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Abstract 11 

Four species of grass generate half of all human-consumed calories1. However, 12 

abundant biological data on species that produce our food remains largely 13 

inaccessible, imposing direct barriers to understanding crop yield and fitness traits. 14 

Here, we assemble and analyse a continent-wide database of field experiments 15 

spanning ten years and hundreds of thousands of machine-phenotyped populations of 16 

ten major crop species. Training an ensemble of machine learning models, using 17 

thousands of variables capturing weather, ground-sensor, soil, chemical and fertiliser 18 

dosage, management, and satellite data, produces robust cross-continent yield models 19 

exceeding R2 = 0.8 prediction accuracy. In contrast to ‘black box’ analytics, detailed 20 

interrogation of these models reveals fundamental drivers of crop behaviour and 21 

complex interactions predicting yield and agronomic traits. These results demonstrate 22 

the capacity of machine learning models to build unified, interpretable, and 23 

explainable models of crop behaviour, and highlight the powerful role of data in the 24 

future of food.   25 
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 2 

Introduction 26 

 27 

Over two billion people are projected to enter the world population by 20502. 28 

Feeding these people sustainably requires an improved understanding of the complex 29 

evolutionary interactions driving major crop traits3,4, and the application of this 30 

knowledge through plant breeding to produce new crop varieties. However, large-31 

scale data on the growth and yield traits of major crops remain generally unavailable 32 

or inaccessible to academic scientists5 and where available, big data often result in 33 

incomprehensible black box models of plant behaviour. 34 

 35 

Here, we demonstrate the promise of machine learning (ML) and artificial 36 

intelligence algorithms to provide robust prediction of important agronomic traits, 37 

including yield, and improve our understanding of crop biology. By linking satellite 38 

data to a freely available ‘big’ dataset, the Australian National Variety Trials (NVTs), 39 

we develop a framework to train and test accurate ML models and extract meaningful 40 

and testable hypotheses from ML models. These findings highlight the power of 41 

unified, comprehensive cross-species models for the prediction and understanding of 42 

vital agronomic traits and crop species. 43 

 44 

The NVT database constitutes one of the largest public experiments on earth 45 

(Fig. 1; Table 1). The NVTs capture over a quarter of a million unique variety-year 46 

observations, and over a million unique population-averaged phenotypes, aggregated 47 

from experimentally replicated plant populations in 6,547 geolocated randomised 48 

controlled experiments (Table 1; see database descriptor in Newman & Furbank6). 49 

Each population contains hundreds of individual plants, sown at controlled densities 50 
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 3 

and replicated across a randomised controlled design trial, each conducted and 51 

phenotyped according to highly standardised protocols7. As such, the NVTs capture 52 

the aggregated phenotypic variation of hundreds of millions of individual organisms,  53 

across thousands of trial sites containing millions of plant populations6. 54 

 55 

We linked these data to extensive satellite data characterising vegetation, 56 

temperature, and spectral patterns8–11 (Supplementary Table 1; Supplementary Fig. 1), 57 

weather station data from the Australian Bureau of Meteorology (BOM), over 10,000 58 

standardised soil sample tests, extensive observational and site management data, 59 

over 50,000 field-years of stubble burn patterns12, the dose and timing of over 60 

350,000 chemical and fertiliser applications, and crop rotation histories for over 61 

10,000 field-years (see Newman & Furbank6). Collectively these data capture patterns 62 

of management inputs, vegetation, and environment, and include satellite-derived 63 

observations (Fig. 1b) that improve the categorisation of growing environments, 64 

provide information on canopy level agronomic traits, and reveal the complex 65 

environmental diversity of trial sites (Fig. 1c).  66 

 67 

Using this open source6 environmental and agronomic database, we train a 68 

suite of robust ML algorithms for the prediction of key agronomic traits including 69 

yield, flowering, and grain protein (Table 1). In addition to providing a catalogue of 70 

phenotype prediction models, these models are used to demonstrate the potential for 71 

ML algorithms to generate comprehensible outputs and testable hypotheses beyond 72 

variable importance rankings and the ‘black box’ paradigm.  73 

 74 
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Using targeted ML model interrogation and analysis, we generate candidates 75 

for the causal drivers of complex traits including yield and grain protein content. We 76 

reduce random forests to predictively valuable and readable prediction rules, using an 77 

approach pioneered by Deng13, with direct and testable outcomes for agronomic 78 

research. This model reduction approach reveals cross-domain interactions between 79 

variables that robustly predict trait variation. As a result, rather than produce a ‘black 80 

box’ prediction model, these analyses reveal pathways to generate both accurate 81 

forecast models and potentially useful and biologically informative hypotheses.  82 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434495doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434495
http://creativecommons.org/licenses/by/4.0/


 5 

Results 83 

 84 

Machine learning provided clear and accurate predictive models across a broad array 85 

of challenges. However, to provide a robust estimate of model accuracy it was 86 

necessary to extend model evaluation beyond the standard analytical framework. The 87 

standard approach to assessing ML accuracy is to use random-sample holdout values, 88 

with random observations excluded from the dataset prior to model training, and these 89 

values subsequently used as predictive targets to evaluate model accuracy. However, 90 

across all models this testing approach generated a misleading picture of model 91 

accuracy (Supplementary Table 2).  92 

 93 

Model accuracy appeared to be systematically over-estimated when using random-94 

sample holdout populations (Supplementary Table 2). We overcame this problem 95 

using a more rigorous model evaluation framework (Fig. 2) that tested machine-96 

learning models using unobserved randomly-sampled field trials (hereafter ‘holdout 97 

trial prediction’; Fig. 2a-b), or all field trials observed in ‘future’ years hidden from 98 

model training (hereafter ‘annual forecast prediction’; Fig. 2a,c). By testing models in 99 

locations and years excluded from model training, this approach substantially reduced 100 

the reported accuracy of ML models (Supplementary Table 2) while ensuring 101 

structural risk minimisation and robust, translatable models. For example, under the 102 

standard random holdout data approach LSVM models reported an R2 = 0.99 103 

prediction accuracy (Supplementary Table 2; RMSE = 0.17; N = 90,765). When the 104 

same models were evaluated using holdout trial prediction, predicting unobserved 105 

randomly-sampled field trial locations, model accuracy fell to between R2 = 0.64 and 106 

0.68 (RMSE = 1.09-1.50; Supplementary Table 2; Supplementary Code 1).  107 
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 108 

Despite reduced model accuracy under these more stringent test criteria, the accurate 109 

prediction of complex traits was possible under a wide range of ML models (Table 2). 110 

For example, when trained for the holdout trial prediction of yield using full-season 111 

data across all species (Fig. 3) foundational ML models such as unstratified ‘naïve’ 112 

Breiman-Cutler Random Forests14,15 (BCRFs; Fig. 3b; R2 = 0.82) and BCRFs cross-113 

validated by calendar year (xvBCRFs; Fig. 3c; R2 = 0.84) captured variation within 114 

years with over R2 = 0.8 accuracy (N=3,182; p<10e-16; Supplementary Code 1), 115 

while extreme gradient boosting models16 (XGBMs; Fig. 3d; R2 = 0.78), recursively 116 

partitioned regression models17 or decision trees (RPRMs; Fig. 3a; R2 = 0.76), linear 117 

support vector machines18,19 (LSVMs; Fig. 3e; R2 = 0.68) and partial least squared 118 

regression models20 (PLSRs; Fig. 3f; R2 = 0.76) captured marked yield variation 119 

(N=3,101; p<10e-16; Supplementary Code 1). 120 

   121 

While baseline accuracy was high, ML models exhibited different performance across 122 

prediction challenges. These included agronomically relevant problems, such as using 123 

the data available at the time of sowing (TOS) for prediction of end-of-season 124 

phenotypic variation in new locations (Fig. 3; Table 2), the projection of end-of-125 

season yield as a season progresses (Supplementary Fig. 2), and annual forecast 126 

predictions (Fig. 4; Table 2).  127 

 128 

Model accuracy extended to other agronomically important complex traits. Several 129 

traits could be predicted under holdout trial prediction and annual forecasts with 130 

accuracy of R2=0.5 or more (Supplementary Fig. 3a-c), including complex traits such 131 

as protein (R2=0.48; Supplementary Fig. 3a), flowering time (R2 = 0.53; 132 
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 7 

Supplementary Fig. 3b), and Glucosinolate content (R2=0.58; Supplementary Fig. 3c), 133 

while prediction of other traits such as proxy metrics of grain volume proved more 134 

challenging (Supplementary Fig. 3d-f). 135 

 136 

Predictive accuracy was largely retained in models trained using only data available at 137 

the TOS. Under holdout trial prediction, yield data could be predicted with up to 138 

R2=0.80 accuracy under stratified cross-validated BCRFs (Table 2), while methods 139 

such as LSVMs (R2 = 0.64), XGBMs (R2 = 0.64), and PLSRs (R2 = 0.58) displayed 140 

more limited accuracy (Table 2).  141 

 142 

Unsurprisingly, ML model accuracy fell under all annual forecast prediction tests 143 

(Table 2). For full-season data, over rolling annual forecasts, BCRF models retained 144 

the highest accuracy when predicting yield (black line Fig. 4; Table 2; Supplementary 145 

Code 1), followed by the PLSR model (blue line Fig. 4; R2 =0.74; Table 2), and the 146 

XGBM (R2 = 0.69; Supplementary Code 1). Similar patterns in accuracy occurred for 147 

ML models trained on data available at the TOS, 100 days after sowing (DAS) and 148 

200 DAS, tested in 2018 only rather than rolling annual forecasts (Table 2). Again, 149 

the BCRF and PLSR models had the highest predictive accuracy, with the greatest 150 

reduction and lowest absolute accuracy in the LSVMs (from R2 = 0.64-0.68 to R2 = 151 

0.37-0.45; Table 2). 152 

 153 

As expected, ML approaches generally increased in accuracy with the inclusion of 154 

more years’ data (Fig. 4), and for predictions made at progressively later points in the 155 

growing season (Supplementary Fig. 3). However, rolling forecast data, in which 156 

models were used to predict variation in the next calendar year, displayed surprising 157 
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 8 

patterns. Concurrent shifts in forecast accuracy occurred across different models, 158 

phenotypes, and species (Fig. 4a-b) with accuracy increasing (e.g. 2011-2012 and 159 

2013-2014) or decreasing (e.g. 2015-2016) across diverse models and phenotypes. 160 

While observations were limited, changes in model forecast accuracy were correlated 161 

across ML models and species (p < 0.02; Supplementary Code 1) despite fixed model 162 

training parameters, the relatively constant sample size of target data, and the absence 163 

of overfitting (as measured in random holdout trials; Fig. 1b; Table 2). Some years 164 

were less predictable, across models and species, independent of model construction 165 

and sample size.  166 

 167 

Annual forecast and random holdout trial prediction models were constructed both 168 

with and without partitioning crops into separate datasets for model training 169 

(Supplementary Code 1). For models such as xvBCRFs and LSVMS, incorporating 170 

all species in a single ‘omnibus’ dataset often, unsurprisingly, led to less accurate 171 

models (Supplementary Table 3). However, in some notable cases implementing a 172 

unified approach, where crop types were fit as binary independent variables, 173 

generated models of comparable or greater accuracy than models with identical 174 

parameters trained on single-species data (Fig. 3; Supplementary Fig. 4; 175 

Supplementary Code 1). For example, when predicting wheat yield in 2018, annual 176 

forecast models trained using only wheat data to 100 DAS had R2=0.66 accuracy 177 

under naïve BCRFs, R2=0.38 under LSVMs, and R2=0.59 under PLSR models 178 

(Supplementary Code 1). When these models were re-trained using cross-species 179 

data, using identical parameters, accuracy of 2018 wheat yield predictions improved 180 

marginally to R2 = 0.69 for BCRFs, R2 = 0.40 for LSVMs, and R2 = 0.65 for PLSRs 181 

(Supplementary Code 1). In Canola, construction of ‘omnibus’ cross-species models 182 
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 9 

more substantially modified accuracy: at 100 DAS accuracy increased from R2 = 0.28 183 

to 0.60 in naïve BCRF, and from R2 = 0.19 to 0.37 in PLSRs, with a low-accuracy 184 

model of R2 = 0.11 falling to R2= -0.008 in the high prediction variance LSVM 185 

models (Supplementary Code 1). 186 

 187 

Assessing the features and interactions behind predictively accurate models was 188 

approached on several fronts. While ‘black box’ models are generally impenetrable to 189 

further analysis, altering model inputs and examining shifts in model accuracy can 190 

provide limited insight into model mechanics. Collectively, for example, remote 191 

sensing data were a key driver of model accuracy (Supplementary Fig. 5; 192 

Supplementary Fig. 6). Under a leave-one-out model testing approach, removal of the 193 

remote sensing variables caused the greatest loss in predictive value (Supplementary 194 

Fig. 5; Supplementary Code 2) compared to the more marginal effect of removing 195 

management data, BOM weather station data, or metadata (Supplementary Fig. 5; 196 

Supplementary Code 2). This pattern, where satellite data held the greatest predictive 197 

value for model training, was reinforced across holdout trial and annual forecast 198 

model assessment (Supplementary Code 1). For example, under RPRM models the 199 

removal of satellite data reduces the accuracy of wheat yield annual forecast models, 200 

from R2 = 0.75 for models containing all input variables, to just R2=0.36 for models 201 

trained without satellite data (Supplementary Code 2). In contrast, the impact from 202 

removal of either weather station data, management data or metadata was, at worst, a 203 

marginal reduction in accuracy from R2 = 0.75 to 0.71 (Supplementary Code 2).  204 

 205 

Re-training models using only single domains, such as using only management or 206 

satellite data for model training, provided insight into the predictive value of domains 207 
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 10

without cross-domain interactions (Supplementary Fig. 6). Again, satellite data had 208 

the greatest contribution to accuracy in all ML models. Models constructed 209 

exclusively using satellite data predicted wheat yield variation with R2=0.71 accuracy 210 

(Supplementary Fig. 6), exceeding the accuracy of metadata-only (R2=0.59), 211 

management-only (R2=0.37), and weather station data only models (R2=0.34; 212 

Supplementary Fig. 6; Supplementary Code 1). While valuable, interrogating model 213 

accuracy in this way was fundamentally constrained: assessing the interactive 214 

contributions of smaller variable groupings and individual variables was not 215 

combinatorially limited. 216 

 217 

Further interrogation of model dynamics, using ML algorithm heuristics that rank 218 

features by their importance, revealed the nominal predictive value of individual 219 

variables (Fig. 5). These feature detection and scoring methods showed limited 220 

concordance (Fig. 5a-c), with some differences likely arising from the diverse scoring 221 

methods employed (Supplementary Code 1). However, some variables, such as 222 

accumulated rainfall, attained high importance ranks across all models (blue points; 223 

Fig. 5d). Across PLSR, RPRM and BCRF models, consistently high importance ranks 224 

were assigned to cumulative rainfall, latent heat flux (an indicator of transpiration 225 

rates21 and stomatal22 conductance across a canopy), application rates of Sulphur, and 226 

application of the pesticide Clethodim (Fig. 5a-c). 227 

 228 

However, variable importance scores lack an indication of the direction of effect, and 229 

any indication of whether orthogonal or interactive effects underpin the predictive 230 

value of ‘important’ variables. As such, ML models were interrogated to generate 231 

interpretable outputs.  232 
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 233 

Decision trees generated by RPRMs include the direction of observed effects, and 234 

reveal possible variable interactions through hierarchical dependencies within 235 

decision trees (Fig. S7-S8; Supplementary Data 1). For example, the yield-predictive 236 

RPRM in Supplementary Data 1 reveals that, in TOS-only and full-season prediction 237 

models, lower soil sodicity, higher soil carbon, phosphorous, and nitrogen, and higher 238 

doses of total applied of nitrogen and phosphorous were uniformly predictive of 239 

higher yield. Other interactions were context dependent: for example, higher rainfall 240 

was predictive of higher yield in eight of the fourteen decision points in the full-241 

season RPRM model above (Data S1). Species-targeted RRPM decision trees also 242 

provided insight onto the full-season (Supplementary Fig. 7) and pre-sowing 243 

predictors of yield (Supplementary Fig. 8; Supplementary Data 1). Decision points in 244 

these trees included well-known agronomic interactions, such as gains in wheat yield 245 

from the pre-sowing application of nitrogen fertilisers or monoammonium phosphate 246 

(Supplementary Fig. 8), as well as previously unknown interactions, for example the 247 

discrimination between lower-yielding populations through satellite reflectance bands 248 

and latent heat flux (leftmost branches; Supplementary Fig. 7).  249 

 250 

Visual inspection of tree-based models does not work at scale, for example when 251 

generating a forest of thousands of decision trees using BCRFs. We overcame this 252 

problem by reducing BCRFs to their most common and predictively robust decision 253 

sub-trees (the most common sequences of decisions within a random forest of 254 

decision trees) using the inTrees analytical approach of Deng13. This approach 255 

revealed complex yield-predictive dependencies between remote sensing, 256 

environmental, and management inputs (Table 3-4). For example, the most common 257 
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predictively robust decision sub-tree in canola constitutes a complex cross-domain 258 

dependency (Table 3) where the effect of the normalised differenced vegetation index 259 

on canola yield depends, respectively, on the MODIS band 7 reflectance exceeding 260 

0.10, and the total accumulated rainfall to 150 DAS falling below 310mm. Similar 261 

patterns were revealed in wheat: for example, a high enhanced vegetation index at 262 

160 DAS and a high maximum enhanced vegetation index at 150 DAS predicted a 263 

high 5.5 t/Ha yield. Low-yield prediction rules included indicators of vegetation 264 

stress, such as the prediction of low (1.1t/ha) yields from a combined low fraction of 265 

photosynthetically absorbed radiation, low normalised differenced vegetation index, 266 

and a high middle infrared reflectance value; or the low yields (0.8 t/Ha) predicted by 267 

a combined high MODIS reflectance band 7 value and low observed latent heat flux 268 

(an indicator of the extent of stomatal closure, leaf hydraulics, and crop 269 

evapotranspiration21–23) during the growing season (Table 4).  270 

 271 

In line with their high importance ranks across models and their over-representation 272 

in RPART decision trees, and despite each constituting only 2.2% of all predictor 273 

variables in the initial model, vegetation indices, gross primary productivity and latent 274 

heat flux were common across predictively valuable sub-trees (Table 3-4). For 275 

example, NDVI occurs in 13% (11/83) of all decisions in Table 3-4, yet constitutes 276 

only 2.2% of all input variables. Likewise, cumulative rainfall (0.04% of the initial 277 

predictor variables) is present in nine of the 26 prediction rules and constitutes 11% of 278 

the prediction rule chains: a 25-fold overrepresentation.   279 
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Discussion 280 

 281 

Foundational crops such as wheat, canola, and oats provide a substantial fraction of 282 

total human caloric intake1. However, traits underpinning the yield of these species 283 

are driven by poorly-understood complex interactions. In particular, environments are 284 

largely characterised using ground-station data and, increasingly, highly complex but 285 

variable-coverage drone data. These approaches overlook the opportunity of satellites 286 

as consistent, regularly-timed, instantaneous, and global instruments for capturing 287 

environmental variation.  288 

 289 

In this study, low-resolution satellite data is used to characterise environmental 290 

diversity across sites, providing several novel insights into crop yield. Even these 291 

crude whole-site measures added substantial predictive capacity to our models 292 

(Supplementary Fig. 1; Supplementary Fig. 7-8). In particular, our findings suggest 293 

the importance of latent heat flux, a proxy for both water availability21, stomatal 294 

conductance21,22, and canopy transpiration rates22, as a predictor of yield variation 295 

across sites.  296 

 297 

These findings suggest the remarkable potential for both existing low-resolution and 298 

developing higher resolution satellite resources for agriculture and plant breeding. In 299 

contrast with the 250m-1000m pixel daily resolution data used here, sub-40cm 300 

resolution data will be available multiple times daily from multiple providers as soon 301 

as late 2021. This resolution is sufficient to resolve, for example, individual cotton 302 

and canola plants every clear day throughout a field season. Capturing environmental 303 

patterns at this spatial and temporal scale, along with the potential for direct satellite 304 
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observation of key agronomic traits such as growth patterns and phenology24, has the 305 

capacity to dramatically alter the conduct of large-scale plant breeding trials. If these 306 

data can be meaningfully integrated into plant breeding models and used to inform 307 

plant biology, high-resolution satellite data has a substantial future in agronomy. 308 

 309 

Integration of satellite data, and drone and large ‘omics data, into plant breeding 310 

models has largely been constrained by statistical barriers. It is generally easier to 311 

generate ‘big’ data, and saturate plant populations with variables, than provide a 312 

meaningful analysis of such data. That is not to say such success is not possible: for 313 

example, large 'omics data sets may be reduced to indices or trait values without 314 

substantial information loss25. However, this dimension reduction approach is not 315 

always appropriate and may reveal little or nothing about the interactions between 316 

variables. Integrating data into ML pipelines with comprehensible model mechanics, 317 

and carefully interpreting the results, provides a pathway to solve these problems and 318 

meaningfully integrate advances in data generation with plant breeding platforms25.  319 

 320 

A major advantage of ML models is the capacity to generate a one-shot model that 321 

captures interactions across multiple domains, such as the management-environment 322 

interactions shown in Supplementary Fig. 7-8. While our focus has been the capture 323 

of environmental interactions, our findings highlight the potential of ML to capture 324 

interactions across further data layers: metabolomic, transcriptomic, proteomic and 325 

large-scale phenomic data are all suitable for inclusion into a unified ML model.  326 

 327 

While the promise of ML models is considerable, gains in predictive accuracy are 328 

limited by fundamental challenges. For example, concurrent changes in model 329 
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accuracy across diverse models and species are unlikely to be a result of overfitting 330 

(Fig. 4). Rather, these patterns may arise due to fundamental model limitations when 331 

extrapolating in complex systems26–28. For example, while ML models generalise well 332 

across observed data, they suffer direct constraints on predictive accuracy under 333 

pattern-extrapolation. This is epitomised by the ‘checkerboard problem’, where ML 334 

models fail to extrapolate the alternating pattern of black and white squares from a 335 

smaller to a larger checkerboard27. The failure of ML models to extrapolate 336 

phenotypes to future years, across a stochastic ‘checkerboard’ of switching between 337 

El Niño, neutral, and La Niña climates, may therefore represent a failure of ML 338 

algorithms to extrapolate complex patterns.  339 

 340 

Likewise, non-stationarity, a shift in mean and variance over time, places fundamental 341 

limits on the accuracy of all statistical models28. Cross-model changes in accuracy, 342 

when projecting new fields and years (Fig. 4), may reflect the independent or 343 

combined role of non-stationarity of management practices, soil diversity, hidden 344 

genetic diversity over time, or the role of climatic or environmental non-stationarity 345 

(Fig 4.; Supplementary Fig. 9) over time.  346 

 347 

As such, shifts in predictability of crop behaviour across the NVTs raises important 348 

questions on systems dynamics. If non-stationarity in the Australian climate drives 349 

collapses in the predictability of a complex system, crop behaviour and yield, within 350 

the space of a single year (Fig. 4), this has important ramifications for agronomy 351 

under climate change. Climates are becoming increasingly nonstationary29, including 352 

Australian grain-growing regions30–32, causing a dramatic global loss in the 353 

predictability of rainfall patterns29 and temperatures33,34.  354 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434495doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434495
http://creativecommons.org/licenses/by/4.0/


 16

 355 

Non-stationary rainfall patterns are particularly concerning. Already, a quarter35 of the 356 

global land surface area has non-stationary rainfall patterns, and this fraction is 357 

rising35.  This increasing climate non-stationarity causes crop breeding targets to 358 

become intrinsically less predictable, regardless of advances in models or 359 

methodology. Crop breeding pipelines from initial plant crosses to the release of new 360 

varieties require development times of around ten years36. If the degree of climatic 361 

non-stationarity increases within this horizon, and future climatic patterns become 362 

less predictable as targets for plant breeding, climate instability may pose a serious 363 

challenge to food production systems37 given fundamental bounds on model 364 

predictability28.  365 

 366 

There remains considerable cause for optimism from ML algorithms beyond these 367 

limitations. As we have shown, ML models can learn and recall the growing season of 368 

millions of plants, integrate these data into meaningful models, and accurately 369 

forecast phenotypic variation. Furthermore, the promise of ‘big data’ and ML in 370 

agriculture is not constrained to gains in prediction accuracy. While improved 371 

accuracy from ‘black box’ models has enormous utility for share trading or insurance, 372 

such models often have more limited scientific and in-field applications. For the 373 

greatest utility for farmers and biologists ML models need to be made accessible and 374 

understandable, even at the cost of predictive accuracy.  375 

 376 

Predictions from neural networks or deep learning models are often more accurate 377 

yet, with some exceptions38,39, are not comprehensible by examination of model 378 

dynamics. Even when black box models produce variable importance rankings (e.g. 379 
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Fig. 5) it is unclear whether high-ranked predictive variables interact with one another 380 

or act independently, or in what context they are most important, when generating a 381 

predictive outcome. In contrast, approaches such as RPRMs and BCRFs allow the 382 

understanding and interrogation of internal model dynamics: it is possible to ask why 383 

an algorithm generated a specific prediction.  384 

 385 

For example, trusting Cauer’s conceptual “black box” to evaluate our models 386 

produced may have resulted in a surprising conclusion: that use of herbicides 387 

routinely has an inhibitory effect on yield. For example, in the model shown in 388 

Supplementary Fig. 7, reduced yield was predicted by the previous application of 389 

common herbicides such as Roundup (1.3t/Ha yield loss) and Cadence (1.8t/Ha yield 390 

loss). However, the conclusion that herbicides are yield-inhibitory is likely incorrect. 391 

Herbicide application is confounded with pathogens, environmental stress, and 392 

degraded soils: as such, herbicide use may predict lower yield because herbicide use 393 

is more likely under worse growing conditions. Discrimination between these cases 394 

depends on careful analysis of model mechanics, a process that is not possible within 395 

true ‘black box’ models.  396 

 397 

Likewise, across the NVTs zero-yield and extremely low-yield trials are not missing 398 

at random, but have been actively removed. This violation of the ‘missing completely 399 

at random’ criteria40,41 has counterintuitive effects that are independent of the applied 400 

predictive model. For example, increasing frost severity is predictive of increasing 401 

crop yield across trials (Supplementary Fig. 10). This is not necessarily a result of 402 

severe frosts causing better crop yield but, more likely, because the removal of low- 403 

and zero-yield trials has generated a non-random survival bias: better-conditioned, 404 
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higher-yield crops are most likely to survive a severe frost than crops in stressed and 405 

suboptimal environments. As a result, higher yields may be positively correlated with 406 

a worse environment purely as a statistical artefact. Black box models are not panacea 407 

against such subtle issues. 408 

 409 

Interpretation of machine learning models should not, therefore, be reliant on the 410 

simple scoring of variable importance. Rather, our results suggest that detailed 411 

assessment of the internal mechanics of machine learning models is a key analytical 412 

challenge for biologists who seek to understand, rather than simply predict, biological 413 

systems.  414 
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Methods 415 

 416 

Compilation of the NVT data resulted in the location and measurement of 266,033 417 

variety-trial combinations, aggregated from 780,569 field trial plots in 6,547 418 

successful (or non-failed) field trials. Linked to these data were over eight thousand 419 

variables, including approximately ten thousand field-years of soil samples and 420 

hundreds of thousands of chemical and fertiliser doses. A total of seventy phenotypic 421 

traits were available, for over one and a half million unique phenotypic 422 

measurements6. Of these, seven agronomically important traits, of sufficient data 423 

quality and sample size, were selected to train machine learning algorithms: grain 424 

protein percentage, days to 50% flowering, percentage Glucosinolate oil content, 425 

Hectolitre weight, thousand grain weight, the fraction of grain sieving below 2.0mm, 426 

and yield (Table 1; Supplementary Fig. 3-4).  427 

 428 

Data used to train PLSRs, XGBMs, and LSVMs were dummy-coded for factors, and 429 

transformed to zero mean and unit variance for numeric data (see database descriptor 430 

for further details6). However, tree-based algorithms partition the input space based 431 

on the non-transformed target variable, and do not require rescaling to avoid model fit 432 

biases. As such, to preserve the direction and magnitude of effects and facilitate 433 

interpretable models, non-transformed data were used to train RPRMs, BCRF, and 434 

xvBCRF models.  435 

 436 

Missing data were concentrated into missing metadata and field trial comments 437 

measured in small subsets of trials, such as disease scores and animal damage scores. 438 
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Only 0.05% of all satellite data were missing, generally as a result of a pixel failing 439 

the quality control screening of a NASA data product algorithm. Broader 440 

environmental data, including ground sensor arrays and weather station data, were 441 

0.7% missing. All missing data were imputed using two approaches, described in 442 

further detail in the associated Database descriptor6, for both untransformed and unit-443 

variance, zero-mean transformed data. The variance in model accuracy arising from 444 

imputation noise and error was evaluated by applying machine learning models to all 445 

imputed datasets, predicting site-mean yield, and measuring model accuracy post-446 

imputation (Supplementary Fig. 11; Supplementary Code 1).  447 

 448 

Models were trained using, as often as appropriate, default tuning and input 449 

parameters. Hyperparameters for model training were subjected to minimal training 450 

and optimisation, with parameters given in Supplementary Table 4. All models were 451 

subjected to 10-fold internal cross-validation, with identical training and target data 452 

across models, to allow direct comparisons of accuracy.  453 

 454 

Training targets 455 

 456 

Yield models were initially trained to predict two holdout samples: a ‘holdout trial’ 457 

set of 100 field trials randomly sampled from the years 2008-2017, and an ‘annual 458 

forecast’ sample consisting of all data from 2018 (Fig. 2). Models were trained on 459 

data from 2008-2017 excluding the random holdout trials, and used to predict both the 460 

holdout trials and the 2018 data. For rolling forecast models presented in Fig. 4, no 461 

holdout trial sample was selected: instead, models were trained on all data before each 462 

successive cut-off year, and tested on the next year’s data.  463 
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 464 

In-season rolling forecasts were developed using all data available before a given 465 

time, relative to sowing, and using these data to predict end-of-season yield in Canola 466 

and Wheat only. The three most functionally distinct methods were used: tree-based 467 

Naïve BCRFs trained in ranger, kernel-based LSVMs, and principal components 468 

regression-based PLSRs. As in previous models, PLSR models were trained using 10-469 

fold crossvalidation, in 10 segments, using default loss criteria (Supplementary Code 470 

2). Due to the greater sample size constrains, these variety-specific models were 471 

subjected to random holdout trial prediction only (Fig. 2). 472 

 473 

Algorithms and hyperparameters 474 

 475 

Hyperparameters used in model training tasks are given in Supplementary Table 4 476 

and Supplementary Code 1 and 2. 477 

 478 

Random forest models were constructed using three different approaches: naïve 479 

Breiman-cutler random forests (BCRFs) trained using the Ranger implementation42, 480 

BCRFs cross-validated by calendar year such that test data was never in the same year 481 

as training data15 (xvBCRF), and extreme gradient-boosted forest models (XGBMs). 482 

To preserve the magnitude of changes to leaf node averages caused by decision points 483 

(e.g. Supplementary Fig. 7-8), and the heuristics derived from these decisions (Table 484 

3-4), RPRMs, BCRFs, and xvBCRFs were trained using non-scaled data. Unlike other 485 

machine learning methods, scaling does not impact the accuracy of these tree-based 486 

partitioning methods.  487 

 488 
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Extreme gradient boosting machines (XGBMs), Linear support vector machines19 489 

(LSVMs) and Partial Least Squared Regressions20 (PLSRs) were trained using data 490 

rescaled to zero mean and unit variance, with factors excluded (e.g. unstructured crop 491 

comment fields, unique trial identifiers) or dummy-coded (e.g. varieties observed in 492 

over N > 1000 plots, breeder names, experimental series, trial operators, trial 493 

comments common to > 1000 trials, crop species; see Supplementary Code 1; 494 

Supplementary Code 2).  495 

 496 

The LSVM regression models were constructed using a grid-based stepwise search 497 

using fixed gamma and lambda values defined in Supplementary Table 4. Each 498 

LSVM was subject to 10-fold internal cross-validation, tuned over a 10x10 499 

hyperparameter grid, using the “liquidSVM” package19.  500 

 501 

Importance and heuristic rule reduction 502 

 503 

Variable importance scores were returned using default heuristics from the RPRM 504 

and BCRF models, and variable importance was approximated in PLSR models by 505 

dividing coefficients by the sum of the absolute value of the coefficient matrix (Fig. 4; 506 

Supplementary Code 1). To reveal common interactions predictive of phenotypic 507 

variation, xvBCRF models were subjected to the analytical pipeline described in 508 

Deng13. This approach aggregates the frequency of all sub-trees of decisions within 509 

random forests, to reveal the most common predictive decision sequences or paths 510 

(Supplementary Code 2). This set of decision paths is then pruned by treating 511 

common decision paths as features, re-training a regularised random forest using 512 

these and all previous features, and ranking the importance these decision paths in the 513 
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subsequent model. By treating this interaction as a feature, the importance of complex 514 

dependencies between variables may be explicitly stated, in a way that is impossible 515 

with black-box models. Therefore, all predictively valuable decision paths were 516 

captured for all cross-species and species-specific xvBCRF yield models 517 

(Supplementary Code 2).  518 

 519 

All data are available in the linked Database descriptor6, from the associated figshare 520 

repository, or on request from the corresponding author. All code and secondary data 521 

generated by this analysis, such as models and decision trees, are available in the 522 

supplementary data and from the corresponding author.  523 
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 662 
Figure 1. National variety trials and large-scale environmental patterns captured 663 

by satellite. Location of 6,547 successful field trial experiments a, tracked from 664 

2008-2019 using remote sensing and ground station data. Remote sensing data 665 

captures environmental patterns at each location, through variables such as b net 666 

primary photosynthesis (black points; locally weighted smoothed spline), from pre-667 

sowing, through the sowing date (red line), anthesis (blue shaded region), and harvest 668 

(orange), to post-harvest. These remote sensing data reveal environmental diversity 669 
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across sites c, shown here by Uniform Manifold Approximation and Projection 670 

clustering, not captured by weather station data.   671 
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 672 

Figure 2. Schematic of model training and evaluation. All machine learning 673 

models are trained a on data all years before a given date (dark green), after excluding 674 

100 randomly selected trials (orange). Each ML model is then used to predict 675 

phenotypic variation in both the b randomly selected holdout trials (orange) and c all 676 

trials in unobserved ‘future’ years (blue) excluded from model training. Model 677 

accuracy when predicting these holdout samples, as represented by the linear model 678 

fit (green) and residuals in scatterplots b and c (RPRMs shown), are used for model 679 

evaluation.  680 
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 681 

Figure 3. Accuracy of yield models subject to holdout trial prediction of 100 682 

random unobserved field trials. Predictions of yield variation in 100 randomly 683 

selected hold-out field trials, by: a recursively partitioned regression model (RPRM) 684 

decision tree, b naïve or unstratified Breiman-Cutler random forests (BCRFs), c year-685 

stratified BCRFs, d an extreme gradient boosting machine, e linear support vector 686 

regression, and f partial least squares regression (RMSE is root mean squared error; a-687 

c sample size N = 3,182; e-f sample size N=3,101; all p<2.2e-16). Horizontal banding 688 

in tree-based models a-d is due to grouping of predictions into terminal decision tree 689 

nodes, y-axis is randomly jittered, blue contour lines indicate kernel density. 690 

  691 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434495doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434495
http://creativecommons.org/licenses/by/4.0/


 692 

 693 
Figure 4. Cross-model and cross-species shifts in accuracy under rolling annual 694 

forecast prediction. Across diverse methods and phenotypes, annual forecast 695 

predictions of a, wheat and b, canola phenotypes display substantial annual shifts in 696 

accuracy, absent any change in model parameters or target sample size. Forecasting 697 

years with high yields, in 2016 and in 2013 for canola (boxplots, bottom), was 698 

coincident with reduced model accuracy, but otherwise models display no clear 699 

pattern. Colours indicate models trained using naïve BCRFs (black), LSVMs 700 

(orange), and PLSR models (blue), whiskers indicate 95% CI. 701 
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702 
Figure 5. Concordance and pattern of variable importance across machine 703 

learning models. Variable importance indicators, as measured by voting heuristics in 704 

BCRF models (y-axes in a and b), the absolute value of coefficients in PLSR models 705 

(x-axes in b and c), or error reduction or shrinkage in RPRM models (x-axis in a, y-706 

axis in c), showed some concordance between models. Likewise, as shown for BCRF 707 

models in d, the predictive importance of time-ordered variables increased throughout 708 

the season to a maximum around flowering and grain filling. Highly ranked variables 709 

across all models included cumulative total rainfall (blue), latent heat flux (fuchsia), 710 
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dosage of the pesticide Clethodim (labelled), total applied sulphur fertiliser (labelled) 711 

and crop taxa (labelled). Models trained using full-season data shown.  712 
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Table 1. Frequency of a million key agronomic traits by species. 713 

Phenotype Wheat Oat Triticale Barley Canola Lupin Chickpea 
Faba 
Bean 

Field 
Pea 

Lentil 

Early Growth 7709 1229 1350 4258 5084 1168 1616 1104 1882 768 

Establishment 9768 2561 2027 6116 6768 1804 1706 1347 2683 1300 

Flowering 50pct 4826 748 734 1848 3326 805 963 566 864 473 

 % Glucosinolates 0 0 0 0 12460 0 0 0 0 0 

Heading date 2084 561 279 1581 1355 453 388 359 313 109 

Hectolitre weight 16684 4585 2473 8318 15170 5140 5343 3706 4460 1993 

Hectolitre weight 
(metadata) 

57863 3281 2212 15445 0 0 0 0 0 0 

Height cm 3223 668 609 1691 2474 571 586 485 516 192 

Lodging score 4334 614 885 2152 3116 756 1036 849 659 465 

Oil content 0 0 0 0 12611 0 0 0 0 0 

Pct below 2.0 mm 11839 3704 1415 6745 11158 4499 3987 3315 3826 1327 

Pct below 2.2 mm 4624 881 1086 1477 3963 577 1356 389 634 620 

Protein 16681 4585 2501 8195 15192 5146 5343 3706 4514 2003 

Protein (metadata) 57863 3281 2212 1298 0 0 0 0 0 0 

Protein meal 1994 309 217 833 10699 343 0 84 605 115 

Sieve 2.0mm 
(metadata) 

42305 1733 1923 0 0 0 0 0 0 0 

Thousand grain 
weight 

13537 3567 1773 7281 12459 3754 4318 3006 3682 1652 

Thousand grain 
weight (metadata) 

62872 3281 2212 17135 1869 0 0 0 0 0 

Site-Relative Yield 73536 4892 2371 22145 18037 2877 5405 3592 4786 2709 

Yield, t/Ha 54658 3873 2081 14117 14929 2747 3677 2224 3896 2260 

Zadoks Score 2282 200 461 1130 1657 162 117 133 345 395 

Pass-Fail Yield 
Status 

73536 4892 2371 17377 18037 2877 5405 3592 4786 2709 

Metadata in brackets indicate metadata-derived measurements that partially overlap reported data. 714 
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Table 2. Yield prediction accuracy over diverse species and models. 715 
 716 

Random Holdout  
Trial Prediction 

Accuracy R2 of models trained on all data to: 

Model TOS 100DAS 200DAS 

RPRM 0.60 0.66 0.76 

Naïve BCRF 0.76 0.79 0.82 

xvBCRF 0.80 0.81 0.84 

XGBM 0.64 0.73 0.78 

LSVM 0.64 0.64 0.68 

PLSR 0.58 0.73 0.76 

Annual Forecasting Predictions 
   

Model TOS 100DAS 200DAS 

RPRM 0.58 0.42 0.59 

Naïve BCRF 0.67 0.71 0.70 

xvBCRF 0.68 0.72 0.69 

XGBM 0.52 0.61 0.69 

LSVM 0.38 0.37 0.45 

PLSR 0.58 0.68 0.74 

DAS (Days After Sowing); TOS (Time of Sowing)  717 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.08.434495doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434495
http://creativecommons.org/licenses/by/4.0/


 39

Table 3. Variable interactions predicting canola yield.  718 

Conditional Rule Chain 
Frequency 
in Forest 

(%) 

Rule 
Error 
rate 

Rescaled 
Importance 

Score 

Rule-
Predicted 

Yield (t/Ha) 

CS Rainfall 150DAS  <= 313.90 &  
Min Reflectance Band 7 160DAS > 0.10 &  

NDVI 180DAS  <= 129.71 
0.19 0.56 1.00 1.70 

CS Minimum Temperature TOS  <= 1259.40 & 
CS Rainfall 150DAS > 260.35 &  

Max Daytime LST 170DAS  <= 52.16 
0.56 1.20 0.59 2.58 

CS Rainfall 140  <= 250.85 &  
Mean EVI 40DBS  <= 0.13 &  

Potential Evapotranspiration Var. 130DAS > 
2.17 &  

Mean Reflectance Band 3 150DAS > 0.037 

0.05 0.23 0.30 1.12 

Mean NDVI 160DAS  <= 0.37 &  
Min Reflectance Band 3 160DAS > 0.048 &  

Max Red Reflectance 170DAS  <= 0.22 
0.14 2.49 0.27 5.25 

CS Rainfall 140DAS  <= 282.05 &  
Min Reflectance Band 2 90DAS > 0.19 &  

Max Potential LHF 110DAS  <= 8.09e+6 &  
Max EVI 150DAS  <= 0.39 

0.34 0.89 0.27 2.18 

CS Rainfall 100DAS  <= 286.20 &  
Max Evapotranspiration 50DBS > 3.69 &  

Min GPP 170DAS  <= 0.017 
0.04 0.21 0.25 1.00 

Max NIR 20DBS > 0.18 &  
Mean Daytime LST 10DAS > 37.58 &  

Mean Red Reflectance 150DAS  <= 0.081 &  
Diquat applied  <= 192.5 

0.02 0.14 0.21 0.79 

CS Rainfall 110DAS > 213.05 &  
Min GPP 40DBS  <= 0.0043 &  
Min NDVI 10DAS  <= 0.26 &  
Max MIR 140DAS  <= 0.11 

0.04 0.57 0.18 2.98 

Reflectance Band 7 120DAS  <= 40.07 &  
Min MIR 150DAS > 0.19 

0.11 0.96 0.14 3.42 

CS Rainfall 100DAS > 290.1 &  
Max NDVI 50DBS > 0.21 &  

Min Net Photosynthesis TOS > 0.0051 &  
Max EVI 170DAS  <= 0.20 

0.14 1.09 0.06 3.52 

CS Rainfall 180DAS > 352.55 &  
Mean Evapotranspiration 60DAS > 8.83 &  

Max EVI 130DAS  <= 0.45 
0.03 0.81 0.04 3.63 

Min Red Reflectance 50DBS > 0.14 &  
Mean Daytime LST 40DBS > 53.25 &  
Net Photosynthesis 190DAS  <= 8.80 

0.01 0.65 0.04 3.69 

Days after Sowing (DAS), Days before sowing (DBS), Cumulative Sum from 90 days before sowing 719 
(CS), Enhanced Vegetation Index (EVI), Normalised Differenced Vegetation Index (NDVI), Gross 720 
Primary Productivity (GPP), Land Surface Temperature in Celsius (LST), Latent Heat Flux (LHF), all 721 
values rounded to 2 significant digits. 722 
  723 
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Table 4. Variable interactions predicting wheat yield. 724 

Conditional Rule Chain 
Frequency 
in Forest 

(%) 

Rule 
Error 
rate 

Rescaled 
Importance 

Score 

Rule-
Predicted 

Yield (t/Ha) 

Mean Night-time LST 40DAS <= 27.33 & 
Evapotranspiration Var. 90DAS <= 1.39e+08 & 

Min Reflectance Band 6 130DAS > 0.23 & 
MIR 190DAS > 56.88 

0.19 0.56 1.00 1.70 

FPAR 120DAS > 43.93 & 
Max Reflectance Band 6 140DAS > 0.21 & 

Max FPAR 170DAS <= 0.42 
0.56 1.20 0.59 2.58 

Max FPAR 100DAS <= 0.60 & 
Min NDVI 130DAS <= 0.41 & 

Mean MIR 180DAS > 0.32 
0.05 0.23 0.30 1.12 

Mean EVI 160DAS > 0.28 & 
Max NIR 170DAS > 0.34 

0.14 2.49 0.27 5.25 

Emissivity Band 32 Var. 70DAS <= 1.089e-06 & 
Mean Reflectance Band 6 140DAS > 0.21 & 

Max MIR 160DAS > 0.21 & 
GPP 190DAS <= 5.80 

0.34 0.89 0.27 2.18 

Mean Reflectance Band 4 80DBS > 0.096 & 
Max MIR 130DAS > 0.29 

0.04 0.21 0.25 1.00 

Mean Reflectance Band 7 140DAS > 0.32 & 
LHF 190DAS <= 3.75e+08 

0.02 0.14 0.21 0.79 

Reflectance Band 6 10DBS > 0.27 & 
Max Net Photosynthesis 150DAS <= 0.036 & 

GPP 160DAS <= 4.72 & 
Min MIR 170DAS <= 0.192 & 
Max GPP 180DAS <= 0.028 

0.04 0.57 0.18 2.98 

Max Reflectance Band 7 30DAS > 0.14 & 
Mean Net Photosynthesis 60DAS <= 0.014 & 

Reflectance Band 6 120DAS > 54.81 & 
Max NDVI 150DAS > 0.53 & 

Max Net Photosynthesis 180DAS <= 0.029 

0.11 0.96 0.14 3.42 

Max LAI 160 DAS <= 1.28 & 
Mean MIR 160 DAS <= 0.19 & 

Max Net Photosynthesis 170 DAS <= 0.029 
0.14 1.09 0.06 3.52 

Mean Solar Radiation TOS > 12.64 & 
LHF 80 DAS > 26341250 & 

Mean NDVI 140 DAS <= 0.59 
0.03 0.81 0.04 3.63 

CS Rainfall 170 DAS > 262.9 & 
NDVI Variance 20 DAS <= 7.67e-07 & 
Min Reflectance Band 7 120DAS > 0.12 

0.01 0.65 0.04 3.69 

Max maximum temperature 180 DAS > 25.40 0.98 2.28 0.03 3.33 

Mean Red Reflectance 130 DAS  >  0.11 & 
Red Reflectance 140 DAS  >  23.11 & 
Net Photosynthesis 180 DAS > 8.63 

0.06 0.47 0.02 2.09 

Abbreviations as in Table 3. 725 
 726 
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