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Abstract (145/150 words) 35 
Although the gene regulatory network controlling germ cell development is 36 
critical for gamete integrity, this network has been substantially diversified 37 
during mammalian evolution. Here, we show that several hundred loci of 38 
LTR5_Hs, a hominoid-specific endogenous retrovirus (ERV), function as 39 
enhancers in both human primordial germ cells (PGCs) and naïve pluripotent 40 
cells. PGCs and naïve pluripotent cells exhibit a similar transcriptome signature, 41 
and the enhancers derived from LTR5_Hs contribute to establishing such 42 
similarity. LTR5_Hs appears to be activated by transcription factors critical in 43 
both cell types (KLF4, TFAP2C, NANOG, and CBFA2T2). Comparative 44 
transcriptome analysis between humans and macaques suggested that the 45 
expression of many genes in PGCs and naïve pluripotent cells has been 46 
upregulated by LTR5_Hs insertions in the hominoid lineage. Together, this 47 
study suggests that LTR5_Hs insertions have rewired and finetuned the gene 48 
regulatory network shared between PGCs and naïve pluripotent cells during 49 
hominoid evolution. 50 
 51 
 52 
Teaser: 53 
A hominoid-specific ERV has rewired the gene regulatory network shared 54 
between PGCs and naïve pluripotent cells. 55 
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Introduction 57 
Mammalian germ cells are first established as primordial germ cells (PGCs) 58 
from pluripotent cells, such as epiblasts, in postimplantation embryos (1-3). 59 
Aberrations in germ cells lead to immediate infertility, genetic or epigenetic 60 
disorders in offspring, and genome integrity impairment. Therefore, the 61 
differentiation of germ cells, including PGCs, is strictly controlled by a complex 62 
gene regulatory network (1-3). 63 
 There is an increasing demand to investigate the gene regulatory 64 
network using human germ cells. However, it is ethically challenging to routinely 65 
access human germ cells, particularly those from humans at early stages of 66 
development. Recent studies have established methodologies to derive human 67 
germ cells such as PGCs or more differentiated cells from human induced 68 
pluripotent stem cells (iPSCs) (4-7). These methods have enabled us to 69 
characterize the mechanisms of human germ cell development in detail. For 70 
example, previous studies using these methods have identified the master 71 
regulators of human PGCs, such as PRDM1, SOX17, TFAP2C, and TFAP2A 72 
(4, 5, 8, 9). 73 

The gene regulatory network controlling the development of germ cells 74 
such as PGCs is critical for gamete integrity. However, substantial differences 75 
exist in this network among mammalian species. For example, various 76 
transcription factors (TFs) are differentially expressed between humans and 77 
mice (10). In particular, SOX17 is a master regulator of PGC fate specification 78 
in humans but not in mice (4, 5, 8). Additionally, a substantial number of genes 79 
are differentially expressed in PGCs between humans and the crab-eating 80 
macaque (Macaca fascicularis), Old World monkey (OWM), although the 81 
expression patterns of the master regulators of PGCs are conserved between 82 
the two species (11). These observations suggest that the gene regulatory 83 
network controlling germ cell development has been finetuned during 84 
mammalian evolution. 85 

Diversification of the gene regulatory network is a molecular basis of 86 
evolution and driven by turnover of regulatory sequences such as enhancers 87 
(12, 13). A substantial proportion of transposable elements (TEs) work as 88 
enhancers and play critical roles in the gene regulatory network and its 89 
evolution (14). Endogenous retroviruses (ERVs) are a class of TEs originating 90 
from past retroviral infections. ERVs are particularly rich sources for creation of 91 
new enhancers since they contain many regulatory elements in their long 92 
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terminal repeat (LTR) sequences, which originally function as viral promoters 93 
(15-17). Notably, since ERV loci belonging to one ERV group share the same 94 
set of regulatory elements, numerous inserted ERV loci can coordinately alter 95 
the expression patterns of multiple genes (17-19). Furthermore, ERVs tend to 96 
possess regulatory elements activated in germline niches to proliferate in the 97 
germline genome (17). Therefore, it is possible that ERVs have been involved in 98 
the evolution of the gene regulatory network in germ cells (20). 99 

Human PGCs exhibit complex and mixed transcriptome signatures 100 
since various gene expression programs are initiated at this stage (8). In 101 
particular, human PGCs highly express genes associated with naïve 102 
pluripotency (9, 21). Pluripotency is classified into naïve and primed states, 103 
which represent the ground and more-differentiated states, respectively (22, 104 
23). Several key TFs, including naïve pluripotency factors (e.g., NANOG, KLF4, 105 
and TFCP2L1) and some master regulators of PGCs (e.g., TFAP2C and 106 
PRDM1), are commonly upregulated in human PGCs and naïve pluripotent 107 
cells (4, 5, 8-10, 24-26). These observations suggest that the core gene 108 
regulatory network, which is driven by the key TFs above, might be shared 109 
between PGCs and naïve pluripotent cells and play essential roles in 110 
establishing cellular identities in these cells. However, this network has not 111 
been explored in detail. In particular, the genes and regulatory elements 112 
commonly upregulated in PGCs and naïve pluripotent cells have been largely 113 
uncharacterized. 114 

In the present study, we investigated the gene regulatory network 115 
shared between human PGCs and naïve pluripotent cells in detail. In this 116 
process, we found that several hundred loci of LTR5_Hs, the youngest human 117 
ERV subfamily expanded in the hominoid lineage (including humans, 118 
chimpanzees, gorillas, orangutans, and gibbons, but not OWMs), work as 119 
enhancers and play pivotal roles in the gene regulatory network. This study 120 
provides evidence suggesting that LTR5_Hs insertions rewired the gene 121 
regulatory network shared between PGCs and naïve pluripotent cells during 122 
hominoid evolution and possibly accelerated germ cell evolution. 123 
  124 
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Results 125 
Similarity of the gene expression signature of PGCs with that of naïve 126 
pluripotent cells 127 
To characterize the transcriptome similarity between PGCs and naïve 128 
pluripotent cells, we compared the transcriptome signatures of in vitro-derived 129 
human PGCs (PGC-like cells; PGCLCs) and naïve embryonic stem cells 130 
(ESCs). We analyzed single-cell RNA sequencing (scRNA-Seq) datasets for in 131 
vitro-derived human male germ cells [Hwang et al. (7)] and for naïve and primed 132 
ESCs [Messmer et al. (27)] (Fig. 1A). The Hwang et al. dataset contains 133 
information for germ cells that were sequentially differentiated from primed 134 
iPSCs: incipient mesoderm-like cells (iMeLCs), PGCLCs, multiplying 135 
prospermatogonia-like cells (MLCs), and mitotically quiescent T1 136 
prospermatogonia-like cells (T1LCs), which are formed via transitional cells 137 
(TCs) (Fig. 1A) (7). Dimension reduction analysis suggested that the global 138 
transcriptome is highly similar between PGCLCs and naïve ESCs, consistent 139 
with previous reports (Fig. 1A) (9, 21). 140 
 To further assess the transcriptional similarity between PGCLCs and 141 
naïve ESCs, we first focused on the genes upregulated in both cell types. 142 
Accordingly, we assigned a PGC-specific expression score for each gene, 143 
which represents how the expression pattern is similar to the defined “PGCLC-144 
specific” expression pattern (Fig. 1B; see Methods). According to this PGC-145 
specific expression score and the log2-transformed fold change (log2 FC) of the 146 
expression score between naïve and primed ESCs, we classified the protein-147 
coding genes into four categories: genes upregulated in both cell types, genes 148 
upregulated only in PGCLCs, genes upregulated only in naïve ESCs, and other 149 
genes) (Fig. 1C and Table S1). As expected, the genes upregulated in 150 
PGCLCs substantially overlapped with those upregulated in naïve ESCs, 151 
supporting increased transcriptional similarity between these cell types (Fig. 152 
1D). Gene Ontology (GO) enrichment analysis showed that the three gene 153 
categories were enriched with distinct functional gene sets (Fig. 1E and Table 154 
S2). Notably, genes related to the “metabolism of carbohydrates” term were 155 
enriched among the genes upregulated in both PGCLCs and naïve ESCs (Fig. 156 
1E), suggesting that the mode of carbohydrate metabolism is similar between 157 
these cell types. Such similarity of a metabolic process between PGCs and 158 
naïve pluripotent cells is reminiscent of observations in mice (28, 29). 159 
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To identify the TFs responsible for the transcriptional similarity between 160 
PGCLCs and naïve ESCs, we classified TFs according to their expression 161 
patterns (Figs. 1C and 1F). Of the key lineage specifiers of PGCLCs (TFAP2C, 162 
SOX17, and PRDM1) (4, 5, 8), TFAP2C and PRDM1 were upregulated in both 163 
PGCLCs and naïve ESCs, while SOX17 was upregulated only in PGCLCs 164 
(Figs. 1C, 1F, and S1A). Furthermore, key regulators of pluripotency (NANOG, 165 
KLF4, and CBFA2T2) were upregulated in both PGCLCs and naïve ESCs. 166 
Moreover, in addition to the native pluripotency-associated TFs (KLF5, 167 
TFCP2L1, and ZNF42) (Figs. 1C, 1F, and S1A), a substantial number of 168 
Krüppel-associated box (KRAB) domain zinc-finger protein (KZFP) family genes 169 
were upregulated only in naïve ESCs (Figs. S2A and S2B), consistent with the 170 
findings of a previous study (30). In contrast, the expression of KZFPs was 171 
generally low in PGCLCs but gradually upregulated as PGCLCs progressed into 172 
later stages of male germ cell development (Fig. S2C). 173 

In addition, we analyzed additional transcriptome datasets for PGCLCs 174 
[Kojima et al. (8) and the newly obtained data] and naïve ESCs [Takashima et 175 
al. (24) and Theunissen et al. (31)] and confirmed that the upregulation of the 176 
TFs mentioned above was observed across datasets (Fig. S1B). 177 
 178 
Regulatory elements underlying the transcriptional similarity between 179 
PGCLCs and naïve ESCs 180 
To identify the regulatory elements underlying the upregulation of genes in both 181 
PGCLCs and naïve ESCs, we investigated published datasets from an assay 182 
for transposase-accessible chromatin using sequencing (ATAC-Seq) obtained 183 
from PGCLCs and naïve/primed ESCs (21, 30). We first identified the open 184 
chromatin regions (i.e., ATAC-Seq peaks) that were activated in PGCLCs or 185 
naïve ESCs compared to primed ESCs and subsequently classified the open 186 
chromatin regions into three categories: those activated in both PGCLCs and 187 
naïve ESCs, those activated only in PGCLCs, and those activated only in naïve 188 
ESCs. Finally, we examined the enrichment of the different categories of open 189 
chromatin regions in the vicinity of (<50 kb from) the genes upregulated in both 190 
PGCLCs and naïve ESCs (Fig. 1G). The open chromatin regions activated in 191 
both cell types were clearly enriched near the genes upregulated in both cell 192 
types, suggesting that the regulatory sequences activated in both cell types are 193 
particularly important for controlling the upregulated genes common to these 194 
cell types (Fig. 1G). 195 
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To identify the TFs critical for controlling the regulatory elements 196 
identified above, we analyzed a publicly available chromatin 197 
immunoprecipitation sequencing (ChIP-Seq) dataset for 1,308 types of TFs 198 
provided by the Gene Transcription Regulation Database (GTRD) (32). For the 199 
various TFs, we computed the enrichment of the binding events in each 200 
category of open chromatin regions compared to the other identified open 201 
chromatin regions (Fig. 1H). The open chromatin regions activated in both 202 
PGCLCs and naïve ESCs were preferentially bound by TFs that were 203 
upregulated in both cell types (TFAP2C, KLF4, and CBFA2T2) or in one of 204 
these cell types (TFAP2A for PGCLCs and NCOA3 for naïve ESCs). This result 205 
supports the importance of these TFs in regulating the genes upregulated in 206 
both cell types (Fig. 1H). 207 
 208 
TEs that are commonly upregulated in PGCLCs and naïve ESCs 209 
To identify the TEs that are activated as enhancers during human male 210 
germline developmental process, including PGCs, we analyzed the expression 211 
dynamics of TEs using the Hwang et al. scRNA-Seq dataset (Fig. 2) (7). We 212 
first used transcriptome data instead of epigenomic data since the 213 
transcriptional activity of TEs is known to reflect enhancer activity, similar to the 214 
case for enhancer RNAs (33). Pseudotime analysis (34) showed that the 215 
expression of TEs dynamically changed during in vitro-derived male germline 216 
development (Figs. 2A and B). As described previously (7), the expression of 217 
most TEs (long interspersed nuclear elements [LINEs], short interspersed 218 
nuclear elements [SINEs], and SINE-VNTR-Alu [SVA] and DNA transposons) 219 
was gradually upregulated with the progression of development, presumably 220 
reflecting the gradual DNA demethylation that occurred during this process (Fig. 221 
2B) (10, 25). On the other hand, the expression of the various ERV subfamilies, 222 
including HERVH, LTR7, and LTR12C, was stage-specific (Fig. 2B) (7). In 223 
particular, the expression of some ERV subfamilies, such as HERVK, LTR5_Hs 224 
and HERVIP10FH, was specifically upregulated in PGCLCs and subsequently 225 
downregulated in cells at later stages (i.e., MLCs, TCs, and T1LCs) (Figs. 2B 226 
and 2C). Notably, HERVK/LTR5_Hs (LTR5_Hs is a type of the LTR sequence 227 
of HERVK) was one of the top-ranked TEs with respect to the PGC-specific 228 
score (Fig. 2D, X-axis). On the other hand, SVA transposons, a group of 229 
chimeric TEs originating partially from HERVK/LTR5_Hs (35), did not exhibit 230 
such a PGC-specific expression pattern (Figs. 2B, 2D, and S3). 231 
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 Previous studies have shown that HERVK/LTR5_Hs is highly activated 232 
in naïve pluripotent cells, such as naïve ESCs and cells in the inner cell masses 233 
of blastocysts (Fig. 2C) (30, 31, 36, 37). Indeed, our data showed that 234 
HERVK/LTR5_Hs was one of the top-ranked TEs upregulated in both PGCLCs 235 
and naïve ESCs (Fig. 2D). Together, these results raise the possibility that 236 
LTR5_Hs may serve as enhancers shared between PGCs and naïve pluripotent 237 
cells and contribute to establishing the transcriptional similarity between these 238 
two cell types. 239 
 240 
Increased enhancer activity of LTR5_Hs in PGCLCs and naïve ESCs 241 
To evaluate the enhancer potential of LTR5_Hs in PGCLCs and naïve ESCs, 242 
we investigated the chromatin accessibility and histone modification status of 243 
LTR5_Hs in these two cell types using ATAC-Seq and ChIP-Seq data targeting 244 
an active histone mark (i.e., H3K27ac), respectively (Fig. 3). We examined the 245 
statistical enrichment of the two types of epigenetic signals on TEs in the 246 
various subfamilies (Figs. 3A and 3B). In terms of both chromatin accessibility 247 
and active histone marks, LTR5_Hs was the top-ranked TE that was 248 
epigenetically activated in both PGCLCs and naïve ESCs. We next examined 249 
whether the chromatin accessibility of LTR5_Hs was greater in PGCLCs and 250 
naïve ESCs than in primed ESCs (Fig. 3C). The open chromatin regions 251 
overlapping with LTR5_Hs tended to be activated in PGCLCs (Fig. 3C, upper 252 
panel) and naïve ESCs (Fig. 3C, right panel) compared to primed ESCs. 253 
Furthermore, LTR5_Hs was highly enriched in the open chromatin regions that 254 
were significantly activated in both PGCLCs and naïve ESCs (Fig. 3C, main 255 
panel and Fig. 3D). Indeed, LTR5_Hs exhibited the strongest enrichment in 256 
these commonly activated open chromatin regions among all TEs (Fig. 3E). 257 
Together, our findings demonstrate that LTR5_Hs serves as an enhancer 258 
shared between PGCLCs and naïve ESCs. 259 
 260 
Potential regulators of LTR5_Hs in PGCs and naïve pluripotent cells 261 
We next surveyed the TFs that bind to LTR5_Hs and control its activity in 262 
PGCLCs and naïve ESCs (Fig. 4 and Table S3). We analyzed the publicly 263 
available ChIP-Seq dataset for 1,308 types of TFs and identified TFs that 264 
preferentially bound to LTR5_Hs. Of these TFs, we extracted TFs that were 265 
expressed specifically in PGCLCs and naïve ESCs (Figs. 4A and 4B). Of the 266 
TFs that preferentially bound to LTR5_Hs, NANOG, TFAP2C, KLF4, and 267 
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CBFA2T2 were upregulated in both PGCLCs and naïve ESCs (Figs. 1C, 4C, 268 
and 4D). Furthermore, SOX17 and TFAP2A were specifically upregulated in 269 
PGCLCs, while KLF5 was upregulated in naïve ESCs (Figs. 1C, 4C, and 4D). 270 
Notably, these TFs are known to play central roles in gene regulation in PGCs 271 
(i.e., SOX17 and TFAP2A) (5, 9), naïve pluripotent cells (i.e., KLF5) (38, 39) or 272 
both cell types (i.e., NANOG, TFAP2C, KLF4, and CBFA2T2) (Fig. 1H) (4, 5, 8-273 
10, 24, 26, 40). Together, our data suggest that the enhancer activity of 274 
LTR5_Hs in PGCs and naïve pluripotent cells appears to be controlled by key 275 
TFs in these cell types. 276 
 277 
Expression patterns of the genes adjacent to LTR5_Hs in PGCLCs and 278 
ESCs 279 
To elucidate the roles of LTR5_Hs in gene regulation in PGCs and naïve 280 
pluripotent cells, we investigated the expression patterns of the genes adjacent 281 
to (<50 kb from) the LTR5_Hs loci with transcriptomic or epigenetic activity (Fig. 282 
5 and Table S4). The genes adjacent to LTR5_Hs tended to be specifically 283 
upregulated in both PGCLCs (Fig. 5A, upper panel) and naïve ESCs (Fig. 5A, 284 
right panel). Notably, the genes adjacent to LTR5_Hs were strikingly enriched 285 
with genes upregulated in both PGCLCs and naïve ESCs (Fig. 5A, main panel 286 
and Fig. 5B). Indeed, of the genes commonly upregulated in PGCLCs and 287 
naïve ESCs, approximately 25% (107/430) were located in the vicinity of 288 
LTR5_Hs (Fig. 5B). These results suggest that LTR5_Hs upregulates adjacent 289 
genes as an enhancer in these cell types. GO enrichment analysis showed that 290 
genes associated with the “glucose metabolism” and “glycogen breakdown” 291 
terms were particularly enriched among the genes adjacent to LTR5_Hs and 292 
upregulated in both cell types (Fig. 5C and Table S5). These are child terms of 293 
the “metabolism of carbohydrates” term, which was significantly enriched for the 294 
genes upregulated in both PGCLCs and naïve ESCs (Fig. 1E). Furthermore, 295 
the glucose metabolism-related genes (i.e., AGL, ENO2, PFKL, PHKA1, and 296 
PYGB) were highly expressed in both PGCLCs and naïve ESCs (Fig. 5D). The 297 
genes play central roles in energy generation via glycolysis (PHKA1 and PYGB) 298 
and glycogenolysis (AGL, ENO2, and PFKL) (Fig. S4). These results suggest 299 
that enhancers derived from LTR5_Hs play a critical role in the regulation of 300 
glucose metabolism in both PGCs and naïve pluripotent cells (see Discussion). 301 
 302 
Gene expression alterations driven by LTR5_Hs during primate evolution 303 
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LTR5_Hs proliferated in hominoid genomes after the divergence of hominoids 304 
and OWMs (17). To elucidate the alterations in gene expression driven by 305 
LTR5_Hs insertions, we performed comparative transcriptome analysis 306 
between humans and an OWM, the crab-eating macaque, focusing on PGCs 307 
and naïve pluripotent cells (Fig. 6). Similar to the findings in Fig. 5A, the results 308 
revealed that genes adjacent to LTR5_Hs in the human genome tended to be 309 
upregulated commonly in PGCLCs and naïve ESCs compared to primed ESCs 310 
(Figs. 6A and 6C). On the other hand, the macaque orthologs of the human 311 
genes adjacent to LTR5_Hs did not show such a clear tendency (Figs. 6B and 312 
6D). Furthermore, the genes upregulated in both PGCs/PGCLCs and naïve 313 
pluripotent cells did not highly overlap between humans and macaques (12%, 314 
61/512 in humans), although the upregulation of key TFs, such as KLF4, 315 
NANOG, TFAP2C, PRDM1, and CBFA2T2, was conserved between the two 316 
species (Fig. 6E and Table S6). Moreover, of the genes that were upregulated 317 
in both PGCs/PGCLCs and naïve pluripotent cells only in humans, 318 
approximately 21% (95/451) were in the vicinity of LTR5_Hs (Fig. 6E). We 319 
hereafter refer to these 95 genes as the genes that are likely to be regulated by 320 
LTR5_Hs (Fig. 6E). Taken together, these results suggest that LTR5_Hs 321 
insertions have altered the expression patterns of their adjacent genes to the 322 
PGC- and naïve-specific patterns in the hominoid lineage. 323 
 324 
Gradual progression of LTR5_Hs-mediated gene expression alterations 325 
during hominoid evolution 326 
The LTR5_Hs insertions started after hominoid-OWM divergence and continued 327 
even after human-chimpanzee divergence (Fig. S5A) (17). This suggests that 328 
the gene expression alterations driven by LTR5_Hs have proceeded gradually 329 
during hominoid evolution. To address this possibility, we first determined the 330 
insertion dates of various LTR5_Hs loci (Fig. S5A and Table S7). 331 
Subsequently, the genes that are likely to be regulated by LTR5_Hs (Fig. 6E) 332 
were classified according to the insertion dates of the associated LTR5_Hs loci 333 
(Figs. S5A and 6F). As shown in Fig. 6F, 24 out of 95 genes were associated 334 
with LTR5_Hs loci that were inserted in the common ancestor of the hominoid 335 
lineage (i.e., the branch “HCGOG” in Fig. 6F). On the other hand, the majority 336 
of the genes (63 genes) were associated with LTR5_Hs loci that were inserted 337 
after the common ancestor of Homininae (human, chimpanzee, and gorilla) 338 
(Fig. 6F). Of these, 34 genes were associated with human-specific LTR5_Hs 339 
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loci (Fig. 6F). Finally, we examined the insertion dates of LTR5_Hs loci that are 340 
likely to regulate genes related to the glucose metabolism pathway (shown in 341 
Figs. 5C and 5D) and the genes encoding proteins that exhibit protein-protein 342 
interactions (PPIs) with the proteins encoded by the genes above (Figs. S5B 343 
and 6G). Most of the core glucose metabolic genes (4 out of 5 genes) were 344 
associated with the LTR5_Hs loci inserted in the common ancestors of 345 
Hominoidea or Hominidae (humans, chimpanzees, gorillas, and orangutans) 346 
(Figs. S5B and 6G). On the other hand, one of the core glucose metabolic 347 
genes (ENO2), the genes whose proteins have PPIs with the proteins of the 348 
core glucose metabolic genes above, and the genes related to oxidative 349 
phosphorylation (i.e., NDUFAB1 and NNT) were associated with the LTR5_Hs 350 
inserted more recently (Figs. S5B and 6G). 351 
 LTR5_Hs insertions continued even after human speciation, and some 352 
LTR5_Hs loci are insertionally polymorphic in modern human populations (41). 353 
To address the roles of these polymorphic LTR5_Hs loci on the gene regulation 354 
in PGCs and naïve pluripotent cells, we identified LTR5_Hs loci that are present 355 
in the human reference genome (GRCh38) but not fixed in 2,504 human 356 
genomes used as a global reference of human genome variation (Table S8) 357 
(42). Subsequently, we checked whether these polymorphic LTR5_Hs loci 358 
overlap with the LTR5_Hs loci that are likely to regulate gene expression (Fig. 359 
S6). Of the 11 polymorphic LTR5_Hs loci detected, two are in the vicinity of 360 
genes (FOLR1 and TNK1) upregulated in both PGCLCs and naïve ESCs. This 361 
suggests that very recent insertions of LTR5_Hs have also contributed to 362 
alterations of gene expression in these cell types. Together, these results 363 
support that the gene expression alterations driven by LTR5_Hs in PGCs and 364 
naïve pluripotent cells proceeded gradually during hominoid evolution. 365 
  366 
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Discussion 367 
Previous studies have suggested that there are similarities in gene expression 368 
between PGCs and naïve pluripotent cells. However, most of these studies 369 
have focused only on several key TFs and have not characterized the similarity 370 
at the whole-transcriptome level (4, 5, 8-10, 21, 24, 26). Furthermore, the 371 
regulatory basis underlying the gene expression similarity between these cell 372 
types has not been elucidated. In the present study, we characterized the 373 
transcriptome signature shared between PGCLCs and naïve ESCs in detail and 374 
illuminated the presence of a shared gene regulatory network between these 375 
cell types (Fig. 1). 376 

We showed that numerous LTR5_Hs loci are activated as common 377 
enhancers in PGCLCs and naïve ESCs (Figs. 3 and 5). Although the enhancer 378 
activity of LTR5_Hs in naïve pluripotent cells has been reported in previous 379 
studies (30, 31, 36, 37), our data highlight the pleiotropic activity of the 380 
enhancers derived from LTR5_Hs, which likely contributes to the establishment 381 
of transcriptome similarity between PGCLCs and naïve ESCs. The results of 382 
our comparative transcriptome analysis between humans and macaques 383 
support the idea that LTR5_Hs insertions have altered the expression patterns 384 
of their adjacent genes in PGC- and naïve pluripotent cell-specific manners 385 
during hominoid evolution (Fig. 6). Furthermore, very recent insertions of 386 
LTR5_Hs loci (i.e., those which are human-specific or even polymorphic in the 387 
human population) likely also contribute to gene regulation in PGCs and naïve 388 
pluripotent cells (Figs. 6F, 6G and S6). Despite the centrality PGCLCs and 389 
naïve ESCs to maintenance of the germline (and by extension the species), our 390 
results suggest that gene expression in these cells may vary between humans 391 
based on polymorphisms in specific LTR5_Hs loci. Moreover, we found that 392 
LTR5_Hs loci are preferentially bound by key TFs shared between PGCLCs 393 
and naïve ESCs, such as NANOG, TFAP2C, KLF4, and CBFA2T2, suggesting 394 
that the enhancer activity of LTR5_Hs is likely regulated by these TFs (Figs. 395 
1C, 1F, 1H, and 4) (4, 5, 8, 9, 24, 26, 40). These results further suggest that 396 
LTR5_Hs has incorporated its adjacent genes into the gene regulatory network 397 
driven by these TFs. Together, our data suggest that LTR5_Hs insertions 398 
gradually rewired the core gene regulatory network shared between PGCs and 399 
naïve pluripotent cells during hominoid evolution. 400 

We found that genes related to the metabolism of carbohydrates, 401 
including glucose, were commonly upregulated in PGCLCs and naïve ESCs 402 
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(Fig. 1E). In mice, the manner of glucose metabolism is similar between PGCs 403 
and naïve pluripotent cells (28, 29, 43, 44): mice PGCs and naïve pluripotent 404 
cells use both glycolysis and oxidative phosphorylation (i.e., both aerobic and 405 
anaerobic respiration, referred to as bivalent glucose metabolism), while primed 406 
pluripotent cells depend exclusively on glycolysis (i.e., anaerobic respiration). 407 
On the other hand, the manner of glucose metabolism in human PGCs is still 408 
unclear, although naïve human ESCs use bivalent glucose metabolism similar 409 
to that in naïve mouse ESCs (28, 43, 45). Together with the previous findings 410 
described above, our data suggest that human PGCLCs may also exhibit 411 
glucose metabolism similar to that of naïve ESCs (i.e., bivalent glucose 412 
metabolism), consistent with the case in mice. Notably, the manner of glucose 413 
metabolism affects the cellular identities of PGCs and naïve pluripotent cells in 414 
mice (29). Therefore, future functional studies seeking to characterize glucose 415 
metabolism in human PGCLCs are warranted. 416 

Previous studies have demonstrated that naïve pluripotent cells in 417 
humans exhibit higher glycolytic activity than primed ones, while naïve 418 
pluripotent cells in mice and common marmosets (a New World Monkey) do not 419 
(45, 46). These findings suggest that glycolytic activity in naïve pluripotent cells 420 
was elevated in the hominoid or more ancestral lineages at least after the 421 
human-marmoset divergence. The data obtained in the present study suggest 422 
that the expression of genes related to glucose metabolism is likely controlled 423 
by LTR5_Hs in PGCs and naïve pluripotent cells and was likely upregulated in 424 
these cells during hominoid evolution (Figs. 5C, 5D, and 6G). Together, these 425 
findings raise the possibility that LTR5_Hs insertions are associated with the 426 
elevations in glycolytic activity in naïve pluripotent cells (and possibly in PGCs) 427 
during hominoid evolution. Since the manner of glucose metabolism 428 
substantially affects the identities of these cells (29), the enhancers derived 429 
from LTR5_Hs may affect the establishment or maintenance of these cells in 430 
humans by modulating glucose metabolism. 431 
 In conclusion, our data suggest that the core gene regulatory network 432 
shared between PGCs and naïve pluripotent cells has been finetuned by 433 
LTR5_Hs insertions during hominoid evolution. This gene regulatory network 434 
modification may contribute to the alterations in cellular characteristics, such as 435 
glucose metabolism, critical for the cellular identities of PGCs and naïve 436 
pluripotent cells. The present study provides insights into the germline evolution 437 
driven by selfish ERVs during hominoid evolution.  438 
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Materials and Methods 439 
Bulk RNA-Seq of PGCLCs 440 
The iPSC (9A13 XY) line used in this study was established in a previous study 441 
[Hwang et al. (7)]. iPSCs were cultured on plates coated with recombinant 442 
laminin-511 E8 (BG iMatrix-511 Silk, Peprotech, Cranbury, NJ) and were 443 
maintained under feeder-free conditions in StemFit Basic04 medium 444 
(Ajinomoto, Tokyo, Japan) containing basic FGF (Peprotech) at 37 °C under an 445 
atmosphere of 5% CO2 in air. For passaging or induction of differentiation, the 446 
cells were treated with a 1:1 mixture of TrypLE Select (Life Technologies, 447 
Waltham, MA) and 0.5 mM EDTA/PBS to enable their dissociation into single 448 
cells, and 10 mM ROCK inhibitor (Y-27632; Tocris, Abingdon, United Kingdom) 449 
was added. 450 

PGCLCs were induced from iPSCs via iMeLCs as described previously 451 
[Sasaki et al. (4)] and purified using the surface markers EpCAM and 452 
INTEGRINα6. Total RNA was extracted from iPSCs and PGCLCs by using an 453 
RNeasy Micro Kit (Qiagen, Venlo, Netherlands) according to the manufacturer’s 454 
instructions. cDNA was synthesized using 1 ng of purified total RNA, and cDNA 455 
libraries were constructed for RNA sequencing by using a SMART-Seq HT Kit 456 
(Takara, Shiga, Japan) and a Nextera XT DNA Library Preparation Kit (Illumina, 457 
San Diego, CA) according to the manufacturers’ instructions. The libraries were 458 
sequenced using a single-end sequencing protocol on an Illumina NextSeq 500 459 
instrument. 460 
 461 
Single-cell and bulk RNA-Seq analyses of human data 462 
In the present study, read count matrices containing both human gene 463 
expression and subfamily-level TE expression data were prepared. To generate 464 
the count matrices, the human reference genome sequence (GRCh38/hg38) 465 
without ALT contigs was used. In addition, the gene and TE transcript 466 
annotation file (i.e., GTF file) generated in a previous study [Hwang et al. (7)] 467 
was used. Briefly, this annotation file contains the gene transcript annotations 468 
for GRCh38/hg38 from GENCODE version 22 (47) and the TE annotations for 469 
GRCh38/hg38 from the RepeatMasker output file (15-Jan-2014). TE loci with 470 
low reliability scores (Smith-Waterman scores < 2,500) were excluded. The 471 
annotation file is described in detail in and is available from the GitHub 472 
repository (https://github.com/TheSatoLab/TE_scRNA-473 
Seq_analysis_Hwang_et_al/blob/master/CellRanger/input/hg38_TE_noAlt_uniq474 
ue.gtf.gz). 475 
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Regarding the scRNA-Seq dataset for human early male germ cell 476 
development [Hwang et al. (7)], the read count matrix provided by Hwang et al. 477 
was used (https://github.com/TheSatoLab/TE_scRNA-478 
Seq_analysis_Hwang_et_al/blob/master/count_matrix_data/vitro/data.merged.v479 
itro.count.csv.gz). The read count matrix was generated using only reads that 480 
were uniquely mapped to the human reference genome. 481 

A read count matrix was generated for the scRNA-Seq datasets for 482 
naïve and primed ESCs [Messmer et al. (27)] and for PGCLCs and iPSCs 483 
[Kojima et al. (8)]. The sequencing reads were downloaded and decrypted 484 
using the fastq-dump command in SRA Toolkit (https://ncbi.github.io/sra-tools/). 485 
If multiple FASTQ files were available for one single cell, the FASTQ files were 486 
concatenated. The sequencing reads were trimmed using Trimmomatic (version 487 
0.39) (48) and subsequently mapped to the human reference genome using 488 
STAR (version 2.6.1c) (49) with the gene-TE transcript model described above. 489 
The read count matrix was constructed using featureCounts (version 1.6.3) 490 
(50). In this process, only reads that were uniquely mapped to the human 491 
reference genome were used. 492 

Bulk RNA-Seq data for naïve and primed ESCs [Takashima et al. (24) 493 
and Theunissen et al. (31)] and for PGCLCs (original data obtained in the 494 
present study) were analyzed according to the same pipeline described in the 495 
above paragraph. 496 
 The read abundance of each TE subfamily was calculated by summing 497 
the read counts of TE loci belonging to the TE subfamily using an in-house 498 
Python script (https://github.com/TheSatoLab/TE_scRNA-499 
Seq_analysis_Hwang_et_al/blob/master/make_count_matrix/script/sum_TE_co500 
unt.subfamily.py). The counts per 10,000 (CP10k) value was calculated as the 501 
relative expression level, and the log2-transformed CP10k with a pseudocount 502 
of one (log2[CP10k+1]) value was subsequently computed. 503 
 Information on the RNA-Seq datasets analyzed in the present study is 504 
summarized in Table S9. 505 
 506 
Pseudotime analysis 507 
Pseudotime analysis of the scRNA-Seq data for in vitro-derived human male 508 
germ cell development [Hwang et al. (7)] was performed using Monocle 2 (34) 509 
according to the procedures in the official tutorial (http://cole-trapnell-510 
lab.github.io/monocle-release/docs/). The expression read count data were 511 
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normalized under the negative binomial distribution assumption. In the 512 
pseudotime analysis, the 1,000 protein-coding genes that were the most 513 
differentially expressed during human male germ cell development were used. 514 
DDRTree was selected for the dimension reduction method. 515 
 516 
Data integration and dimension reduction analysis of scRNA-Seq data 517 
Data integration between the Hwang et al. (7) and Messmer et al. (27) datasets 518 
followed by dimension reduction analysis was performed using Seurat 3 519 
(version 3.2.2) (51) according to the scheme described in the Seurat tutorial 520 
(https://satijalab.org/seurat/vignettes.html). For each scRNA-Seq dataset, the 521 
expression data were normalized using SCTransform (52) by regressing out the 522 
total expression levels of mitochondrial genes. Subsequently, the datasets were 523 
integrated using the Seurat “anchoring” framework (51). In the data integration, 524 
the 3,000 most differentially expressed protein-coding genes in both datasets 525 
were used. The dimension reduction analysis was performed via uniform 526 
manifold approximation and projection (UMAP) (51) based on the integrated 527 
expression data. In the UMAP analysis, the first 30 principal components were 528 
used. 529 
 530 
Definition of the PGC-specific expression score 531 
In this analysis, scRNA-Seq data for in vitro-derived human male germ cell 532 
development [Hwang et al. (7)] were used. The dataset includes data for a 533 
series of cells that were sequentially differentiated from iPSCs (iPSCs, iMeLCs, 534 
PGCLCs, MLCs, TCs, and T1LCs). As shown in the upper panel of Fig. 1B, the 535 
model representing the PGC-specific expression pattern was defined by a 536 
iPSC:iMeLC:PGCLC:MLC:TC:T1LC ratio of 0:0:1:0.5:0:0 (referred to as the 537 
model). In this model, the expression value of MLCs was set to 0.5 since it is 538 
known that the critical TFs of PGCs (e.g., TFAP2A, TFAP2C, SOX17, and 539 
NANOG) remain weakly expressed in MLCs (and in multiplying 540 
prospermatogonia cells, the in vivo counterparts of MLCs) (Fig. 4D) (7). As 541 
shown in the middle panel of Fig. 1B, for each gene and TE subfamily, the data 542 
representing the expression pattern were defined. Briefly, the relative 543 
expression (log2[CP10k+1]) values in the various cells were normalized as Z 544 
scores. Next, the mean expression values in the different cell types were 545 
calculated according to the Z scores above, and these mean expression values 546 
were rescaled to fit between 0 and 1. Here, a series of rescaled mean 547 
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expression values is referred to as the data. Finally, as shown in the lower 548 
panel of Fig. 1B, the sum of squared residuals (SSR) between the model and 549 
the data was calculated, and the SSR value was subsequently −log10-550 
transformed. This −log10(SSR) value was defined as the PGC-specific 551 
expression score. This analysis was performed using an in-house script 552 
(“calc_PGC_specific_expression_score.R”) available from the GitHub repository 553 
(https://github.com/TheSatoLab/LTR5_Hs_PGC_Naive_enhancer). 554 
 555 
Differential gene expression analysis 556 
Differential gene expression analysis was performed using DESeq2 (version 557 
1.26.0) (53). Only protein-coding genes were included in this analysis. Genes 558 
with relatively low expression levels (i.e., those with a 90th percentile of reads 559 
per million value < 0.2) were excluded from the analysis. The statistical 560 
significance was calculated with the Wald test. The false discovery rate (FDR) 561 
value was calculated by the Benjamini-Hochberg (BH) method. 562 
 563 
Classification of protein-coding genes and TFs according to their 564 
expression patterns 565 
In this analysis, the protein-coding genes that were expressed in the dataset of 566 
either Hwang et al. (7) or Messmer et al. (27) were used. Genes upregulated in 567 
PGCLCs were defined as the top 10% of genes with respect to the PGC-568 
expression score among the genes expressed in the Hwang et al. dataset. 569 
Genes upregulated in naïve ESCs were defined as the genes with log2 FC 570 
values > 1 and FDR values < 0.05 in the differential gene expression analysis 571 
between naïve ESCs vs. primed ESCs using DESeq2. According to the above 572 
definitions, the genes were classified as genes upregulated in both cell types, 573 
genes upregulated only in PGCLCs, genes upregulated only in naïve ESCs, 574 
and other genes. 575 
 The TFs shown in Figs. 1C and 1F were selected according to the 576 
following scheme. Briefly, a list of human TFs was downloaded from The 577 
Human Transcription Factors database (version 1.01; 578 
http://humantfs.ccbr.utoronto.ca/index.php) (54). CBFA2T2 was manually added 579 
to the list of TFs. The listed TFs were classified as TFs upregulated in both cell 580 
types, TFs upregulated only in PGCLCs, TFs upregulated only in naïve ESCs, 581 
and other TFs according to the scheme described in the above paragraph. Of 582 
the TFs upregulated only in PGCLCs or only in naïve ESCs, the TFs with a 583 
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mean log2(CP10k+1) value>0.6 in the corresponding cell type were selected. 584 
Of the TFs upregulated in both cell types, the TFs with a mean log2(CP10k+1) 585 
value >0.6 in either PGCLCs or naïve ESCs and with a mean log2(CP10k+1) 586 
value >0.3 in the other cell type were selected. In addition, TFAP2A was 587 
manually added to the list of the shown TFs. Information on the gene 588 
classification is summarized in Table S1. 589 
 590 
GO enrichment analysis 591 
A gene-gene set association file including Molecular Signatures Database 592 
(MSigDB) canonical pathways and InterPro entries was used. The MSigDB 593 
canonical pathways were downloaded from MSigDB 594 
(http://software.broadinstitute.org/gsea/msigdb; version 6.1). InterPro entries 595 
were obtained from BioMart on the Ensembl website (www.ensembl.org; 596 
accessed on 13th February 2018). 597 
 The statistical significance values of the overlaps between the list of 598 
genes of interest and the predefined gene sets were calculated by one-tailed 599 
Fisher’s exact test. FDR values were calculated using BH method. As a 600 
universal (or background) set of genes, the protein-coding genes satisfying the 601 
following criteria were used: 1) genes included in the gene-gene set association 602 
file above and 2) genes whose expression was detected in either of the scRNA-603 
Seq datasets [Hwang et al. (7) or Messmer et al. (27)]. 604 
 In the GO enrichment analysis shown in Fig. 1E, the redundant gene 605 
sets whose members highly overlapped with each other were removed from the 606 
results. First, the gene sets with significant enrichment (FDR < 0.05) were 607 
ranked according to the odds ratio values. Second, if the gene members of a 608 
certain gene set highly overlapped with those of the upper-ranked gene sets, 609 
the gene set was removed from the results. Two gene sets were regarded as 610 
highly overlapping if the Jaccard index was greater than 0.5. This gene set 611 
filtering was performed with an in-house script 612 
(“rmRedundantGS_based_on_OR.py”) available from the GitHub repository 613 
(https://github.com/TheSatoLab/LTR5_Hs_PGC_Naive_enhancer). 614 
 615 
ATAC-Seq and ChIP-Seq analyses 616 
Sequencing reads obtained from ATAC-Seq or ChIP-Seq were mapped to the 617 
human reference genome (GRCh38/hg38) using the BWA-MEM algorithm 618 
(version 0.7.17) (55). Reads mapped to the mitochondrial genome or with low 619 
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mapping scores (mapping quality, MAPQ < 10) were removed using SAMtools 620 
(version 1.10) (56). In addition, PCR-duplicated reads were removed using 621 
Picard MarkDuplicates (version 2.18.16) (http://broadinstitute.github.io/picard/). 622 
Peak calling was performed using MACS2 callpeak (version 2.2.6) 623 
(https://pypi.org/project/MACS2/) with the threshold FDR < 0.05. For ChIP-Seq, 624 
the input control files were used in the peak calling step if the files were 625 
available. If >50,000 peaks were detected in one dataset, only the top 50,000 626 
peaks with respect to statistical significance were used in the downstream 627 
analyses. Information on the analyzed data is summarized in Table S9. 628 
 629 
Identification of the open chromatin regions activated in PGCLCs or naïve 630 
ESCs compared to primed ESCs 631 
First, the union (or merged) set of ATAC-Seq peaks between the two compared 632 
conditions (e.g., naïve ESCs vs. primed ESCs) was defined using the bedtools 633 
merge function (version v2.27.0) (57). Second, from the sequencing read 634 
alignment (BAM) file of each ATAC-Seq run, the reads that were assigned to 635 
the various merged peaks were counted using featureCounts (version 1.6.3) 636 
(50). Finally, the peaks (i.e., open chromatin regions) that were activated (log2 637 
FC > 1; FDR < 0.05) in PGCLCs or naïve ESCs compared to primed ESCs 638 
were identified using DESeq2 (version 1.26.0) (53). Subsequently, the open 639 
chromatin regions were classified into those upregulated in both cell types, 640 
those upregulated only in PGCLCs, those upregulated only in naïve ESCs, and 641 
others. 642 
 643 
Genomic Regions Enrichment of Annotations Tool (GREAT) enrichment 644 
analysis 645 
As shown in Fig. 1G, the enrichment of the open chromatin regions of interest 646 
(the open chromatin regions activated in both cell types, only PGCLCs, and only 647 
naïve ESCs) in the vicinity of the genes of interest (the genes upregulated in 648 
both cell types, only PGCLCs, and only naïve ESCs) was calculated according 649 
to the GREAT scheme (58). This method is explained in detail elsewhere (59). 650 
Briefly, regions of interest were defined as the regions within 50 kb of the 651 
transcription start sites (TSSs) of the genes of interest. Background regions 652 
were defined as the regions within 50 kb of the TSSs of all protein-coding 653 
genes. The lengths of the regions of interest and the background regions were 654 
calculated and referred to as Li and Lb, respectively. In the regions of interest 655 
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and the background regions, the open chromatin regions were counted 656 
(referred to as counts of interest [Ci] and background counts [Cb], respectively). 657 
The fold enrichment value was calculated by dividing Ci/Cb by Li/Lb, and the 658 
statistical significance was evaluated using a binomial test. This analysis was 659 
performed using an in-house script (“great_pairwise.py”) available from the 660 
GitHub repository 661 
(https://github.com/TheSatoLab/LTR5_Hs_PGC_Naive_enhancer). 662 
 663 
Enrichment analysis of TF binding sites on the set of open chromatin 664 
regions of interest 665 
A public ChIP-Seq dataset for 1,308 types of TFs provided by the GTRD 666 
(version 19.10) (32) was used. The ChIP-Seq peak data file “Homo 667 
sapiens_macs2_clusters.interval.gz” was downloaded from the database above 668 
(http://gtrd19-10.biouml.org/) on 20th May 2020. This file contains the single set 669 
of peaks (i.e., clustered peaks) for each TF. In this file, the peaks that had been 670 
computed for the same TF under the different experimental conditions (e.g., cell 671 
line, treatment, and study) were joined into clusters. For the various TFs, we 672 
detected overlaps between the TF binding sites and the open chromatin 673 
regions. Next, we classified the open chromatin regions according to (i) whether 674 
the open chromatin regions overlapped with the TF binding sites and (ii) 675 
whether the open chromatin regions belonged to a set of open chromatin 676 
regions of interest (i.e., those activated in both cell types, only PGCLCs, and 677 
only naïve ESCs). Subsequently, the odds ratios and P values were calculated 678 
with Fisher’s exact test. The FDR values were calculated with the BH method. 679 
 680 
Genomic permutation test 681 
To calculate the fold enrichment of the overlaps between TE loci and a set of 682 
genomic regions of interest (e.g., ATAC-Seq peaks), randomization-based 683 
enrichment analysis (i.e., a genomic permutation test) was performed. The 684 
genomic regions of interest were randomized using the bedtools shuffle function 685 
(57); subsequently, the genomic regions of interest on TE loci in the randomized 686 
data were counted. This process was repeated 100 times, and the mean value 687 
of the counts in the randomized datasets was regarded as the random 688 
expectation value. The fold enrichment was calculated by dividing the observed 689 
count by the random expectation value. The P value was calculated according 690 
to the assumption of a Poisson distribution. The random expectation value was 691 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.09.434541doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434541
http://creativecommons.org/licenses/by-nc-nd/4.0/


used as the lambda parameter of the Poisson distribution. This analysis was 692 
performed using an in-house script (calc_enrichment_randomized.great.py) 693 
available from the GitHub repository 694 
(https://github.com/TheSatoLab/LTR5_Hs_PGC_Naive_enhancer). 695 
 696 
Identification of the potential regulators of LTR5_Hs in PGCs and naïve 697 
pluripotent cells 698 
We first identified the TFs that preferentially bind to LTR5_Hs using public 699 
ChIP-Seq data for 1,308 types of TFs provided by the GTRD (version 19.10) 700 
(32). For the various TFs, we calculated the fold enrichment of the TF-binding 701 
events on LTR5_Hs over the random expectation as well as the statistical 702 
significance using the genomic permutation test described in the above section. 703 
Next, we integrated the TF binding enrichment data with the expression pattern 704 
data of these TFs. To identify the potential regulators of LTR5_Hs in PGCs, the 705 
PGC-specific expression score defined in the above section was used. To 706 
identify the regulators in naïve pluripotent cells, the log2 FC values of the 707 
expression levels between naïve ESCs vs. primed ESCs computed using 708 
DESeq2 (53) were used. The potential regulators of LTR5_Hs were defined as 709 
the TFs satisfying the following criteria: (i) TFs that exhibited significant binding 710 
enrichment on LTR5_Hs (log2-fold enrichment > 2; FDR < 0.05; binding events 711 
> 20); (ii) for regulators in PGCLCs, TFs that were specifically upregulated in 712 
PGCLCs (in the top 10% with respect to the PGC-specific expression score; 713 
mean relative expression (log2[CP10k+1] > 0.4 in PGCLCs); and (iii) for 714 
regulators in naïve pluripotent cells, TFs that were specifically upregulated in 715 
naïve ESCs (log2[FC] > 2; FDR < 0.05; mean relative expression > 0.4 in naïve 716 
ESCs). 717 
 718 
Definition of the genes in the vicinity of active LTR5_Hs 719 
The “active” LTR5_Hs loci, namely, the LTR5_Hs loci with transcriptomic or 720 
epigenetic signals, were defined. Specifically, LTR5_Hs loci with transcriptomic 721 
signals were defined as loci whose expression was detected in >0.5% of the 722 
cell population in any of the following scRNA-Seq datasets: (i) the PGCLC 723 
dataset of Hwang et al. (7), (ii) the PGCLC dataset of Kojima et al. (8), and (iii) 724 
the naïve ESC dataset of Messmer et al. (27). The LTR5_Hs loci with 725 
epigenetic signals were defined as loci that overlapped with the epigenetic 726 
signal peaks in any of the following ATAC-Seq or ChIP-Seq (targeting 727 
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H3K27ac) datasets: (i) the PGCLC ATAC-Seq or ChIP-Seq dataset of Chen et 728 
al. (21) and (ii) the datasets of naïve ESCs in Pontis et al. (30). Information on 729 
the active LTR5_Hs loci is summarized in Table S7. 730 

The genes in the vicinity of the active LTR5_Hs were also defined. The 731 
TSSs of the various transcripts for each protein-coding gene were extracted 732 
from the GENCODE gene annotation model (version 22) (47). The distance 733 
from the TSS of each gene to the closest LTR5_Hs copy was computed using 734 
the bedtools closest function (57). Subsequently, for each gene, the minimum 735 
distance from the TSS to the active LTR5_Hs copy was calculated. A gene in 736 
the vicinity of the active LTR5_Hs was defined as a gene within 50 kb of the 737 
minimum distance defined above. 738 
 739 
scRNA-Seq analysis of crab-eating macaque data and comparative 740 
transcriptome analysis between humans and macaques 741 
For analysis of crab-eating macaque data, the reference genome (macFas5.fa), 742 
gene transcriptome annotation (genes/macFas5.ensGene.gtf; corresponding to 743 
the Ensembl 99 gene transcriptome annotation), and RepeatMasker output files 744 
(macFas5.fa.out) were downloaded from the University of California, Santa 745 
Cruz (UCSC) Genome Browser 746 
(http://hgdownload.soe.ucsc.edu/goldenPath/macFas5/bigZips/) on 23rd March 747 
2020. The gene-TE transcript model for crab-eating macaques was constructed 748 
according to the same procedure used for humans. For the gene model, 749 
transcripts with the flag “retained intron” were excluded. For the TE model, TE 750 
loci with low reliability scores (i.e., Smith-Waterman scores < 2,500) were 751 
excluded. Additionally, the regions of TE loci overlapping with the gene 752 
transcripts were also excluded. The gene-TE transcript model was generated by 753 
concatenating the gene and TE models. 754 

The scRNA-Seq dataset of early embryos and germ cells from crab-755 
eating macaques [Sasaki et al. (11)] was analyzed. Briefly, the sequencing 756 
reads were trimmed using Trimmomatic (version 0.39) (48) and subsequently 757 
mapped to the reference genome using STAR (version 2.6.1c) (49) with the 758 
gene-TE transcript model above. The read count matrix was constructed using 759 
featureCounts (version 1.6.3) (50). 760 

Gene ortholog information between humans and crab-eating macaques 761 
was downloaded from the Ensembl database (version 99) via BioMart 762 
(https://www.ensembl.org) on 23rd March 2020. 763 
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 764 
Phylogenetic analysis of the LTR5 family 765 
LTR5A, LTR5B, and LTR5_Hs loci with Smith-Waterman scores ≥ 2,500 were 766 
extracted from the RepeatMasker output file (15-Jan-2014; for GRCh38/hg38). 767 
Subsequently, the sequences of these LTR5 loci were extracted from the 768 
human reference genome (GRCh38/hg38) using the bedtools getfasta function 769 
(57). A multiple sequence alignment (MSA) of these LTR5 loci was constructed 770 
using MAFFT with the FFT-NS-i algorithm (version 7.407) (60). In the MSA, the 771 
alignment sites with <85% site coverage were eliminated using the in-house 772 
script “select_alignment_site.py” available from the GitHub repository 773 
(https://github.com/TheSatoLab/primate_A3_repertoire_and_evolution/blob/mai774 
n/Trees/script). Subsequently, the sequences that had gaps in >15% of 775 
alignment sites were eliminated using the script above. In addition, tree-based 776 
filtering of the underlying dataset was performed prior to construction of a final 777 
tree. A preliminary tree was constructed, and phylogenetic outlier sequences, 778 
which have extremely long external branches (i.e., standardized external branch 779 
lengths > 3), were subsequently detected and discarded from the MSA used for 780 
final tree construction. The phylogenetic tree of LTR5 loci was reconstructed 781 
using RAxML (version 8.2.11) (61) with the GTRCAT model. 782 
 783 
Investigation of the distribution of orthologs of human LTR5 loci across 784 
Simiiformes 785 
LiftOver chain files were downloaded from the UCSC Genome Browser 786 
(http://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/) (Table S10). Using 787 
the LiftOver program (http://genome.ucsc.edu/cgi-bin/hgLiftOver) and the 788 
LiftOver chain files, the genomic coordinates of LTR5 loci in the human 789 
reference genome were converted to those in another species with the option 790 
“Minmatch=0.5”. If the conversion was successful, we inferred that the orthologs 791 
of the LTR5 loci were likely present in the corresponding genome. 792 
 793 
Estimate of the insertion dates of LTR5_Hs loci and stratification of the 794 
genes likely to be regulated by LTR5_Hs according to the insertion dates 795 
The insertion dates of the various LTR5_Hs loci were estimated according to 796 
information on both (i) the distributions of orthologous insertions across 797 
primates and (ii) the positions of LTR5 loci in the phylogenetic tree. Since there 798 
were a substantial number of missing values in the ortholog distribution 799 
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information, we used phylogenetic information in addition to ortholog 800 
information to robustly estimate the LTR5_Hs insertion dates. First, LTR5_Hs 801 
loci were ordered according to the phylogenetic relationship (from older to 802 
younger). Second, using the framework of a sliding window analysis, the final 803 
positions of LTR5_Hs loci where more than three out of ten LTR5_Hs loci had 804 
orthologous insertions were determined for each primate of interest 805 
(chimpanzee, gorilla, orangutan, gibbon, macaque, and marmoset). For each 806 
species, LTR5_Hs loci that were older than the final LTR5_Hs copy were 807 
regarded as LTR5_Hs loci that were inserted before the divergence between 808 
humans and the corresponding species. Information on the estimated insertion 809 
dates is summarized in Table S7. 810 
 The genes that are likely to be regulated by LTR5_Hs were stratified 811 
according to the insertion dates of the associated LTR5_Hs loci. If the 812 
associated LTR5_Hs of one gene was not included in the phylogenetic tree of 813 
LTR5 loci, the gene was categorized as “not determined”. In addition, if multiple 814 
LTR5_Hs loci with distinct insertion dates were associated with one gene, the 815 
gene was also categorized as “not determined”. 816 
 817 
PPI network analysis 818 
PPI network information for humans was downloaded from the Search Tool for 819 
the Retrieval of Interacting Genes/Proteins (STRING) database (version 11.0; 820 
“9606.protein.links.v11.0.txt.gz”) (62). The PPI links with confidence scores 821 
>400 were used for the analysis. The number of interacting partners of each 822 
gene was computed with the igraph package implemented in R 823 
(https://igraph.org/). 824 
 825 
Detection of LTR5_Hs insertions that are present in the human reference 826 
genome but not fixed in the human population 827 
High-coverage whole genome sequencing (WGS) datasets in 1000 Genome 828 
Project (42) were downloaded from the following URL: 829 
'ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_co830 
verage/'. We searched WGS data for reads spanning the insertion site of of 831 
LTR5_Hs loci as follows. We first detected/annotated LTR5_Hs from GRCh38 832 
using RepeatMasker with repeat sequence library provided from RepBase 833 
(version 24.01). We used the ‘-s -no_is’ options to sensitively detect LTR5_Hs. 834 
Next, we searched for reads skipping annotated LTR5_Hs, that is, reads 835 
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mapping to the genomic regions flanking the LTR5_Hs insertion site (i.e. the 836 
predicted state/sequence of this locus prior to LTR5_Hs integration). We 837 
screened reads in the WGS datasets and extracted soft-clipped reads with 838 
‘SA:Z’ tag. During this step, supplementary reads were excluded from analysis. 839 
We checked the mapped positions of the clipped and non-clipped regions on 840 
GRCh38. Here after, we refer to the clipped and non-clipped regions as to 841 
clipped_seq and non_clipped_seq, respectively. We next filtered out reads of 842 
which clipped_seq and non_clipped_seq are mapping to different 843 
chromosomes. Then we checked whether the clipped_seq and 844 
non_clipped_seq are mapping to flanking regions of an annotated LTR5_Hs 845 
locus. In this step, we considered that a read is a skipping read if both the 846 
clipped_seq and non_clipped_seq map to 25-nt from the ends of an annotated 847 
LTR5_Hs locus. We found 11 LTR5_Hs loci that are likely absent in at least one 848 
datasets. The mean count of skipping reads per LTR5_Hs locus in a single 849 
dataset ranged from 3.4 to 12.8. To exclude potential false positives due to any 850 
technical reasons, such as index hopping, we considered that an individual 851 
lacks at least one allele of a LTR5_Hs copy if two or more skipping reads were 852 
found at the LTR5_Hs locus. 853 
 854 
Data visualization 855 
All data visualizations were performed in R (version 3.6.3). Heatmaps were 856 
drawn using ComplexHeatmap (63). The phylogenetic tree was visualized with 857 
ggtree (http://bioconductor.org/packages/release/bioc/html/ggtree.html). The 858 
PPI network was visualized using ggnet2 (https://briatte.github.io/ggnet/). The 859 
other data were visualized with ggplot2 (https://ggplot2.tidyverse.org/). 860 
 861 
Statistical analysis 862 
Statistical analysis was performed in R (version 3.6.3). Statistical significance 863 
was evaluated by the two-tailed Wilcoxon rank sum test unless otherwise noted. 864 
FDR values were calculated by BH method.  865 
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Figure Legends 1149 
Fig. 1 Characterization of the gene expression signature similarity 1150 
between PGCLCs and naïve ESCs 1151 
(A) Dimension reduction analysis of scRNA-Seq data using UMAP (51). Data 1152 
for in vitro-derived human male germline development [Hwang et al. (7)] and for 1153 
naïve and primed ESCs [Messmer et al. (27)] were integrated and subsequently 1154 
used. The 3,000 protein-coding genes that were the most differentially 1155 
expressed among cells were used. 1156 
(B) Scheme for definition of the PGC-specific expression score. For each gene 1157 
and TE, the sum of squared residuals (SSR) between the model (panel 1) and 1158 
the data (i.e., the normalized mean expression value for each cell type; panel 2) 1159 
was calculated (panel 3). Subsequently, the SSR value was −log10-transformed 1160 
(see Methods). 1161 
(C) Classification of protein-coding genes according to their expression 1162 
patterns. The X-axis indicates the PGC-specific expression score, and the Y-1163 
axis indicates the log2 FC of the expression score in naïve ESCs vs. primed 1164 
ESCs. The top 10% of genes with respect to the PGC-specific expression score 1165 
were regarded as the genes upregulated in PGCLCs. Genes with log2 FC 1166 
values > 1 and FDR values < 0.05 were regarded as upregulated in naïve 1167 
ESCs. The genes were classified into four categories: genes upregulated in 1168 
both cell types (dark gray), genes upregulated only in PGCLCs (purple), genes 1169 
upregulated only in naïve ESCs (brown) and other genes (light gray). In 1170 
addition, TFs (except for KZFPs) with elevated expression were annotated (see 1171 
Methods). The plot for KZFPs is shown in Fig. S2A. 1172 
(D) Association of the set of genes upregulated in PGCLCs with that in naïve 1173 
ESCs. The P value was calculated with Fisher’s exact test. 1174 
(E) GO enrichment analysis results for the three gene categories (genes 1175 
upregulated in both cell types, genes upregulated only in PGCLCs, and genes 1176 
upregulated only in naïve ESCs). The gene sets that exhibited significant 1177 
enrichment (odds ratio >2, FDR < 0.05; denoted by an asterisk) in any of the 1178 
three gene categories are shown. 1179 
(F) Expression patterns of the TFs annotated in (C). A violin plot visualization is 1180 
shown in Fig. S1A. Although TFAP2A was first classified as a gene upregulated 1181 
in both PGCLCs and naïve ESCs, we reclassified it as a gene upregulated only 1182 
in PGCLCs since its expression in naïve ESCs was somewhat low (Figs. 1F, 1183 
and S1A). 1184 
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(G) Enrichment of activated open chromatin regions in the vicinities of the 1185 
upregulated genes. The three categories of open chromatin regions, namely 1186 
those activated in both cell types, only PGCLCs, and only naïve ESCs 1187 
compared to primed ESCs, were detected (log2 FC > 1; FDR < 0.05). 1188 
Subsequently, for the three categories of the open chromatin regions, the 1189 
degrees of enrichment in the vicinity of (<50 kb from) the genes upregulated in 1190 
both cell types, upregulated only in PGCLCs and upregulated only in naïve 1191 
ESCs were calculated using the GREAT scheme (58) (see Method). The P 1192 
values were calculated with a binomial test. 1193 
(H) Enrichment of TF-binding events in the open chromatin regions. A publicly 1194 
available ChIP-Seq dataset provided by the GTRD (32) was used. For each TF, 1195 
the enrichment (odds ratio) of the binding events in the respective categories of 1196 
open chromatin regions compared to the other open chromatin regions was 1197 
calculated. Statistical enrichment was calculated using Fisher’s exact test. Of 1198 
the TFs with FDR values <0.05, the top 10 TFs with respect to the odds ratio 1199 
are annotated. The upregulated TFs shown in (C) and (F) are colored. 1200 
 1201 
Fig. 2 Specific expression of HERVK/LTR5_Hs in PGCLCs and naïve ESCs 1202 
(A) Pseudotime analysis (34) of scRNA-Seq data for in vitro-derived human 1203 
male germline development [Hwang et al. (7)]. The 1,000 protein-coding genes 1204 
that were the most differentially expressed throughout the development process 1205 
were used. 1206 
(B) Expression dynamics of TE subfamilies throughout male germline 1207 
development. The cells are ordered according to the pseudotime shown in (A). 1208 
The 100 TEs that were most differentially expressed among cell types are 1209 
shown. 1210 
(C) ERV subfamilies that were specifically expressed in PGCLCs [annotated in 1211 
(B) in black]. In addition to the data for male germline development, data for 1212 
naïve and primed ESCs [Messmer et al. (27)] are shown. 1213 
(D) Identification of the TE subfamilies that were specifically upregulated in both 1214 
PGCLCs and naïve ESCs. The X-axis indicates the PGC-specific expression 1215 
score (defined in Fig. 1B). The Y-axis indicates the log2 FC of the expression 1216 
score between naïve ESCs vs. primed ESCs. The names of the top 10% TEs 1217 
with respect to the PGC-specific expression score are annotated. 1218 
 1219 
Fig. 3 Potential enhancer activity of LTR5_Hs in PGCLCs and naïve ESCs 1220 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.09.434541doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434541
http://creativecommons.org/licenses/by-nc-nd/4.0/


(A and B) Fold enrichment of the genomic overlap between TE loci and the 1221 
peaks of ATAC-Seq (A) and ChIP-Seq targeting an active histone mark, 1222 
H3K27ac (B). The fold enrichment value compared to the random expectation 1223 
was calculated by the genomic permutation test. The X-axis and Y-axis indicate 1224 
the log2-transformed fold enrichment values in PGCLCs and naïve ESCs, 1225 
respectively. The ATAC-Seq and ChIP-Seq data originated from Pontis et al. 1226 
(30) and Chen et al. (21). 1227 
(C) Upregulation of the chromatin accessibility of LTR5_Hs loci in PGCLCs and 1228 
naïve ESCs compared to primed ESCs. For each ATAC-Seq peak (i.e., open 1229 
chromatin region), the log2 FC scores of the chromatin accessibility in PGCLCs 1230 
vs. primed ESCs (the X-axis) and naïve ESCs vs. primed ESCs (the Y-axis) are 1231 
shown. In the main panel, the peaks overlapping with LTR5_Hs are colored red 1232 
or orange. The peaks are colored red or black if they were upregulated in both 1233 
PGCLCs and naïve ESCs (log2 FC > 1; FDR < 0.05). The color scheme is 1234 
summarized in (D). In the upper and right panels, the marginal distributions 1235 
respectively for the X- and Y-axes are shown (Y [Yes], overlapped with 1236 
LTR5_Hs; N [No], not overlapped). An asterisk denotes P < 1.0E-15 in the two-1237 
tailed Wilcoxon rank sum test. 1238 
(D) The enrichment of LTR5_Hs in the ATAC-Seq peaks upregulated in both 1239 
PGCLCs and naïve ESCs compared to primed ESCs. The P value was 1240 
calculated with Fisher’s exact test. 1241 
(E) The enrichment of the various TE subfamilies in the ATAC-Seq peaks was 1242 
upregulated in both PGCLCs and naïve ESCs. The fold enrichment value 1243 
compared to the random expectation and the statistical significance were 1244 
computed with the genomic permutation test. The number of overlap events is 1245 
shown on each bar. The results for TEs with significant enrichment (FDR < 1246 
0.05; log2 fold enrichment > 1; overlap events > 20) are shown. 1247 
 1248 
Fig. 4 Identification of the potential regulators of LTR5_Hs in PGCLCs and 1249 
naïve ESCs 1250 
(A and B) Identification of the TFs that bind to LTR5_Hs and are upregulated in 1251 
PGCLCs (A) and naïve ESCs (B). For each TF, the statistical enrichment of the 1252 
binding events on LTR5_Hs was calculated based on the publicly available 1253 
ChIP-Seq dataset provided by the GTRD (32). The Y-axis indicates the log2-1254 
transformed fold enrichment of the TF-binding events compared to the random 1255 
expectation. The X-axis indicates the PGC-specific expression score (A) or the 1256 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.09.434541doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434541
http://creativecommons.org/licenses/by-nc-nd/4.0/


log2 FC of the expression score in naïve ESCs vs. primed ESCs (B). The 1257 
symbols are colored according to the statistical significance of the TF-binding 1258 
enrichment calculated by the genome permutation test. The symbol shape 1259 
represents the mean expression level in PGCLCs (A) and naïve ESCs (B). The 1260 
potential regulators of LTR5_Hs are annotated. The potential regulators were 1261 
defined as the TFs satisfying the following criteria: (i) TFs that exhibited 1262 
significant binding enrichment on LTR5_Hs (log2 fold enrichment > 2; FDR < 1263 
0.05; binding events > 20); (ii) for regulators in PGCLCs, TFs that were 1264 
specifically upregulated in PGCLCs (the top 10% TFs with respect to the PGC-1265 
specific expression score; mean relative expression (log2[CP10k+1] > 0.4 in 1266 
PGCLCs); and (iii) for regulators in naïve ESCs, TFs that were specifically 1267 
upregulated in naïve ESCs (log2 FC > 2; FDR < 0.05; mean relative expression 1268 
> 0.4 in naïve ESCs). 1269 
(C) Classification of the potential LTR5_Hs regulators. The X-axis indicates the 1270 
log2-transformed fold enrichment of the TF-binding events. 1271 
(D) Expression patterns of TFs identified as potential LTR5_Hs regulators. 1272 
 1273 
Fig. 5 Expression patterns of the genes adjacent to LTR5_Hs in PGCLCs 1274 
and naïve ESCs 1275 
(A) Association of the expression patterns of genes and their distance from 1276 
LTR5_Hs in the genome. The X-axis indicates the PGC-specific expression 1277 
score, and the Y-axis indicates the log2 FC of the expression score in naïve 1278 
ESCs vs. primed ESCs. Genes were stratified according to whether they were 1279 
present within 50 kb of LTR5_Hs with epigenetic or transcriptomic signals. In 1280 
the main panel, the genes in the vicinity of LTR5_Hs are colored red or orange. 1281 
The genes are colored red or black if they were upregulated in both PGCLCs 1282 
(the top 10% of genes with respect to the PGC-specific expression score) and 1283 
naïve ESCs (log2 FC > 1; FDR < 0.05). The color scheme is summarized in (B). 1284 
In the top and right panels, the marginal distributions respectively for the X- and 1285 
Y-axes are shown (Y [Yes], adjacent to LTR5_Hs; N [No], not adjacent). An 1286 
asterisk denotes P < 1.0E-15 in the two-tailed Wilcoxon rank sum test. 1287 
(B) Enrichment of the genes adjacent to LTR5_Hs among the genes 1288 
upregulated in both PGCLCs and naïve ESCs. The P value was calculated with 1289 
Fisher’s exact test. 1290 
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(C) Results of GO enrichment analysis. The gene sets with significant 1291 
enrichment (FDR < 0.05) are shown. The names of the hit genes are shown on 1292 
each bar. 1293 
(D) Expression patterns of the genes present in the vicinity of LTR5_Hs and 1294 
related to glucose metabolism. 1295 
 1296 
Fig. 6 Comparative transcriptome analysis between humans and crab-1297 
eating macaques 1298 
(A and B) Comparative analysis of the gene expression patterns in 1299 
PGCLCs/PGCs and naïve pluripotent cells between humans (A) and crab-1300 
eating macaques (B). (A) is similar to Fig. 5A, but the X-axis indicates the log2 1301 
FC of the expression score in PGCLCs vs. primed iPSCs. In (B), the X-axis 1302 
indicates the log2 FC of the expression score in early PGCs (ePGCs) vs. 1303 
postimplantation late epiblasts (postL-EPIs; primed pluripotent cells), while the 1304 
Y-axis indicates that in preimplantation epiblasts (pre-EPIs; naïve pluripotent 1305 
cells) vs. postL-EPIs. In (B), the macaque genes are colored red or orange if 1306 
their orthologs in humans are present within 50 kb of active LTR5_Hs. *, P 1307 
value < 1.0E-4; **, P value < 1.0E-15; NS, P value > 0.05. Human scRNA-Seq 1308 
data [Messmer et al. (27) and Kojima et al. (8)] and macaque data [Sasaki et al. 1309 
(11)] were used. 1310 
(C and D) Enrichment of the human genes adjacent to LTR5_Hs (C) or their 1311 
orthologs in macaques (D) among the genes upregulated in both 1312 
PGCLCs/PGCs and naïve pluripotent cells. 1313 
(E) Comparison of the genes upregulated in both PGCLCs/PGCs and naïve 1314 
pluripotent cells between humans and macaques. The numbers in parentheses 1315 
denote the numbers of genes adjacent to LTR5_Hs in the human genome or 1316 
their orthologs in macaques. Only genes with ortholog information are included. 1317 
The 95 genes (i) present in the vicinity of LTR5_Hs and (ii) that exhibited PGC- 1318 
and naïve-specific expression patterns only in humans were defined as the 1319 
genes likely to be regulated by LTR5_Hs. 1320 
(F) Stratification of the genes that are likely to be regulated by LTR5_Hs 1321 
according to the insertion date of the associated LTR5_Hs. On the various 1322 
branches of the primate species tree, the numbers of the genes that are likely to 1323 
be regulated by LTR5_Hs inserted in the corresponding branch are shown. The 1324 
species tree was created with TimeTree (64). Nd, not determined. 1325 
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(G) Expression patterns of the genes likely to be regulated by LTR5_Hs. Genes 1326 
related to glucose metabolism, genes related to oxidative phosphorylation, and 1327 
genes whose proteins engage in PPIs with the proteins encoded by the genes 1328 
above (see Fig. S5B) are annotated. Only genes exhibiting higher expression 1329 
[mean expression (log2[CP10k+1] > 0.3] in both PGCLCs and ESCs are shown. 1330 
  1331 
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Supplementary Figures 1332 
Fig. S1 TFs upregulated in both cell types, only PGCLCs, and only naïve ESCs 1333 
Fig. S2 Expression patterns of KZFPs 1334 
Fig. S3 Expression patterns of SVA transposons 1335 
Fig. S4 Pathway maps of glycolysis and glycogen breakdown 1336 
Fig. S5 Stratification of the genes likely to be regulated by LTR5_Hs according 1337 
to the insertion date of the associated LTR5_Hs 1338 
Fig. S6 Potential roles of polymorphic LTR5_Hs insertions on the gene 1339 
expression in PGCLCs and naïve ESCs 1340 
 1341 
Supplemental Tables 1342 
Table S1 Classification of protein-coding genes according to their expression 1343 
patterns (related to Fig. 1C) 1344 
Table S2 GO enrichment analysis results for the three gene categories (genes 1345 
upregulated in both cell types, genes upregulated only in PGCLCs, and genes 1346 
upregulated only in naïve ESCs) (related to Fig. 1E) 1347 
Table S3 Identification of the potential regulators of LTR5_Hs in PGCLCs and 1348 
naïve ESCs (related to Fig 4) 1349 
Table S4 Association of the expression patterns of genes and their distance 1350 
from LTR5_Hs in the genome (related to Fig. 5A) 1351 
Table S5 Results of GO enrichment analysis using the genes that are present 1352 
nearby LTR5_Hs and upregulated in both PGCLCs and naïve ESCs (related to 1353 
Fig. 5C) 1354 
Table S6 Comparison of the genes upregulated in both PGCLCs/PGCs and 1355 
naïve pluripotent cells between humans and macaques (related to Fig. 6E) 1356 
Table S7 Information on respective LTR5 loci (related to Fig. S5A) 1357 
Table S8 LTR5_Hs loci that are present in the human reference genome 1358 
(GRCh38) but not fixed in the human population (related to Fig. S6) 1359 
Table S9 Sequencing dataset analyzed in the present study 1360 
Table Sx10 LiftOver chain files used in the present study 1361 
  1362 
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Supplementary Figures 1363 
Fig. S1 TFs upregulated in both cell types, only PGCLCs, and only naïve 1364 
ESCs 1365 
(A) Expression levels in various cell types from scRNA-Seq data for male 1366 
germline development [Hwang et al. (7)] and for naïve and primed ESCs 1367 
[Messmer et al. (27)]. The results for the TFs annotated in Fig. 1C are shown. 1368 
(B) Upregulation of TFs in PGCLCs and naïve ESCs observed across datasets. 1369 
For the various datasets, the log2 FC values of the expression scores in 1370 
PGCLCs vs. primed iPSCs or naïve ESCs vs. primed ESCs are shown. An 1371 
asterisk denotes significant upregulation (FDR < 0.05; log2 FC > 1). A gray 1372 
asterisk indicates that the expression level of the gene was not high (the mean 1373 
expression level of the gene was below the 50th percentile for all expressed 1374 
genes) even though significant upregulation was observed. For PGCLCs, the 1375 
data of Hwang et al. (7) and Kojima et al. (8) were analyzed in addition to the 1376 
original data in the present study. For naïve ESCs, the data of Messmer et al. 1377 
(27), Takashima et al. (24), and Theunissen et al. (31) were analyzed. 1378 
 1379 
Fig. S2 Expression patterns of KZFPs 1380 
(A) Classification of KZFPs according to their expression patterns. Highly 1381 
expressed KZFPs in PGCLCs or naïve ESCs are annotated. The results for TFs 1382 
other than KZFPs are shown in Fig. 1C. 1383 
(B) Distributions of the log2 FC values of the expression scores of KZFPs in 1384 
naïve ESCs vs. primed ESCs. The dot color denotes the statistical significance 1385 
of the gene expression change. 1386 
(C) Expression patterns of KZFPs during in vitro-derived human male germline 1387 
development. The heatmap shows the relative mean expression values in the 1388 
various cell types. The upper panel shows the transitions of the individual (gray) 1389 
and mean (red) expression values. 1390 
 1391 
Fig. S3 Expression patterns of SVA transposons 1392 
The results for the SVA transposons included in the heatmap in Fig. 2B are 1393 
shown. 1394 
 1395 
Fig. S4 Pathway maps of glycolysis and glycogen breakdown 1396 
Pathway maps of glycolysis (A) and glycogen breakdown (B). Genes that are 1397 
likely to be regulated by LTR5_Hs (i.e., AGL, ENO2, PFKL, PHKA1, and PYGB) 1398 
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are highlighted in orange. The pathway maps originated from the Reactome 1399 
pathway database (https://reactome.org/) (65). 1400 
 1401 
Fig. S5 Stratification of the genes likely to be regulated by LTR5_Hs 1402 
according to the insertion date of the associated LTR5_Hs 1403 
(A) Stratification of LTR5_Hs loci in the human genome according to their 1404 
insertion dates. (i) Phylogenetic tree of the LTR5 family (including LTR5_Hs and 1405 
related subfamilies [i.e., LTR5A and LTR5B]). (ii) Information on the distribution 1406 
of orthologous insertions of LTR5 loci among primate genomes. According to 1407 
the ortholog distribution and phylogeny, LTR5_Hs loci were stratified into five 1408 
categories (HCGOG, HCGO, HCG, HC, and H). (iii) Epigenetic and 1409 
transcriptomic statuses of various LTR5_Hs loci. (iv) LTR5_Hs loci that are 1410 
likely to be associated with gene regulation. 1411 
(B) PPI network for the genes likely to be regulated by LTR5_Hs. Only PPI links 1412 
among the proteins encoded by the displayed genes are shown. The node color 1413 
denotes the insertion date of the associated LTR5_Hs of the gene. The node 1414 
size is proportional to the number of interacting partners in the whole PPI 1415 
network. The glucose metabolism-related network is circled in orange. The PPI 1416 
information originated from the STRING database (62). 1417 
 1418 
Fig. S6 Potential roles of polymorphic LTR5_Hs insertions on the gene 1419 
expression in PGCLCs and naïve ESCs 1420 
LTR5_Hs loci that are present in the human reference genome but not fixed in 1421 
the human population (referred to as polymorphic LTR5_Hs loci) were identified 1422 
using 1000 Genome Project datasets (65). Information on the polymorphic 1423 
LTR5_Hs loci is summarized in Table S8. 1424 
(A) Comparison of the polymorphic LTR5_Hs loci and the LTR5_Hs loci that are 1425 
likely to regulate the gene expression in PGCLCs and naïve ESCs. The names 1426 
of the overlapped LTR5_Hs loci are denoted ("LTR5_Hs|chr11:72164373-1427 
72165341|+" and "LTR5_Hs|chr3:195927524-195928492|-"). 1428 
(B) Geographical prevalence of the polymorphic LTR5_Hs loci in respective 1429 
human populations. Proportions of individuals with allele(s) lacking the 1430 
LTR5_Hs insertion in respective populations are shown. AFR, African; AMR, Ad 1431 
Mixed American; EAS, East Asian; EUR, European; SAS, South Asian. 1432 
(C) Expression levels of the genes associated with polymorphic LTR5_Hs in 1433 
various cell types. 1434 
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