: genomic barcode; pBC: promoter barcode. 

(C) Reproducibility of core promoter measurements from independent patchMPRA 460 

transfections. (D) The expression of all core promoters in the library at each genomic location. 
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Fig. 2.  

Effects of genomic locations on core promoter activity. (A) Expression of hk and dev core 465 

promoters at each genomic location. (B) Amount of variance explained by core promoter and 

genomic location respectively using linear models fit on hk and dev promoters separately. (C) 

Pairwise correlations (Pearson's r) of core promoter activity between the different genomic 

locations. (D) All pairwise correlations (Pearson's r) between genomic locations for hk and dev 

core promoters. 470 
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Fig. 3. 

Intrinsic promoter strength explains differences between promoter classes. (A) The effect of 

genomic location on the expression of weak and strong core promoters. (B) Amount of variance 475 

explained by core promoters and genomic locations respectively using linear models fit on weak 

and strong promoters separately. (C) All pairwise correlations (Pearson's r) between genomic 

locations for weak and strong core promoters. (D) Correlation (Pearson's r) between promoter 

activity measured on plasmids and promoter activity at loc2. 

  480 
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Fig. 4. 

Core promoter scaling is a genome-wide phenomenon. (A) Expression of each core promoter 

across all mapped genomic locations sorted by increasing means measured by TRIP. Blue-green 

denotes hk promoters and pink denotes dev promoters. (B) Correlation (Pearson's r) between 485 

mean expression of each core promoter genome-wide (measured by TRIP) and loc1. The shaded 

region around the fitted line represents the 95% confidence interval. (C) Mean expression of 

each core promoter from four genomic locations as measured by patchMPRA. Error bars 

represent the SEM. (D) Heatmap of expression of each core promoter (column) at each genomic 

region (row) that has ≥4 different integrated promoters. White boxes represent NA values. 490 
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Fig. 5.  

Non-linear scaling of core promoters by genomic environments. (A) Genomic regions 

defined by TRIP were sorted by the mean expression of the promoters in each region. The 

shaded region around the fitted line represents the 95% confidence interval. (B) Heatmap in Fig. 495 

4D split into 3 clusters by k-means clustering. Clusters were assigned different activity levels 

based on the overall expression in the cluster. (C) Expression of core promoters in each genomic 

cluster. (D) Amount of variance explained by core promoters and genomic locations respectively 
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using linear models fit on each genomic cluster respectively. (E) Summary model of the 

relationship between core promoter strength and genomic environment activity. 500 
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Fig. 6: Genomic clusters have different chromatin states and sequence features. (A, B, C) 

Metaplots of H3K27ac, H3K4me3 and PolII levels respectively in each genomic cluster. The 

start and end marks the boundaries of each genomic region, which are determined by the first 505 

and last integration in the region. The x-axis extends +/- 5kb around each genomic region. (D, E, 

F) Performance of gkmSVM used to classify sequences from different genomic clusters. 
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Receiver-operating characteristics (ROC) curves were generated using five-fold cross-validation. 

(G) The GC fraction of each genomic region was calculated and plotted for each cluster. (H) 

Number of TF binding sites in each genomic region was calculated and plotted for each cluster. p 510 

values were calculated by Student's t-tests. 
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Materials and Methods 

Library design 

We obtained a set of 6916 core promoter sequences from Haberle et al. (20) and selected 672 515 

sequences for our library. Each promoter is 133bp long and centered on the major transcription 

start site (TSS). We selected the sequences to contain diverse core promoter types and expression 

patterns (description in Table S1, sequences in Data S1) using the designations obtained from 

Haberle et al.. We also included the super core promoter (SCP1), as well as versions of SCP1 

with TATA and DPE single and double mutants (40).  520 

 

patchMPRA library cloning  

The core promoter library was synthesized by Agilent technologies through a limited licensing 

agreement as 200bp oligonucleotides including flanking sequences for cloning. Each element in 

the library contained 10 barcodes for redundancy, leading to a total of 6760 oligonucleotides. We 525 

selected a plasmid with a single strong CRS from the pGL transfer library of our previous 

patchMPRA experiment (29) and replaced the hsp68-dsRed construct with the synthesised 

promoter library including its corresponding BCs. We then inserted an mScarlet reporter gene 

between the promoter and barcodes.  

 530 

patchMPRA 

We replaced the HygTK-GFP cassette in the original landing pad cell lines from Maricque et al. 

(29) with a reporter expressing both TK (thymidine kinase) and BFP. The new cassette contains 

a functional TK gene, allowing for negative selection of cells that do not have a library member 

integrated.  535 
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K562 cells were maintained in Iscove's Modified Dulbecco′s Medium (IMDM) + 10% FBS + 

1% non-essential amino acids + 1% penicillin/streptomycin. To integrate the library into the 

genome, we co-transfected the library and CRE recombinase (pBS185 CMV-Cre, Addgene 

11916) into 4 K562 ‘landing pad’ cell lines expressing the thymidine kinase (TK) gene (landing 540 

pad details in Table S2). For each replicate, we transfected 32μg library with 32μg CRE 

recombinase into 9.6 million total cells using the Neon Transfection System (Life Technologies). 

We performed 3 separate transfections representing 3 biological replicates. After 3 days, we 

treated the cells with 2mM ganciclovir to kill the cells that did not successfully integrate a library 

element. Cells were treated every day for 4 days. We then selected for live cells using the MACS 545 

Dead Cell Removal Kit (Miltenyi Biotech) and the cells were allowed to grow until there were 

sufficient cells for DNA/RNA extractions (about 10 million cells).  

 

DNA and RNA was harvested from the cells using the TRIzol reagent (Life Technologies). The 

RNA was treated with two rounds of DNase using the Rigorous DNase treatment procedure in 550 

the Turbo DNase protocol (Ambion), and cDNA was synthesised with oligo-dT primers using 

the SuperScript IV First Strand Synthesis System (Invitrogen). The barcodes were then amplified 

from the cDNA and genomic DNA (gDNA) using the Q5 High Fidelity 2X Master Mix (New 

England Biolabs) with primers specific to our reporter gene (CPL1-2; Table S4). We performed 

32 PCRs per cDNA biological replicate and 48 PCRs per gDNA biological replicate, then pooled 555 

the PCRs of each replicate for PCR purification. 4ng from each replicate was then further 

amplified with 2 rounds of PCR to add Illumina sequencing adapters (CPL3-6; Table S4). 

Barcodes were sequenced on the Illumina NextSeq platform.  

 

 560 
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Episomal MPRA 

We replaced the mScarlet reporter in the patchMPRA library with a tdTomato reporter gene 

between the promoter and pBC. To ensure that the 3’UTR from the episomal library matches that 

of the patchMPRA, we further subcloned the library into the landing pad lentiviral vector. 

 565 

For the MPRA, we transfected the library into K562 cells using the Neon Transfection System 

(Life Technologies). We performed 2 biological replicates, transfecting 2.4 million cells with 

10μg of library per replicate. After 24h, we harvested RNA from the cells using the PureLink 

RNA Mini Kit (Invitrogen). The RNA was treated with DNase and converted to cDNA in the 

same way as the patchMPRA library above. We then amplified barcodes from cDNA using 570 

primers CPL2 and CPL7 (Table S4) with the Q5 High Fidelity 2X Master Mix (New England 

Biolabs). We performed 4 PCRs per replicate from cDNA. For DNA normalisation, we 

performed the same PCR (2 PCRs per replicate; 2 replicates) on the plasmid library. The PCRs 

from the same replicates were then pooled and purified. 4ng from each replicate was then further 

amplified with 2 rounds of PCRs to add Illumina sequencing adapters (CPL3-6; Table S4). 575 

Barcodes were sequenced on the Illumina NextSeq platform. 

 

TRIP library cloning 

We performed TRIP according to the published protocol with some modifications (30). Each 

selected promoter was amplified from the promoter library (CPL8-19; Table S4) and cloned into 580 

a PiggyBac vector with a unique barcode that identifies the promoter (pBC). Importantly, the 

promoter and reporter to be integrated is located between two parts of a split-GFP reporter gene 

(gift from Robi Mitra lab) (41). When the promoter-reporter-barcode construct is integrated into 

the genome, the split-GFP combines to produce functional GFP, allowing us to sort for cells that 
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have successfully integrated the promoters. Each construct was then randomly barcoded by 585 

digesting the plasmid with XbaI followed by HiFi assembly (New England Biolabs) with a 

single-stranded oligo containing 16 random N’s (TRIP barcodes; tBC) and homology arms to the 

plasmid (CPL20; Table S4). Since each promoter is uniquely barcoded, we combined all the 

promoters into a single library for subsequent TRIP experiments.  

 590 

TRIP 

The TRIP library and piggyBac transposase (gift from Mitra lab) was co-transfected into wild-

type K562 cells at a 1:1 ratio using the Neon Transfection System (Life Technologies). In total, 

we transfected 4.8 million cells with 16μg each of library and transposase. The cells were sorted 

after 24 hours for GFP-positive cells to enrich for cells that have integrated the reporters. After a 595 

week, the cells were sorted into 4 pools of 7000 cells each to ensure that each pBC-tBC pair is 

only integrated once in each pool. The pools were then allowed to grow until there were 

sufficient cells for DNA/RNA extractions. 

 

We harvested DNA and RNA from the cells using the TRIzol reagent (Life Technologies). The 600 

RNA was treated with DNase and converted to cDNA in the same way as the patchMPRA 

library above. We then amplified barcodes from cDNA and gDNA using primers CPL7 and 

CPL21 (Table S4). We performed 4 PCRs per pool from cDNA and gDNA respectively using 

the Q5 High Fidelity 2X Master Mix (New England Biolabs), then pooled the PCRs and purified 

them. 4ng from each replicate was then further amplified with 2 rounds of PCRs to add Illumina 605 

sequencing adapters (CPL22-23, CPL5-6; Table S4). Barcodes were sequenced on the Illumina 

NextSeq platform.  
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To map the locations of TRIP integrations, we digested gDNA with a combination of AvrII, 

NheI, SpeI and XbaI for 16 hours. The digestions were purified and self-ligated at 4°C for 610 

another 16 hours. After purifying the ligations, we performed inverse PCR to amplify the 

barcodes with the associated genomic DNA region (primers CPL24-25; Table S4). We did 8 

PCRs per pool, purified them and used 4ng of each pool for a further 2 rounds of PCRs to add 

Illumina sequencing adapters (CPL26-28, CPL6; Table S4). The library was then sequenced on 

the Illumina NextSeq platform.  615 

 

patchMPRA and episomal MPRA data processing 

For patchMPRA, we obtained approximately 11-13 million reads per DNA or RNA replicate 

from sequencing. For episomal MPRA, we obtained approximately 500,000 reads per DNA or 

RNA replicate. Reads that contained both the pBC and gBC in the proper sequence context were 620 

included in subsequent analysis. The expression of each barcode pair was calculated as 

log2(RNA/DNA). We averaged the expression of barcodes corresponding to the same promoter 

within each replicate to get promoter expression per replicate, then averaged across replicates for 

subsequent downstream analysis. Expression values can be found in Data S4 (patchMPRA) and 

Data S5 (episomal MPRA).  625 

 

TRIP data processing 

We obtained approximately 14-25 million reads per DNA or RNA pool from sequencing. Reads 

that contained both the tBC and pBC in the proper sequence context were included in subsequent 

analysis. We further filtered tBCs such that they are at least 3 hamming distance apart from 630 

every other barcode to account for mutations that occurred during PCR and sequencing. The 

expression of each BC pair was calculated as log2(RNA/DNA). We added a pseudocount to the 
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RNA counts to include barcode pairs that had DNA but no RNA reads. Data from the 4 

independent pools were combined in all analyses. Expression values can be found in Data S2.  

 635 

For the locations of TRIP integrations, reads containing each barcode pair were matched with the 

sequence of its integration site. The integration site sequences were then aligned to hg38 using 

bwa with default parameters. Only barcodes that mapped to a unique location were kept for 

downstream analyses. The mapped integration locations can be found in Data S2.  

 640 

TRIP data analysis 

We downloaded a list of expressed genes in K562 cells using whole cell long polyA RNA-seq 

data generated by ENCODE (42) from the EMBL Expression Atlas. We then designated the 

genes as hk or dev based on the list of hk genes obtained from Eisenberg and Levanon (43). 

Using the locations of these promoters (GENCODE Release 36, GRCh38.p13) we identified 645 

TRIP integrations located within 5kb of either hk or dev promoters and plotted the expression of 

these integrations separately. 

 

To increase the resolution of the analysis we identified genomic regions where at least 4 different 

promoters integrated within 5kb of each other (Full list of regions in Data S3). For regions in 650 

which the same promoter integrated more than once we used the median expression of that 

promoter. This yielded 1268 genomic regions. All heatmaps were generated using the 

ComplexHeatmap package in R (44). To determine the diversity of the identified 5kb regions, we 

downloaded the 15-state segmentation for K562 (hg19) from the ENCODE portal and performed 

a liftover to hg38 using the UCSC liftover tool (45). We then overlapped the 5kb regions with 655 
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chromHMM regions using a minimum overlap of 200bp using the Genomic Ranges R packages 

(46).  

 

To rank and cluster the regions we first imputed missing values using the mean of the promoter 

across all locations. We then used the means of each region to rank the clusters and plotted the 660 

smoothed expression of each promoter. To cluster the 5kb genomic regions, we ran k-means 

clustering on the imputed data using the ConsensusClusterPlus package in R (47). The imputed 

data was only used for ranking and clustering and not downstream analysis.  

 

Epigenome data analysis 665 

For the cluster metaplots, we considered the boundaries of each genomic region as the locations 

of the first and last integrations in each region. We then downloaded various K562 epigenome 

datasets (full list of sources in Table S5). For CpG methylation, we downloaded both replicates 

and used the averaged signal from both replicates. For H3K27ac, H3K4me3, PolII, CpG 

methylation and ATAC-seq, we used the EnrichedHeatmap package in R (48) to draw the 670 

metaplots for each cluster extending 5kb upstream and downstream of each genomic region. For 

CAGE-seq, we downloaded the hg19 dataset from the FANTOM5 consortium (49, 50) and 

converted it to hg38 using the UCSC liftover tool (45). Because the signal was relatively sparse 

across genomic locations, we plotted the total CAGE signal across each genomic region.  

 675 

Sequence features analysis 

We obtained the sequences of each region using the BSgenome package in R (51). For the 

gapped k-mer predictions, we used the gkmSVM R package (36) with word length = 10 and 

number of informative columns = 6. We used AME for motif enrichment analysis (52), DREME 
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for de novo motif discovery (53) and FIMO to determine the number of motifs per sequence 680 

(54), from MEME suite 5.0.4. For all motif analyses we limited analysis to expressed 

transcription factors (FPKM >= 1) in K562 from whole cell long polyA RNA-seq data generated 

by ENCODE (42) downloaded from the EMBL Expression Atlas.  

 

To predict the type of genomic region of other integrations not in the defined 5kb regions, we 685 

obtained genomic sequences of the 1kb flanking region around the integration (500bp upstream 

and 500bp downstream). We then used the trained gkmSVM kernels to calculate the weights of 

each flanking region and assigned the integrations into low, medium or high activity clusters 

based on their weights. Only integrations that could be confidently assigned were included. 

 690 

Modeling 

We fit log2 expression values with linear models of core promoter and genomic location 

activities using the lm function in R. Variance explained by each term was calculated with one-

way ANOVAs of the respective models.  

 695 
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Fig. S1. 

Landing pad locations have diverse chromatin marks and transcriptional activity. 700 
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Fig. S2. 

patchMPRA measurements are reproducible. (A) Number of promoter barcodes recovered 

from each location per biological replicate. (B) Number of promoters recovered from each location 705 

per biological replicate. (C) Reproducibility of core promoter measurements from independent 

patchMPRA transfections. 
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Fig. S3. 710 

Expression of a library of proximal enhancers at each genomic location (29). 
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Fig. S4.  715 

Effect of genomic locations on core promoters. (A) Effect of genomic position and (B) all 

pairwise correlations (Pearson's r) between genomic locations for core promoters with different 

motifs within each class. 

 

  720 
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Fig. S5.  

Intrinsic promoter strength explains differences between classes of core promoters. (A) 

Expression of all hk and dev promoters at each genomic location. p-values were calculated by 

Student’s t-tests. (B) Expression of hk and dev promoters at each genomic location after 725 

sampling promoters such that the two classes have equivalent average strengths. n indicates 

number of promoters sampled from each class. (C) All pairwise correlations (Pearson's r) 

between genomic locations for subsampled hk and dev core promoters. (D) The pairwise 

correlations of core promoters with different motifs (from Fig. S4B) are explained by the average 

expression of each group. 730 
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Fig. S6.  

Core promoter activities in the genome reflect the promoters' intrinsic activity. (A) 

Correlations between expression of core promoter library measured on plasmids and at the 735 

indicated genomic location by patchMPRA. (B) Correlation between measured expression by 

patchMPRA and predicted expression by a linear model using core promoter intrinsic activity 

measured on plasmids. 

 

 740 
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Fig. S7.  

Measurements of six core promoters at thousands of genomic locations by TRIP. (A) 

Schematic of TRIP experiment. tBC: TRIP barcode; pBC: promoter barcode; ITR: inverted 745 

terminal repeats. (B) Reproducibility between measurements from independent DNA and RNA 
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extractions. (C) Correlations between mean expression of core promoters measured by TRIP and 

at the indicated genomic location by patchMPRA. 
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 750 
Fig. S8.  

Core promoter scaling is a genome-wide phenomenon. (A) Regions with ≥4 different 

promoters integrated within 5kb of each other are located across the genome. Cluster activity 

was designated by the analysis in Fig. 5B. (B) Distribution of chromHMM annotations of 

defined 5kb regions. (C) For each defined 5kb region, correlations (Pearson's r) between core 755 

promoter activity measured by TRIP and by patchMPRA were calculated and all correlations 

were plotted as a density plot. As a comparison, we randomly grouped promoters without 

considering their integration locations and calculated the correlations for each group. The p value 

was calculated using the Mann–Whitney U test. (D) Correlation between measured expression 
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by TRIP and predicted expression using a model assuming independence between genomic 760 

environments and core promoters. (E) Expression of all integrations of hk1 and hk1 with an 

upstream cis-regulatory enhancer (CRE-hk1).  
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 765 

Fig. S9.  

Promoter strength, not class, determines its interaction with the genomic environment. (A) 

Correlation coefficients between curves fitted on each promoter in Fig. 5A. (B) Hk and dev 

integrated core promoters behave similarly near endogenous hk or dev promoters. 

 770 

 

 

 

 

 775 
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Fig. S10.  

Epigenomic signatures of genomic clusters with different activities. (A) CAGE-seq signal 

was calculated for each genomic region, and the summed signals were plotted for each cluster. p 780 

values were calculated by Student's t-tests. (B, C) Metaplots of CpG methylation and ATAC-seq 

signals respectively in each genomic cluster. The start and end mark the boundaries of each 

genomic region, which are determined by the first and last integration in the region. The x-axis 

extends +/- 5kb around each genomic region. 

 785 
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Fig. S11.  

Sequence features of genomic clusters with different activities. (A, B, C) Performance of 

gkmSVM used to classify sequences from different genomic clusters. Precision-recall curves 790 

(PRCs) were generated using five-fold cross-validation. (D, E) Performance of gkmSVM on 

sequences with scrambled cluster assignments. (F) TRIP integrations that were not included in 

the 5kb genomic region analysis were assigned to a cluster based on their sequence features from 
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the gkmSVM, and the expression of each promoter was plotted based on their predicted clusters. 

(G, H) Top 6 motifs identified by de novo motif finding comparing high/low and medium/low 795 

activity sequences respectively. 
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Table S1. 

Composition of promoter classes in the core promoter library. 

Promoter class hk/dev Number 

TATA-box dev 100 

CpG island hk 100 

CpG island dev 100 

TCT hk 2 

DPE hk 8 

DPE dev 13 

No known motif hk 100 

No known motif dev 100 

TATA-box & CpG island dev 63 

TATA-box & DPE dev 2 

DPE & CpG island dev 14 

DPE & CpG island hk 43 

TCT & CpG island hk 22 

SCP (and mutants) - 4 

Total 
 

676 

 800 
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Table S2. 

Locations of four landing pads in patchMPRA. 

Name Chr Location (hg19) Annotation Name in Maricque et al. 

(29) 

loc1 chr11 16,258,750 Sox6 Intron LP3 

loc2 chr16 53,275,015 CHD9 Intron LP4 

loc3 chr17 56,426,171 Intergenic LP5 

loc4 chr1 156,489,766 Intergenic LP6 

 

  805 
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Table S3. 

Promoters selected for TRIP. 

Name Oligo_id Motifs/ 

Features 

Number of 

 TRIP 

integrations 

Sequence 

hk1 chr1_153963171_ 

153963304_+ 

TATA, 

CpG, 

TCT 

6032 GCACAAGATCCTTGCGTCATTTC 

CTGTAGTGTGCTCTATATAAGGG 

GCAGGATTTCCGCTTTCGCTCCT 

TTCCGGCGGTGACGACCTACGC 

ACACGAGAACATGCCTGTGAGT 

GCTTTGGTCCAGGTTTCGGC 

hk2 chr7_94285368_ 

94285501_- 

CpG 7157 GGGATGCTGATGCTGAACTGGCC 

AAGCTGGGAGGGAAGAAGAAAG 

GGAGGGGAGGGGAGAATCGAGG 

ACGGACGGCCTAGCCAGGCCAA 

GAATGCAATTGCCCCGGTGGTGG 

GAGCTGGGAGACCCCTGTGCT 

hk3 chr1_19638753_ 

19638886_+ 

DPE 6851 GGGCGGGGCCTGCGGTTCCCGCG 

GGGGCGGTGGCGCGCGGTCAGC 

TGACCCGGCGGGCTTGACCCAGA 

AGCTGGGCCCTGGCGGCGGATCT 

GGACGTGGTGAGCCGGACCGGG 

GGCAGGTGGCAAACTTCAC 

dev1 chr17_5522677_ 

5522810_- 

DPE 6328 CTCGCGATAGTGAGTGAGTTCCC 

ACGAGATCTGATGGTTTTATAAG 

GGGCTTCCCCGTTACTCAGCACT 

TCTTCTCTCCTGCCGCCATTTGAA 

GGACGTGTCTGCTTCCACTCCTG 

CCGTGATTGTCAGCTTC 

dev2 chr21_33976756_ 

33976889_- 

No 

known 

motif 

7079 TATCTCCCGATCCTCACTGCCAT 

CTGTGCTGCCAGCATTGGGCTC 

TTTCTCCTTTGAGAATTCTTTGC 

ACTTCATTGTACTCCATGCTCAG 

TGCTGCTCACCGTCTGCTTTATA 

ATACAGGCCACGGTGTGCT 

dev3 chr1_1009619_ 

1009752_- 

TATA 7364 CTGAGGCTTGCGGCCACACCCTT 

GGCCCATAGGGTATAAATAGAC 

CTGCTTGGGAGCCCACACCCAG 

CAACTCACACCTGCCTCAGACC 

AGAGCTCTGTGCGGGTGACGGC 

GCACGCATTCCTTGTGTCCCCG 
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Table S4. 

Primers used in this study.  

Name Sequence Description 

CPL1 CCCCGTAATGCAGAAGAAGA Amplify barcodes from integrated promoter 

library for Illumina sequencing. 

CPL2 GCAGCGTATCCACATAGCGT 

AAAAG 

Amplify barcodes from integrated promoter 

library for Illumina sequencing. 

CPL3 CTTTCCCTACACGACGCTCTT 

CCGATCT(N1-4)CATGGACGAG 

CTGTACAAGTAATCTAGA 

Add first round of adapters to promoter library 

amplified barcodes. Variable numbers of Ns 

included to phase the library for Illumina 

sequencing.  

CPL4 GTGACTGGAGTTCAGACGTG 

TGCTCTTCCGATCT(N0-

3)GCGG 

CCGCTTTAGGATCC 

Add first round of adapters to promoter library 

amplified barcodes. Variable numbers of Ns 

included to phase the library for Illumina 

sequencing.  

CPL5 AATGATACGGCGACCACCGA 

GATCTACACNNNNNNACACT 

CTTTCCCTACACGACGCT 

Add second round of adapters to promoter 

library amplified barcodes. N's indicated 

variable sequences for indexing. 

CPL6 CAAGCAGAAGACGGCATAC 

GAGATNNNNNNNNNGTGAC 

TGGAGTTCAGACGTG 

Add second round of adapters to amplified 

barcodes. N's indicated variable sequences for 

indexing. 

CPL7 ACCATCTACATGGCCAAGA 

AGC 

Amplify barcodes from episomal and TRIP 

library for Illumina sequencing. 

CPL8 ATATCAGGCGCGCCAAGCT 

TGGATCCGCACAAGATCCT 

TGCGTC 

Amplify hk1 from promoter library with 

homology to backbone for HiFi assembly. 

CPL9 TCCTCGCCCTTGCTCACCAT 

CCTAGGGCCGAAACCTGGA 

CCAAA 

Amplify hk1 from promoter library with 

homology to backbone for HiFi assembly. 

CPL10 ATATCAGGCGCGCCAAGCT 

TGGATCCGGGATGCTGATG 

CTGAACTGG 

Amplify hk2 from promoter library with 

homology to backbone for HiFi assembly. 

CPL11 TCCTCGCCCTTGCTCACCAT 

CCTAGGAGCACAGGGGTCT 

CCCAG 

Amplify hk2 from promoter library with 

homology to backbone for HiFi assembly. 

CPL12 ATATCAGGCGCGCCAAGCT 

TGGATCCGGGCGGGGCCTG 

CGGTTC 

Amplify hk3 from promoter library with 

homology to backbone for HiFi assembly. 

CPL13 TCCTCGCCCTTGCTCACCAT 

CCTAGGGTGAAGTTTGCCA 

CCTGCCCCCG 

Amplify hk3 from promoter library with 

homology to backbone for HiFi assembly. 

CPL14 ATATCAGGCGCGCCAAGCTT 

GGATCCCTCGCGATAGTGAG 

TGAG 

Amplify dev1 from promoter library with 

homology to backbone for HiFi assembly. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.08.434469doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434469
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

53 

 

 

  

CPL15 TCCTCGCCCTTGCTCACCATC 

CTAGGGAAGCTGACAATCAC 

GGC 

Amplify dev1 from promoter library with 

homology to backbone for HiFi assembly. 

CPL16 ATATCAGGCGCGCCAAGCT 

TGGATCCTATCTCCCGATCC 

TCACTGCCA 

Amplify dev2 from promoter library with 

homology to backbone for HiFi assembly. 

CPL17 TCCTCGCCCTTGCTCACCAT 

CCTAGGAGCACACCGTGGC 

CTGTA 

Amplify dev2 from promoter library with 

homology to backbone for HiFi assembly. 

CPL18 ATATCAGGCGCGCCAAGCT 

TGGATCCCTGAGGCTTGCG 

GCCACA 

Amplify dev3 from promoter library with 

homology to backbone for HiFi assembly. 

CPL19 TCCTCGCCCTTGCTCACCAT 

CCTAGGCGGGGACACAAGG 

AATGCGTG 

Amplify dev3 from promoter library with 

homology to backbone for HiFi assembly. 

CPL20 GCTCTATAAGTAAGAGCTC 

TCGCTTCGAGTCTAGANNN 

NNNNNNNNNNNNNGATCA 

CTCGAGTTGTGGCCGGCCC 

TT 

Oligo for adding random barcodes to TRIP 

library by HiFi assembly, 

CPL21 AACGCCAGGGTTTTCCCAA Amplify barcodes from TRIP library for 

Illumina sequencing. 

CPL22 CTTTCCCTACACGACGCTCT 

TCCGATCT(N1-4)CTCGCTTC 

GAGTCTAGA 

Add first round of adapters to amplified TRIP 

barcodes. Variable numbers of Ns included to 

phase the library for Illumina sequencing.  

CPL23 GTGACTGGAGTTCAGACGT 

GTGCTCTTCCGATCTGCCA 

GGGTTTTCC 

CAAC 

Add first round of adapters to amplified TRIP 

barcodes. 

CPL24 CGCATGATTATCTTTAACG 

TACGTCAC 

Amplify TRIP barcode and associated genomic 

region by inverse PCR. 

CPL25 GCCAGGGTTTTCCCAAC Amplify TRIP barcode and associated genomic 

region by inverse PCR. 

CPL26 ACGACGCTCTTCCGATCTG 

CTCGAT(N0-3)GTACGTCAC 

AATATGATTATCTTTCTAG 

Add first round of adapters to TRIP amplified 

barcodes. Variable numbers of Ns included to 

phase the library for Illumina sequencing.  

CPL27 GTGACTGGAGTTCAGACG 

TGTGCTCTTCCGATCTGCC 

AGGGTTTTCCCAAC 

Add first round of adapters to TRIP amplified 

barcodes. Variable numbers of Ns included to 

phase the library for Illumina sequencing.  

CPL28 AATGATACGGCGACCACCG 

AGATCTACACTCTTTCCCTA 

CACGACGCTCTTCCGATCT 

Add second round of adapters to TRIP 

amplified barcodes. N's indicated variable 

sequences for indexing. 
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Table S5. 815 

Sources of epigenome datasets used in this study. 

Data Source Experiment Source File 

H3K27ac 

ChIP-seq 

ENCSR000AKP ENCFF437DPT 

H3K4me3 

ChIP-seq 

ENCSR000EWA ENCFF916MPM 

PolII ChIP-seq ENCSR388QZF ENCFF285MBX 

CAGE FANTOM5 chronic%20myelogenous%20leukemia%20cell%20 

line%3aK562.CNhs11250.10454106G4.hg19. 

ctss.bed.gz 

CpG 

methylation 

ENCSR765JPC ENCFF867JRG; ENCFF721JMB 

ATAC-seq ENCSR868FGK ENCFF698MIQ 
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