Abstract
The mechanisms determining the development and individual variability of brain torque (BT) remain unclear. Here, all relevant components of BT were analyzed using neuroimaging data of up to 24,112 individuals from 6 cohorts. Our large-scale data confirmed the population-level predominance of the typical anticlockwise torque and suggested a “first attenuating, then enlarging” dynamic across the lifespan primarily for frontal, occipital and perisylvian BT features. Sex/handedness differences in BT were found and were related to cognitive sex/handedness differences in verbal-numerical reasoning. We observed differential heritability of up to 56% for BT, especially in temporal language areas, and identified numerous genome- and phenome-wide significant associations pointing to neurodevelopment, cognitive functions, lifestyle, neurological and psychiatric disorders, sociodemographic, cardiovascular and anthropometric traits. This study provides a comprehensive description of BT and insights into biological and other factors that may contribute to the development and individual variations of BT.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Adding comparison with recent large-scale studies of brain skew and genetic architecture of morphometric brain asymmetry. Correcting for errors in Figure 1-C, 3-A and 4-A. Adding Figure 8 and Extended Data Figure 1.





