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Abstract

Polygenic risk scores are a popular means to predict the disease risk or disease susceptibility of

an individual based on its genotype information. When adding other important epidemiological

covariates such as age or sex, we speak of an integrated risk model. Methodological advances

for fitting more accurate integrated risk models are of immediate importance to improve the

precision of risk prediction, thereby potentially identifying patients at high risk early on when

they are still able to benefit from preventive steps/interventions targeted at increasing their

odds of survival, or at reducing their chance of getting a disease in the first place. This article

proposes a smoothed version of the ”Lassosum” penalty used to fit polygenic risk scores and

integrated risk models. The smoothing allows one to obtain explicit gradients everywhere for

efficient minimization of the Lassosum objective function while guaranteeing bounds on the

accuracy of the fit. An experimental section on both Alzheimer’s disease and COPD (chronic

obstructive pulmonary disease) demonstrates the increased accuracy of the proposed smoothed

Lassosum penalty compared to the original Lassosum algorithm, allowing it to draw equal with

state-of-the-art methodology such as LDpred2 when evaluated via the AUC (area under the

ROC curve) metric.
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1 Introduction

Polygenic risk scores are a statistical aggregate of risks typically associated with a set of established

DNA variants. If only genotype information of an individual is used to predict its risk, we speak of

a polygenic risk score. A polygenic risk score with added epidemiological covariates (such as age or

sex) is called an integrated risk model (Wand et al., 2020). The goal of both polygenic risk scores

and integrated risk models is to predict the disease risk of an individual, that is the susceptibility
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to a certain disease. Such scores are usually calibrated on large genome-wide association studies

(GWAS) via high-dimensional regression of a fixed set of genetic variants (and additional covariates

in case of an integrated risk model) to the outcome. In this article, we focus on the more general

case of an integrated risk model.

Since the potential for broad-scale clinical use to identify people at high risk for certain diseases

has been demonstrated (Khera et al., 2018), polygenic risk scores and integrated risk models have

become a widespread tool for the early identification of patients who are at high risk for a certain

disease and who could benefit from intervention measures. However, the accuracy of current poly-

genic risk scores, measured with the AUC metric (Area under the ROC Curve, where ROC stands

for receiver operating characteristic, see Mandrekar (2010)), varies substantially for important dis-

eases. For instance, the AUC achieved by state-of-the-art methods ranges from around 0.8 for type

1 diabetes to around 0.7 for coronary artery disease and schizophrenia (Mak et al., 2017), while for

atrial fibrillation the AUC is around 0.64 (Huang and Darbar, 2017), a value which is considered

less than acceptable (Mandrekar, 2010; Hosmer and Lemeshow, 2000). For this reason, increasing

the accuracy of scores is desirable, which is the focus of the proposed smoothing approach.

Several methodological approaches have been considered in the literature to compute a polygenic

risk score or an integrated risk model for a given population, and to predict a given outcome (disease

status). For instance, LDpred of Vilhjálmsson et al. (2015) and LDpred2 of Privé et al. (2019) fit

a Bayesian model to the effect sizes via Gibbs sampling, and obtain a score via posterior means

of the fitted model. The PRS-CS approach of Ge et al. (2020) likewise utilizes a high-dimensional

Bayesian regression framework in connection with a continuous shrinkage prior (hence the suffix

CS for continuous shrinkage) on SNP effect sizes. Fitting genotype data to a disease outcome can

also be achieved by means of a simple penalized regression using the least absolute shrinkage and

selection operator (Lasso) of Tibshirani (1996), for instance using the glmnet package on CRAN,

see Friedman et al. (2010, 2020).

One popular way to fit a polygenic risk score is the ”Lassosum” approach of Mak et al. (2017).

Note that in Mak et al. (2017), no integrated risk models are considered. The Lassosum method

is based on a reformulation of the linear regression problem y = Xβ+ ε, where X ∈ Rn×p denotes

SNP data for n individuals and p SNP locations, y ∈ Rn denotes a vector of outcomes, β ∈ Rp

is unknown, and ε ∼ Nn(0, σ2In) is an n-dimensional, independently and normally distributed
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error term with mean zero and some variance σ2 > 0 (where In denotes the n-dimensional identity

matrix). The authors start with the classic Lasso objective function L(β) = ‖y−Xβ‖2 + 2λ‖β‖1,

where λ ≥ 0 denotes the Lasso regularization parameter controlling the sparseness of the solution,

and rewrite it using the SNP-wise correlation r = X>y as

L(β) = y>y + (1− s)β>X>r Xrβ − 2β>r + sβ>β + 2λ‖β‖1, (1)

where Xr denotes the matrix of genotype data used to derive estimates of LD (linkage disequilib-

rium), λ ≥ 0 is the Lasso regularization parameter controlling the sparseness of the estimate, and

s ∈ (0, 1) is an additional regularization parameter used to ensure stability and uniqueness of the

Lasso solution. Importantly, in Mak et al. (2017) the authors derive an iterative scheme to carry

out the minimization of eq. (1) which only requires one column of Xr at a time, thus avoiding the

costly computation of the matrix X>r Xr ∈ Rp×p.

In this work, we consider a different approach for minimizing eq. (1). Using the methodology

of Nesterov (2005), we propose to smooth the non-differentiable L1 penalty in eq. (1), thus allow-

ing us to compute explicit gradients of eq. (1) everywhere. This in turn allows us to efficiently

minimize the Lassosum objective function using a quasi-Newton minimization algorithm such as

BFGS (Broyden–Fletcher–Goldfarb–Shanno). Besides enabling a more efficient and more accurate

computation of the score, our work extends the one of Mak et al. (2017) in that we do not solely

consider polygenic risk scores, but the more general integrated risk models. Our approach follows as

a special case from Hahn et al. (2020b,a), who propose a general framework to smooth L1 penalties

in a linear regression. Importantly, employing a smoothing approach has a variety of theoretical

advantages following directly from Hahn et al. (2020b). Apart from obtaining explicit gradients for

fast and efficient minimization, the smoothed objective is convex, thus ensuring efficient minimiza-

tion, and it is guaranteed that the solution (the fitted integrated risk model) obtained by solving

the smoothed Lassosum objective is never further away than a user-specified quantity from the

original (unsmoothed) objective of Mak et al. (2017).

We evaluate all aforementioned approaches by computing an integrated risk model in two ex-

perimental studies, one on Alzheimer’s disease using the summary statistics of Kunkle et al. (2019)

and Jansen et al. (2019), and on COPD (chronic obstructive pulmonary disease) using FEV1 data
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of Regan E.A. (2010); NHLBI TOPMed (2018). In the first case, the response is binary, whereas in

the second study the response is continuous. Our simulations demonstrate that smoothing the Las-

sosum objective function results in a considerably enhanced performance of the Lassosum approach,

allowing it to draw equal with approaches such as LDpred2 or PRScs.

Analogously to the original Lasso of Tibshirani (1996), the L1 penalty employed in eq. (1)

causes some entries of arg minβ∈Rp L(β) to be shrunk to zero exactly (provided the regularization

parameter λ is not too small). Therefore, Lassosum performs fitting of the polygenic risk score or

integrated risk model and variable selection simultaneously.

This article is structured as follows. Section 2 introduces the smoothed Lassosum objective

function and discusses its minimization, the theoretical guarantees it comes with, and its drawbacks.

Section 3 evaluates the proposed approach, the original Lassosum approach, as well as additional

state-of-the-art methods in two experimental studies on both Alzheimer’s disease and COPD. The

article concludes with a discussion in Section 4. The appendix contains two figures showing plots

of principal components for the genotype dataset employed in Section 3.1.

The methodology of this article is implemented in the R package smoothedLasso (see function

prsLasso in the package), available on CRAN (Hahn et al., 2020c).

2 Methodology

The Lassosum function of eq. (1) consists of a smooth part, given by y>y + (1 − s)β>X>r Xrβ −

2β>r + sβ>β, and a non-smooth part, the L1 penalty 2λ‖β‖1. Only the latter needs smoothing,

which we achieve with the help of Nesterov smoothing introduced in Section 2.1. Section 2.2 applies

the Nesterov methodology to Lassosum and introduces our proposed smoothed Lassosum objective

function. The proposed smoothed Lassosum actually follows from the more general framework of

Hahn et al. (2020a,b). We demonstrate this in Section 2.3, where we also state the theoretical

guarantees following from the framework.
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2.1 Brief overview of Nesterov smoothing

In Nesterov (2005), the author introduces a framework to smooth a piecewise affine and convex

function f : Rq → R, where q ∈ N. Since f is piecewise affine, it can be written for z ∈ Rq as

f(z) = max
i=1,...,k

(
A[z, 1]>

)
i
, (2)

using k ∈ N linear pieces (components), where [z, 1] ∈ Rq+1 denotes the vector obtained by con-

catenating z and the scalar 1. In eq. (2), the linear coefficients of each of the k linear pieces are

summarized as a matrix A ∈ Rk×(q+1) (with the constant coefficients being in column q + 1).

The author then introduces a smoothed version of eq. (2) as

fµ(z) = max
w∈Qk

{
〈A[z, 1]>,w〉 − µρ(w)

}
, (3)

where Qk =
{
w ∈ Rk :

∑k
i=1wi = 1,wi ≥ 0 ∀i = 1, . . . , k

}
⊆ Rk is the unit simplex in k dimen-

sions. The parameter µ ≥ 0 controls the smoothness of the approximation fµ to f , called the

Nesterov smoothing parameter. Larger values of µ result in a stronger smoothing effect, while the

choice µ = 0 recovers f0 = f . The function ρ is called the proximity function (or prox-function)

which is assumed to be nonnegative, continuously differentiable, and strongly convex.

Importantly, fµ is both smooth for any µ > 0 and uniformly close to f , that is the approximation

error is uniformly bounded as

sup
z∈Rq

|f(z)− fµ(z)| ≤ µ sup
w∈Qk

ρ(w) = O(µ),

see (Nesterov, 2005, Theorem 1). Though several choice of the prox-function ρ are considered in

Nesterov (2005), we fix one particular choice (called the entropy prox-function) in the remainder

of the article for the following reasons: (a) The different prox-functions are equivalent in that all

choices yield the same theoretical guarantee and performance; and (b) the entropy prox-function

leads to a closed-form expression of eq. (3) given by

fµe (z) = µ log

(
1

k

k∑
i=1

e
(A[z,1]>)

i
µ

)
, (4)
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which satisfies the uniform bound

sup
z∈Rq

|f(z)− fµe (z)| ≤ µ log(k), (5)

see Nesterov (2005) and Hahn et al. (2020a,b).

2.2 A smoothed version of the Lassosum objective function

As observed at the beginning of Section 2, it suffices to smooth the non-differentiable penalty

2λ‖β‖1 of the Lassosum objective function, where ‖β‖1 =
∑p

i=1 |βi|. To this end, we apply

Nesterov smoothing to each absolute value independently.

We observe that the absolute value can be expressed as piecewise affine function with k = 2

components, given by f(z) = max{−z, z} = maxi=1,2

(
A[z, 1]>

)
i
, where

A =

 −1 0

1 0


and z ∈ R is a scalar. Substituting this specific choice of A into eq. (4) leads to a smoothed

approximation of the absolute value given by

fµe (z) = µ log

(
1

2
e−z/µ +

1

2
ez/µ

)
. (6)

Substituting the absolute value in the L1 norm in eq. (1) with the approximation in eq. (6) results

in a smoothed version of the Lassosum objective function, given by

Lµ(β) = y>y + (1− s)β>X>Xβ − 2β>r + sβ>β + 2λ

p∑
i=1

fµe (βi). (7)

The first derivative of fµe is explicitly given by

∂

∂z
fµe (z) =

−e−z/µ + ez/µ

e−z/µ + ez/µ
=: gµe (z),

see also Hahn et al. (2020a,b), from which the closed-form gradient of the smoothed Lassosum
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objective function of eq. (7) immediately follows as

∂

∂β
Lµ = (1− s)2(X>X)β − 2r + 2sβ + 2λ

p∑
i=1

gµe (βi).

Using the smoothed version of the Lassosum objective function, given byLµ, and its explicit gradient

∂
∂βL

µ, an integrated risk model can easily be computed by minimizing Lµ using a quasi-Newton

method such as BFGS (Broyden–Fletcher–Goldfarb–Shanno), implemented in the funcition optim

in R (R Core Team, 2014).

In eq. (7), the quantity X is not limited to contain only genotype information. Any data on the

individuals (including additional epidemiological covariates) to compute the integrated risk model

can be summarized in X. The other quantities in eq. (7) are the outcome y (either binary/discrete

or continuous), the correlations r = X>y, and the additional regularization parameter s ∈ (0, 1)

introduced by Mak et al. (2017) used to ensure stability and uniqueness of the Lasso solution.

2.3 Theoretical guarantees

Using the fact that the absolute value can be expressed as a piecewise affine function with k = 2,

see Section 2.2, the error bound of eq. (5) can be re-written as

sup
z∈R
|f(z)− fµe (z)| ≤ µ log(2). (8)

Since in our proposed smoothed version of eq. (7), only the non-smooth L1 contribution of the

original Lassosum objective function of eq. (1) has been replaced, the bound of eq. (8) immediately

carries over to a bound on the smoothed Lassosum. In particular,

sup
β∈Rp

|L(β)− Lµe (β)| ≤ sup
β∈Rp

2λ

∣∣∣∣∣
p∑
i=1

|βi| −
p∑
i=1

gµe (βi)

∣∣∣∣∣ ≤ 2λpµ log(2). (9)

For a given computation of an integrated risk model, the Lasso parameter λ > 0 and the dimension

p are fixed by the problem specification. According to eq. (9), this allows one to make the approxi-

mation error of our proposed smoothed Lassosum to the original Lassosum arbitrarily small as the

smoothing parameter µ→ 0.

As stated in Section 2.1 of Mak et al. (2017), the Lassosum objective of eq. (1) is equivalent to
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a Lasso problem, in particular its convexity is preserved. According to Proposition 2 in Hahn et al.

(2020b), the smooth approximation of eq. (7) obtained via Nesterov smoothing is strictly convex.

Since strictly convex functions have one unique minimum, and since a closed-form gradient ∂
∂βL

µ of

Lµ is available (see Section 2.2), this makes the minimization of our proposed smoothed Lassosum

in lieu of the original Lassosum very appealing.

Furthermore, two additional properties of eq. (7) can be derived from (Hahn et al., 2020b,

Section 4.3). First, the arg minβ∈Rp L
µ(β) is continuous with respect to the supremum norm (Hahn

et al., 2020b, Proposition 4), which implies that the minimum of our proposed smoothed Lassosum

Lµ converges to the one of the original Lassosum as µ→ 0. Second, in addition to this qualitative

statement, the error between the minimizers of the smoothed and original Lassosum function can

be quantified a priori (Hahn et al., 2020b, Proposition 5).

3 Experiments

The proposed smoothed Lassosum approach is obtained by applying Nesterov smoothing to the

L1 penalty of the Lassosum objective function, see eq. (1). A detailed study on the behavior of

Nesterov smoothing applied to an L1 penalty using synthetic data can be found in Hahn et al.

(2020b).

In this section, we evaluate the the performance of our proposed smoothed Lassosum approach

of Section 2.2 in two experimental studies, one fitting an integrated risk model to binary outcomes

in the context of Alzheimer’s disease (Section 3.1), and one fitting an integrated risk model to

continuous outcomes in the context of COPD (Section 3.2). We benchmark our smoothed Lasso-

sum approach, which we refer to as ”SmoothedLassosum”, against the following state-of-the-art

approaches:

1. We benchmark against the original Lassosum of Mak et al. (2017), implemented in the R

package lassosum (Mak et al., 2020), and refer to it as ”Lassosum”.

2. LDpred and LDpred2 (Vilhjálmsson et al., 2015; Privé et al., 2019) compute a polygenic risk

score (but not integrated risk model) by inferring the posterior mean effect size of each marker

by using a prior on effect sizes and LD information from an external reference panel. To run
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LDpred2, we employed the implementation in the R package bigsnpr on CRAN (Privé et al.,

2020) using the Gibbs sampler to estimate effect sizes. We will refer to this algorithm as

”LDpred2”.

3. PRScs of Ge et al. (2019) utilizes a high-dimensional Bayesian regression framework which

places a continuous shrinkage prior on SNP effect sizes, an innovation which the authors claim

is robust to varying genetic architectures. We use the implementation of Ge et al. (2020) and

refer to it as ”PRScs”.

4. We employ a simple penalized regression using the Lasso of Tibshirani (1996) to fit the

genotype data to disease outcome. We employ the Glmnet package on CRAN, see Friedman

et al. (2010, 2020). We will refer to this method as ”Glmnet”.

5. We employ the unsmoothed Lasso of Hahn et al. (2020a), implemented in the R package

smoothedLasso on CRAN (Hahn et al., 2020d). We refer to this method as ”Lasso”.

6. Similarly, we also employ the smoothed Lasso of Hahn et al. (2020a), which is likewise im-

plemented in smoothedLasso on CRAN (Hahn et al., 2020d). We refer to this method as

”SmoothedLasso”.

7. We train a neural network with the Keras interface (Falbel et al., 2020a) to the Tensorflow

machine learning platform (Falbel et al., 2020b). We train a network with four layers, having

20, 8, 4 and 2 nodes. We employ the LeakyReLU activation function, a dropout rate of

0.1, a validation splitting rate of 0.1, the he normal truncated normal distribution for kernel

initialization, and kernel, bias and activity regularization with L1 penalty. The last layer

employs the sigmoid (for Section 3.1) or ReLU (for Section 3.2) activation functions. The

model is compiled for binary crossentropy loss (for Section 3.1) or mean absolute error loss

(for Section 3.2) using the Adam optimizer, evaluated with the AUC (for Section 3.1) or the

mean squared error (for Section 3.2) using 1000 epochs. We refer to the neural network as

”NeuralNetwork”.

8. We employ SBayesR of Lloyd-Jones et al. (2019), a linear regression likelihood which takes

into account GWAS summary statistics and a reference LD correlation matrix, and is coupled
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to a finite mixture of normal priors on the genetic effects. The normal priors allow one to in-

corporate sparsity and to perform Bayesian posterior inference on the model parameters, such

as genetic effects, variance components and mixing proportions. The method is implemented

in the toolbox GCTB (Zeng et al., 2020). We employ SBayesR with default parameters and

refer to it as ”SBayesR”.

9. We run MegaPRS of Zhang et al. (2021). In particular, we employ the robust version Bolt

Predict, as suggested by the authors, using default parameters given the example section

of MegaPRS (a cross validation proportion of 0.1, the --ignore-weights option and a power

parameter of −0.25). MegaPRS is implemented in the LDAK package (Speed, 2021). We

refer to it as ”MegaPRS”.

10. We use epidemiological covariates only in a simple linear regression fit to the response. We

refer to this as ”EpiOnly”.

The Lassosum, LDpred2, PRScs, SBayesR, and MegaPRS algorithms are only designed to fit

polygenic risk scores, but not integrated risk models. To include epidemiological covariates for

these methods (and thus fit an integrated risk model), we first perform a linear regression of

the epidemiological covariates to the outcome, and then run the aforementioned methods on the

residuals. Importantly, in order to apply Lassosum with epidemiological covariates, we additionally

have to recompute the SNP-wise correlation r = X>y as in eq. (1) using the residuals in place of

y.

Note that Glmnet, as well as Lasso and SmoothedLasso, can be applied in two ways. First, they

can be applied to both the epidemiological covariates and genotype information in one go, given all

information is summarized in the design matrix. Second, they can likewise be applied to residuals

after regressing out all epidemiological covariates. For consistency with the way the Lassosum,

LDpred2, PRScs, SBayesR, and MegaPRS algorithms are applied, we also employ Glmnet, Lasso

and SmoothedLasso to residuals after regressing out all epidemiological covariates. Throughout

the section, we fix the Lasso regularization parameter at λ = 2−3, the Lassosum regularization

parameter s in eq. (1) at s = 0.5 (this parameter is used to ensure stability and uniqueness of

solution), and the smoothing parameter of Section 2.2 at µ = 0.1.
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3.1 Alzheimer study

We performed training and testing of different PRS algorithms using summary statistics for Alzheimer’s

disease (AD), together with genotype data imputed on the Haplotype Reference Consortium (HRC),

see McCarthy et al. (2016). The HRC-imputed genotype data was downloaded from Partners

Biobank (Partners, 2020) (described below). The summary statistics are matched to genotype

data for chromosomes 1–22 of 2, 465 patients available in the Partners Biobank. As initial training

weights we considered two sets of summary statistics from two largest available AD GWAS: the

one of clinically defined AD cases of Kunkle et al. (2019), and the one of AD-by-proxy phenotypes

of Jansen et al. (2019).

The dataset of Kunkle et al. (2019) contains a total of 11, 480, 632 summary statistics, given

by p-value, effect size (beta), and standard deviation of the effect size. Each entry is characterized

by its chromosome number, position on the chromosome, as well as the effect allele and non-effect

allele. The dataset of Jansen et al. (2019) contains a total of 13, 367, 299 summary statistics in the

same format as the one of Kunkle et al. (2019).

Partners Biobank is a hospital-based cohort from the MassGeneral Brigham (MGB) hospitals.

This cohort includes collected DNA from consented subjects linked to electronic health records. We

have obtained a subset in April 2019, which included AD cases and controls. Cases were defined

as subjects who were diagnosed with AD based on the International Statistical Classification of

Diseases and Related Health Problems (ICD-10), see World Health Organization (2021). Controls

were selected as individuals of age 60 and greater, who had no family history of AD, no diagnosed

disease of nervous system (coded as G00-G99 in ICD-10), no mental and behavioral disorders (coded

as F01-F99 in ICD-10), and a Charlson Age-Comorbidity Index of 2, 3, or 4 (Charlson et al., 1994;

Karlson et al., 2016).

We performed the following quality control steps on the HRC-imputed genotype data from

Partners Biobank. Relatedness was assessed with KING (Manichaikul et al., 2010; Chen, 2021)

and population structure was assessed with principal components. Principal components were

calculated on a pruned subset (PLINK2 parameters: --indep-pairwise 50 5 0.05) of common variants

(MAF > 0.1). We excluded subjects which had a KING kinship coefficient > 0.0438 (third degree

of relatedness or less) and which were at least 5 standard deviations away from the mean value of
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the inbreeding coefficient. We kept only self-reported non-hispanic white (NHW) individuals and

excluded outliers, defined as subjects which are at least 5 standard deviations away from the mean

value of each of the ten principal components (see Section A). There was a total of 2, 465 subjects

(481 cases) left for analysis.

To compare performance across both datasets, we determined the set of variants which are found

in both datasets, as well as in the genotype data of the Partners Biobank. We randomly selected

20, 000 loci with the --thincount option in PLINK2 (Purcell and Chang, 2020). Although APOE

variants are known to have a very high effect size for AD, explaining around a quarter of the total

heritability (Zhang et al., 2020), including the APOE region in a polygenic risk score or integrated

risk model has been shown to be insufficient to account for the large risk attributed to APOE (Ware

et al., 2020). To fine tune our integrated risk models on other non-APOE variants with much smaller

effect sizes and good prediction power, we decided to keep APOE status as a separate predictor.

At the same time, we made sure that the extended APOE region (from 45, 000, 000−46, 000, 000bp

on chromosome 19) is excluded while the two APOE loci 19:45411941:T:C and 19:45412079:C:T

are kept in the data. This leaves 18, 038 loci.

The final data used for the computation of the integrated risk models consists of these 18, 038

loci, as well as the following epidemiological covariates: age, sex, and APOE status with classes

”none” (encoded as 0), ”single e4” (encoded as 1), or ”e4/e4” (encoded as 2).

In the following experiments, we considered the datasets of Kunkle et al. (2019) and Jansen et al.

(2019) separately and extracted SNP weights based on corresponding effect sizes. Next, we withhold

a proportion p ∈ {0.1, . . . , 0.9} of the pool of Partners genotyped subjects as a validation dataset to

fit an integrated risk model with the aforementioned methods, or to tune the hyperparameters of

the neural network. Finally, we evaluated their performance on the unseen proportion of the data

(1 − p). We report the mean of absolute residuals 1
n

∑n
i=1 |ri| (where n is the number of subjects

in the validation set and ri is the residual for subject i), the AUC (Area under the ROC Curve),

and the correlation between predicted and true outcomes.

Figure 1 shows results for the dataset of Kunkle et al. (2019). A series of observations are

noteworthy. First, the mean of absolute residuals decreases with an increasing proportion of the

data used for training, as expected.

Second, the AUC is very high (reaching almost 0.80) for all methods apart from Lassosum, Lasso,
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Figure 1: Dataset of clinically defined AD cases of Kunkle et al. (2019). Mean of absolute residuals
(left), AUC (middle), and correlation between predicted and true outcomes (right) as a function
of the proportion of data used for training. The behavior of most methods is similar to the one of
LDpred2 or Glmnet.

and NeuralNetwork. Interestingly, it is much less affected than the residuals by the proportion of

data used for training and stays essentially constant for all training proportions. A similar picture

is observed when looking at the correlation between predicted and true outcomes, which is roughly

equally high for all methods apart from Lassosum, Lasso, and NeuralNetwork. After training,

NeuralNetwork achieves a very low mean of absolute residuals, though its AUC and its correlation

between predicted and true outcomes somewhat lacks behind the other methods. NeuralNetwork

does manage to achieve an increased performance for higher proportions of training data (in both

the AUC metric and with respect to the correlation between predicted and true outcomes). This

is sensible, as neural nets traditionally need large amounts of data to be trained on.

Third, using epidemiological covariates only in a simple linear regression fit seems to perform

very well on this dataset. This seems to suggest that actually, the response is well explained by the

genetic factor of APOE status as well as the other non-genetic factors (such as age), and that the

remaining genetic information is rather negligible for prediction.

Fourth, our proposed SmoothedLassosum considerably improves upon Lassosum of Mak et al.

(2017), now drawing equal with state-of-the-art methodology such as LDpred2 with respect to

e.g. the AUC measure. Moreover, our proposed SmoothedLassosum achieves a considerably im-

proved mean of absolute residuals compared to Lassosum, and a state-of-the-art correlation between

predicted and true outcomes. The reason for the reduced performance of Lassosum is not fully un-

derstood. However, it is likely related to the fact that Lassosum is not designed to incorporate
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Figure 2: Dataset of AD-by-proxy phenotypes of Jansen et al. (2019). Mean of absolute residuals
(left), AUC (middle), and correlation between predicted and true outcomes (right) as a function
of the proportion of data used for training. The behavior of most methods is similar to the one of
LDpred2 or Glmnet.

epidemiological covariates (see Section 4 for more details).

The results for the dataset of Jansen et al. (2019), reported in Figure 2, are almost identical to

the ones for the dataset of Kunkle et al. (2019) in Figure 1. In particular, the Lassosum, Lasso,

and NeuralNetwork algorithms generally have the weakest performance on this dataset, while the

other methods perform equally well. Importantly, SmoothedLassosum considerably improves upon

Lassosum by achieving a mean of absolute residuals, AUC, and correlation between predicted and

true outcomes that is similar to the others methods.

The very similar behavior of all methods is expected. The two experiments differ only in the

way the response (AD status) is defined. The response provided in Kunkle et al. (2019) consists of

clinically defined AD cases, while the one of Jansen et al. (2019) contains AD-by-proxy phenotypes

which are based on 13 independent GWS loci having a strong genetic correlation of (at least) 0.81

with the AD status.

3.2 COPD study

The dataset considered in Section 3.1 is characterized through binary outcomes. In this section, we

consider a continuous response in the context of Chronic Obstructive Pulmonary Disease (COPD).

To be precise, we look at the COPDGene study of Regan E.A. (2010), a case-control study of

COPD in current and former smokers (Silverman et al., 1998, 2000) which has been sequenced

as part of the TOPMED Project. The data we employed are available through dbGaP (NHLBI
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Figure 3: Dataset of AD-by-proxy phenotypes of Jansen et al. (2019). Mean of absolute residuals
(left) and correlation between predicted and true outcomes (right) as a function of the proportion
of data used for training.

TOPMed, 2018).

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United

States (NHLBI TOPMed, 2018). The dataset we consider contains subjects with severe COPD,

defined as having a FEV1 ratio of < 40% predicted at an early age (< 53 years) without alpha-1

antitrypsin deficiency (a known Mendelian risk factor for COPD). The FEV1 ratio, also called the

Tiffeneau-Pinelli index describes the proportion of lung volume that a person can exhale within

the first second of a forced expiration in a spirometry (pulmonary function) test. We focus on

chromosome 15 and consider the risk loci for spirometric measures which have been identified in

Lutz et al. (2015). Overall, we consider 8, 881 loci for 3, 495 individuals.

The genetic information is then matched to four epidemiological covariates. The final data used

for the computation of the integrated risk models consists of the 8, 881 loci, as well as age, sex,

pack-years of smoking, and height in centimeters. We aim to predict FEV1 from this data, again

using a classic training (proportion p ∈ (0, 1)) and validation (proportion 1−p) setup. We apply all

algorithms as outlined in Section 3. As the AUC is only defined for a categorical response, we only

report the mean of absolute residuals and the correlation between predicted and true outcomes.

Results of this experiment are given in Figure 3. We observe that measurements are overall
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more unstable than in Section 3.1, though as usual, the mean of absolute residuals in Figure 3 (left)

decreases with an increasing proportion of the data used for training.

Lassosum is again not performing at its best, which is likely related to the fact that we are aim-

ing to predict a continuous response (see Section 4 for more details). The Lasso and SmoothedLasso

approaches are performing average. Together with LDpred2 and PRScs, our proposed Smoothed-

Lassosum approach performs very well and again considerably improves upon the original Lassosum.

Glmnet is again one of the best methods together with SBayesR, MegaPRS, though a fit of epi-

demiological covariates only also seems to have high predictive power. NeuralNetwork seems to be

very suited in this experiment to learn the continuous FEV1 responses from the input data.

The correlation between predicted and true outcomes, shown in Figure 3 (right), confirms that

most state-of-the-art algorithms achieve a comparable correlation of around 0.6. The performance

of our SmoothedLassosum is slightly worse than those methods with regards to the correlation

between predicted and true outcomes, though it again considerably improves upon Lassosum (as

well as Lasso and SmoothedLasso) which seem to have difficulties to predict the continuous FEV1

response from this data.

4 Discussion

This article considered the calculation of an integrated risk model by minimizing a smoothed

version of the Lassosum objective function (see eq. (1)) introduced in Mak et al. (2017). Utilizing

a smoothing approach circumvents the non-differentiability of the L1 penalty of Lassosum, thus

allowing for an efficient minimization with quasi-Newton algorithms.

An experimental study on Alzheimer’s disease and COPD demonstrates that our smoothed

Lassosum improves upon the original Lassosum of Mak et al. (2017), measured with respect to the

mean of absolute residuals, the AUC, and the correlation between predicted and true outcomes,

thus making it draw equal in accuracy with state-of-the-art approaches. The reduced performance

of Lassosum we observe in the simulations is likely attributed to the fact that (a) Lassosum is not

designed to incorporate epidemiological covariates in integrated risk models, and (b) Lassosum is

not designed for continuous responses (as in the COPD study). In particular, although recomputing

the SNP-wise correlation r = X>y in eq. (1) and using them in place of y is a valid approach and
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an admissible input to the Lassosum objective function, the distribution of residuals is different

from the one of the original binary response (without regressing out the covariates), which might

cause a suboptimal behavior of the Lassosum algorithm. In contrast, our smoothed Lassosum works

well in those cases.

Using an L1 penalty in eq. (1) has the advantage that, in analogy to the original Lasso of

Tibshirani (1996), computing arg minβ∈Rp L(β) performs both regression of the polygenic risk score

or integrated risk model and variable selection simultaneously. One potential drawback of our

proposed smoothed Lassosum is that it yields dense minimizers (i.e., unused predictors are not

necessarily shrunk to zero), meaning that the variable selection property is not preserved. This

is not necessarily a disadvantage, as usually the fitted models are only used for risk prediction,

for which our dense models achieve a high accuracy. Moreover, other widespread methods such as

neural networks likewise do not provide variable selection. If necessary, sparseness can be restored

after estimation via thresholding, meaning that all entries βi of the estimate β of eq. (1) satisfying

|βi| < τ for some threshold τ are set to zero. Determining an optimal threshold remains for future

research.
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A Principal component plots

Figures 4 and 5 show the first eight principal components of the HRC-imputed genotype data

downloaded from Partners Biobank. All individuals we kept in the dataset are self-reported non-

hispanic white (NHW) individuals. We excluded outliers which are at least 5 standard deviations

away from the mean value of each of the ten principal components. In Figure 4 we observe a

negligible amount of stratification based on the genotyping chip, but given the even distribution of

cases/controls across chips displayed in Figure 5, this should not affect the results.
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Figure 4: First eight principal components of the HRC-imputed genotype data downloaded from
Partners Biobank. Stratification by genomic chip and affection status.
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Figure 5: First eight principal components of the HRC-imputed genotype data downloaded from
Partners Biobank. Stratification by affection status.
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