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Nature only samples a small fraction in sequence space, yet many more amino acid combinations can 
fold into stable proteins. Furthermore, small structural variations in a single fold, which may only be 
a few amino acids different from the next homolog, define their molecular function. Hence, to design 
proteins with novel molecular functionalities, such as molecular recognition, methods to control and 
sample shape diversity are necessary. To explore this space, we developed and experimentally 
validated a computational platform that can design a wide variety of small protein folds while 
sampling high shape diversity. We designed and evaluated about 30,000 de novo protein designs of 7 
different folds. Among these designs, about 6,200 stable proteins were identified, with predicted 
structures having first-of-its-kind minimalized thioredoxin. Obtained data revealed more protein 
folding rules, such as helix connecting loops, which were in nature. Beyond providing a resource 
database for protein engineering, our data presents a large training data set for machine learning. 
We developed a high-accuracy classifier to predict the stability of our designed proteins. The methods 
and the wide range of new protein shapes provide a basis for the design of new protein function 
without compromising stability. 
  
 
Main 
Proteins are part of most biological processes and function as catalysts, messengers and transporters to 
name only a few of their tasks. Their sequences determine their structures and thereby also their molecular 
role. Yet, natural sequence space only covers a small fraction of possible proteins1. Furthermore, evolution 
of molecular function generally occurs through the diversification of a rather small number of known 
protein families, highlighting the power of shape diversity to increase functional diversity2. Hence, the 
sampling and control of small structural variations with high accuracy represents an important advancement 
in our ability to design new proteins with new functionalities. So far, a few de novo designed globular 
folds3-5 have been generated, but not much structural diversity within a given fold has been purposely 
sampled and importantly, experimentally verified, largely due to the lack of a versatile computational 
infrastructure. Recent advances demonstrated that the exploration of a Loop-Helix-Loop motif enables 
further sampling of existing folds6; however, here we go beyond and describe how to exhaust the plasticity 
of small protein folds at large scale, sampling each secondary structure and loop connector to provide 
diversity within the given restraints (Fig.1, S1).  
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With the advent of oligonucleotide synthesis technology7, thousands of short genes (currently encoding up 
to 64 amino acids, but sizes are increasing as the technology is being further developed) can be affordably 
manufactured as single oligonucleotides in large pools; proteins up to 110 amino acids can also be 
synthesized via assembly methods8. Combined with yeast surface display methods, this has enabled the 
rapid, high-throughput experimental evaluation of the stability of thousands of proteins at a time1. However, 
computational methods for de novo design of monomeric proteins in Rosetta has so far been limited to a 
relatively small number of helical bundle and simple beta-strand-containing topologies. This limitation is 
driven by a reliance on static, pre-determined ranges of secondary structure lengths and backbone torsion 
angles required to form the desired secondary and tertiary structural elements of the protein. The 5 distinct 
areas of torsion angle distributions found in natural proteins as illustrated in the Ramachandran plot (Fig. 
1C) can be described by a five-letter alphabet: ABEG09 (Fig. 1C). This extends the secondary structure 
description beyond the simple alpha-helical (“A”), beta-sheet (“B”) and loop regions to more precisely 
describe the loop conformational space. Design protocols up to this point have been limited to using fixed 
and predefined ABEG0 sequences (as a “blueprint”) for a design trajectory. Proteins are then folded in 
silico by inserting structured fragments curated from the PDB3, 10, 11 into an extended chain. However, this 
approach results in costly computation as it tries to fold an entire protein either at once or in two steps that 
were manually predetermined by an expert. This limits both the scalability of the approach for larger 
proteins, and places restrictions on the sampling of the shape space for a given fold; variations within any 
of the secondary structure lengths are not possible unless a new blueprint file is written, and the trajectory 
is independently restarted. However, the ability to sample and control small geometric variations of a 
protein is crucial for the engineering of new functionalities; for instance, new binding proteins variations 
will have to fit into variously shaped pockets.  
Here, we provide a computational pipeline for the massively parallel design of proteins from scratch to 
rapidly explore the shape diversity of protein folds and take advantage of high throughput experimental 
methods to evaluate it. Our approach enables dynamic conformational and topological sampling of folds 
without prior knowledge of residue-by-residue features. It enables the design of a diverse representation of 
a given fold and allows sampling during each trajectory of (1) the lengths of each secondary structure 
element, (2) the distance(s) between secondary structure elements (which can also be assessed as a 
distribution), (3) the alignment of α-helices and β-strands and, if more than two strands are involved, their 
register shifts and lastly (4) the introduction and placement of bulges to introduce curvature into β-strands5 
(Fig.1). The framework automatically applies previously discovered protein folding rules for loop 
connections4 and their sequence biases and is extendable to new structural features. The RosettaScripts 
XML scheme allows modification of the design strategy without programming knowledge.  
 
 
Results 
The number of amino acids that can be encoded within a single oligonucleotide in large pools caps the 
number of independent secondary structured elements within each protein. For a 230 nt oligo, the maximum 
length of ~64 amino acids allow up to about 6 independent secondary structure elements per fold, sufficient 
for several diverse fold sub-families. We designed several alpha/beta (protein are structurally composed of 
alternating α-helices and β-sheets in which the beta sheets are mostly parallel to each other), alpha-beta(α-
helices and β-sheets that occur separately), and various non-parametric α-helical folds: We built 3- and 4-
helical bundles, supercoiled 4- helical bundles, beta-grasps, ferredoxins, thioredoxin and two folds not 
found in nature (Fig. S2).  
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Each fold is subdivided into segments, which are folded and validated incrementally. During the folding 
trajectory of each segment, different features such as secondary structure length and loop types are varied 
dynamically to find the best set of properties for the new segment in the context of the previously folded 

segments given demanded constraints. This results in a diverse set of backbones for a given fold (Fig. S3). 
For each beta-stand containing fold, introduced loose distance constraints (Suppl. XML files, Fig. S4). The 
algorithm automatically generates the beta-strand pairing between neighboring strands and their directions 
(parallel versus antiparallel) can be specified. It samples the different previously pre-defined loop 
conformations (specific ABEG0 sequences) according to predefined protein folding rules obtained through 
the design of ferredoxins6 and now also this work. After in silico folding of the complete protein, we 
developed two different sequence design protocols. For the first protocol, we sample rotamers of a select 
set of amino acids choices biased depending on how much the protein was surface exposed. The protocol 
starts with low repulsive terms in order to find optimal sidechain interactions and slowly increases itto 
relieve clashes while keeping the strongest interactions intact. As a second protocol, we took advantage of 

 
Fig. 1. Overview. (A) The user can specify for the Fold Architect which ranges of secondary structure (SS) and loop lengths 
should be sampled, what distance constraints should be met and how it is applied (for instance harmonic constraints), what 
register shifts should be sampled or whether beta-stands should have a bulge to introduce a larger curvature. We then use the 
previously reported fragment insertion protocol1 and filter for geometrically realistic backbone conformation before designing 
the sequence of the new poly-valine construct. After sequence design, the decoys are then screened for their stability using 
varying concentrations of trypsin and chymotrypsin. Information gained from the stable designs was fed back into the 
FoldArchitect.(B) Various distance constraints (yellow lines) and secondary structure element pairing can be encoded in a 
fold-description file (following an xml format) that enables to record next to length variations also specific or ambiguous 
distance constraints, pairing of helices or helix-sheet-helix, sheet orientations or bulge insertions into beta-sheets. (C) 
Ramachandran plot and the ABEG0 regions and the format of how loop connectors can be specified. 
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“pair-motifs”. Pair-motifs are side-chain pairings observed in high resolution crystal structures of natural 
proteins and have previously successfully guided the design of de novo oligomeric assemblies12. Before 
executing the same rotamer-based design approach as described for the first one, we introduce first paired-
amino acids. This also tremendously reduced the compute time to re-design the resulting poly-valine 
backbone. Interestingly, it improved also the rate of successful designs for 3-helical bundles significantly 
(Fig. S5). Likely, because motifs were selected heavily from larger helical protein-protein interfaces12.We 
selected designs for each topology and sequence design protocol based on a set of filter terms and their 
computed energies (Methods, SI). Each design has a unique three-dimensional conformation and a unique 
sequence predicted to be near-optimal for that conformation(Fig. S3).  
 
We experimentally characterized 31,500 sequences reflecting these 7 folds, including about 2,300 
randomized sequences as negative controls. The pool was subjected to a titration of trypsin and 

chymotrypsin as previously reported1. However, additional selections and duplicates were also performed 
to improve accuracy (Methods). We fit EC50 values for over 31,180 sequences (including control 
sequences) for both proteases for which we then calculated a stability score as previously reported1 (Fig.S6). 
To improve comparability between assays, we added five proteins (Fig. 2C) spanning a wide range of 

 
Figure 2. Characterization of designed small proteins using a protease-based thigh-high put screen on the surface of 
yeast and biochemical analysis of individually expressed proteins. (A) Cartoon scheme of yeast surface display experiment. 
Unfolded proteins are cleaved, and thereby will not be fluorescently labeled. (B) Histograms of FITC fluorescence after 
incubation of yeast cells displaying the designed proteins as a pool with increasing concentration of trypsin; cells were labeled 
with a c-Myc antibody conjugated to FITC. (C) Previously evaluated proteins with known stability scores were included in the 
pool of the query proteins as a “stability score ladder” to help adjust for protease activities. (D) Bar chart of all designs binned 
at each indicated stability threshold together with (E) a bar chart of the success rate of each designed topology for a given 
stability score bin.  
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previously measured stability scores using the same protease-based stability evaluation procedure and 
thereby representing a “stability score ladder” as internal control. This ladder allows adjustment for the 
activity of each enzyme batch. Digestion of the randomized sequences enabled to determine the stability 
threshold (Fig. S7). 
 
We randomly picked 20 designs with different topologies and stability scores for detailed characterization 
(Table S1). Of these, 18 proteins expressed soluble in E. coli. The F2 and F4 designs appeared to be dimeric 
as determined by size exclusion chromatography (SEC, Fig. S8). For all other designs we measured the 
secondary structure of the monomeric protein using circular dichroism (CD) and found them all to be 
folded. We measured thermostability for several of them (Fig. 3) and found them to be highly stable.  We 
tested one design (ThioFL24) that had a high trypsin stability score, yet a negative score for chymotrypsin. 
ThioFL24 was soluble and monodisperse (Table S1); however, the CD spectrum indicated that it was only 

partially folded (Fig. 3), demonstrating that 
the use of two proteases is important for this 
high-throughput screen.  
 
Interestingly, folds varied in their success 
rates (Fig. 2). Three helical bundles generally 
showed a higher success rate than any of the 
other folds; this is consistent with previous 
report1. Surprisingly, the not-seen-in-nature 
folds F2 and F4 folds had higher success rates 
than the naturally occurring folds that 
contained alpha and beta-strands; while 
thioredoxin and the super helical-coiled four 
helical bundles (coil) had the lowest. The coil 
designs alternate between shorter and longer 
helices while having specific distance 
constraints to guide supercoiling. Fewer 
secondary structure contacts and a smaller 
core when compared to the three helical 
bundles likely increase the room for error.  

 

 
Figure 3. Biochemical and biophysical characterization of a subset 
of the designed proteins. Circular dichroism spectra measured at 
25ºC,95ºC and 25ºC after heating up to 95ºC and are in agreement 
with the expected secondary structure content of the design models. 
MRE, mean residue ellipticity. Melting curves show MRE at 222 
nm at increasing temperatures. 

M
R
E

M
R
E

M
R
E

M
R
E

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2021.03.10.434454doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.10.434454


 

6 
 

So far, the de novo design of a thioredoxin fold has not been reported. Here, we attempted the even more 
challenging problem of minimalizing 
the overall fold. The thioredoxin fold 
can be subdivided into an N-
terminal βαβ motif and a C-
terminal ββα motif (Fig. 4A), which is 
commonly connected by a small helix 
(α0 or α2, Fig.4A,B); the βαβ element 
(characteristic for the alpha/beta 
family) is found in many larger 
proteins as it is the connecting motif 
that enables the expansion of the 
protein domain space2. Its 
incorporation will generally allow for 
extensions of the fold and thereby 
provides means to build larger 
proteins. Hence, the ability to design 
this element with high shape diversity 
provides a tool for building larger or 
more shape-diverse folds and 
domains. Commonly, the thioredoxin 
fold has a three-layer β/α sandwich 
with the central sheet formed by five 
strands flanked by two α-helices on 
each side. However, many of 
thioredoxin-like proteins have 
variations in their α-helices or the fifth 
β-strand (Fig. 4A,B). We designed a 
minimal version of the thioredoxin 
fold, containing only the core 4 sheets 
and 2 parallel or anti-parallel helices, 
replacing the common α2 helix with 
an extended loop (Fig. 4G). We 
solved the structure of one of our 
designs using nuclear magnetic 
resonance (NMR, Fig. 4D, S9, S10, 
Table S2). The NMR ensemble agrees 
with the designed model with a 1.64 
Å rmsd difference that derives mostly 
from the last helix. All β-strands were 
very close as they were designed (0.9 Å C-alpha rmsd) which therefore present the first accurately de novo 
designed thioredoxin fold.   
 
To explore small alpha+beta proteins, we sampled variations of the beta-grasp (Fig. S11) and extensively 
variations of the ferredoxin (Fig. S12) fold. Previous attempts to design very small versions of the 
ferredoxin fold have failed, resulting in unfolded proteins4. We extensively sampled secondary structure 
lengths and registers for ferredoxin fold and found that there are indeed geometric limitations (Fig. S12), 
likely due to the inherent requirement of right-handed strand-helix-strand motifs. However, we were able 
to design small and stable variations of this fold of as few as 55 amino acids in length (Fig. S12E).  
  

 
Figure 4. (A) Connectivity of the basic thioredoxin fold showing N and C 
motif; where the N motif represent the domain extending of fold expanding 
βαβ motif. The commonly found α0 or α2 was replaced for a minimized 
thioredoxin fold. (B) Thioredoxin folds found in nature and the here 
designed synthetic versions. (C) SEC of ems_thioM_802 shows single 
defined peak using a superdex S75). (D) Lowest energy NMR structure 
(grey) compared to the the model of ems_thio-802. (E) Distances measured 
between secondary structure elements and (F) their variations found in stable 
(blue) and unstable (red) designs. (G) Loop variations of the connecting loop 
L3 which replaces the α2 helix of natural thioredoxins, several 
conformations allow a stable protein. (H) Definition of geometric 
descriptions measured to evaluate shape diversity, including how the sheet 
dihedral were calculated (I) interdependence of structural factors reveal 
several correlations within a fold. 
 

glutaredoxin synthetic thioredoxinthioredoxin

*
A B

α2

d3

d4
d2

 

d1

L3

C

L3

D

E F

helix mid point 
distance (hx-d)

helix 1 
opening angle (h1a)

helix 2 
opening angle (h2a)

MH2

MH1
Sheet dihedral (E_dih)

G

H I

d1

d2

d4

β1β2 β3
β4

d3

hx-d

E-dih

h-dih

h1a

h2a

hx
-d

h-
di

h

h1
a

h2
a

E
-d

ih



 

7 
 

Parametrically de novo designed helical bundles13 or repeat proteins14 are highly stable. However, the non-
parametric small helical bundle fold space can provide much 
more diverse shapes for new molecular functions. These 
topologies, particularly four helical bundles (4H), have not been 
extensively sampled. Furthermore, protein design rules for the 
loop connections and angle variations are missing; having 
revealed these with our three and four helical bundles (3H), we 
implemented these connector rules to our design platform (Fig. 
S13, S14). To further test our design algorithm, we explored 
beyond naturally occurring alpha-beta folds. We derived the 
topologies that have αββββα and βααβββ, named F2 and F4 fold 
(Fig. S1). F2/4 designs expressed well and showed a distinct peak 
using SEC. However, the designs appeared to be dimeric 
(Fig.S8). Likely, the presence of interconnectedness in a fold, 
such the β3 strand swap to connect the two motifs of the 
thioredoxin fold, biases against an opening of the structure to 
form dimers. Folds that have a directly linear connection of 
secondary structure elements may require further optimization 
through disulfide connections or perhaps negative design 
elements that discriminate against a swapped dimeric 
conformation. However, our pipeline was readily able to produce 
models for these folds that appeared stable against proteolysis.  
 
To evaluate shape diversity, we compared both protease-stable 
and unstable proteins for each fold in distances between 
secondary structure elements, register shifts, dihedral of the outer 
beta strands to describe curvature of the sheets, dihedrals between 
adjacent secondary structure elements, interhelix distance, and 
helix angles given specific phi and psi angles in their loops, 
demonstrating that each fold has local plasticity and validating 
our basic rules of de novo protein design (Fig.2, S11-15).  
 
Having a large and diverse set of stable and unstable proteins of 
different folds available with varying shapes and physical 
properties, we were able to re-evaluate stability-defining features 
and develop a classifier based on a Random Forest model that 
determined the stability of a given fold with high accuracy. In 
addition, to previously described physical and statistical features 
for stability, we evaluated additional features describing residue 

interaction networks and energetic contributions of individual amino acids within tightly connected hubs 
of residues, resulting in a total of 110 sequence- and structure-based features. The most predictive of the 
newly introduced features, was the overall energy contributions of the most connected residue: meaning 
residues that contact many other residues are interaction hubs, they tend to be generally highly buried and 
likely provide the “glue” of the hydrophobic core. Hence, favorable energetics of these “hub” residues is 
essential for the protein core formation. Potential clashes likely will result in instability. However, in terms 
of predictive power we observed as previously seen, that correct local geometry as measured through 
alignment with short structural fragments (Fig. S16) is the most predictive feature for the folding of a de 
novo designed protein, followed by the number of hydrophobic residues within the protein core. However, 
unlike previously, by using our larger and more diverse fold data set and descriptive features, we were able 
to train a model on multiple folds, instead of one-fold at a time1 and could predict stabilities of even unseen 

 
Figure 5. (A) Receiver operator curve 
(ROC) illustrating the predictive power of 
our Random Forest classifier. To avoid 
potential bias, we compared the ROC of 
predicting stabilities either for any protein 
within the whole set vs a ROC of the 
different folds after training on the other 
folds within the set (B) AUCs of prediction 
of an unseen fold; for this prediction, one 
fold at a time was omitted, and the classifier 
was trained on all other folds to predict 
stability of the unseen fold.  (C) Summary of 
AUCs of predictions for individual folds. 
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folds (Fig. 5C). We believe that our more diverse scaffold set is enabling us to learn more general 
descriptions of these folds and increases the predictive power of the model.  
 
Discussion 
While previous work simulated the space of a handful of folds4 using the elaborate blueprint-based 
protocols combined with manually defined multi-step assemblies of larger folds, only a few designs were 
experimentally verified in solution, with the exception of the very short mini-proteins that were examined 
in context of the development of the protease-based high throughput screen. We built upon previously 
discovered protein design rules3, 4, including connection rules for strands and helices, and provide a versatile 
fold assembly and design pipeline that allows dynamic sampling of a given fold during the in silico folding 
trajectory. Our extensive sampling and high throughput evaluation allowed us to examine thousands of 
designs at once revealing geometric diversity of different folds while also exposing more rules for protein 
design, such as rule to connect helical elements; which we in turn incorporated into the design algorithm. 
Lastly, our extensive study allowed us to develop a simple prediction model that will help future design 
approaches to identify stable proteins. The algorithm is implemented into the RosettaScripts15 framework, 
which enables all design features and protocols to be accessed and executed in form of XML files without 
prior programming knowledge.  This work provides a new scaffold database as a general resource for 
alternative scaffold engineering and protein design projects which recently resulted in the development of 
picomolar Covid-19 inhibitors16. 
 
 
Methods  
 
Requirements for Software and code availability 
The Rosetta license can be obtained through Rosetta Commons. For executing the python dependent scripts, 
PyRosetta and the Anaconda2 package are required. Scripts, xml files and examples will be placed under  
https://github.com/strauchlab/scaffold_design.  
 
Computational protein design 
Overview 
Proteins were designed using three steps. First, the backbones were constructed which outlay the three-
dimensional structure of the final fold. This step made extensive use of the here developed pipeline and 
differs from previous approach that have utilized the blueprint builder. The second step involves sequence 
design for which we utilized two different protocols followed by a last step for the selection of designs to 
test.  
 
Backbone design 
The underlying algorithm of the Fold Architect (FoldArchitectMover) has several modular components that 
work together to design a de novo peptide backbone for a fold. Together, these components provide the 
framework to take a fold-level description (e.g. 3 helix bundle, each helix of length 10-15 a.a. connected 
by loops of length 3-4 a.a.) and produce protein backbone with the desired secondary structure, realistic 
geometries, and helix pairing interactions. These modules are part of different “sub-architects,” which uses 
a user-provided (via XML) description of a fold or subset of residues within a fold to create a set of per-
residue instructions;  a “pose folder” that applies an in silico folding algorithm, which uses the instructions 
provided by the architect to perform the folding process; a set of “filters,” which can be any Filter 
recognized by Rosetta, which evaluate the backbone generated by the pose folder to ensure that it is 
correctly folded; and a “perturber”, which uses an architect to generate a new set of instructions for another 
folding attempt in the event that the filters did not accept the backbone. Each of these components can be 
arbitrarily extended to support new algorithms by creating subclasses of the Architect, PoseFolder, Filter, 
and Perturber classes. 
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One complication with the de novo extended chain folding of backbones is that is scales poorly with length; 
a single missing hydrogen bond in a backbone can lead to incorrect secondary structure and failure of filters. 
While a helix of length 15 might be correctly formed after most fragment insertion monte carlo trajectories, 
a complete 40-50 a.a. miniprotein fold might require thousands of trajectories from extended chain to find 
one that is correctly folded. This has been addressed in previous work with single folds through extensive 
intervention by an expert. To address this problem for arbitrary folds, we developed an algorithm 
(DivideAndConqueror) that identifies subsegments of a full-length backbone that can be folded individually 
and generates a strategy to build the backbone incrementally, piece-by-piece. Generally, the 
DivideAndConqueror algorithm uses the architect(s) to split the work for a full backbone into subsegments 
as small as possible that contain a complete pairing; all possible divisions are considered. For example, for 
a simple fold with topology EEHE (three antiparallel strands + one helix that is paired to the strands), the 
algorithm might divide the work by first folding EE (contains a pairing between the two strands), then 
adding H (contains a pairing between the helix and already-folded strands), and finally E (contains pairing 
to an already-folded strand).  Each subsegment is folded with the modules described above, and once built, 
is evaluated using the filters. If the model passes the filters, the algorithm then folds the next structural 
element; if the model fails the filters, the perturber instructs the architects to permute the parameters of the 
subsegment (e.g. secondary structure lengths, register shift, phi and psi angles, loop connectivity) and 
another folding attempt is made. In this way the FoldArchitect gradually adds and folds a backbone while 
samples different lengths, ABEG0 combinations and other parameters that fit within a combination of user-
defined restraints, as well as a series of previously discovered protein design principles to find parameters 
required for correct properties of the fold. 
As there are 5 distinct structure-related areas of phi-psi angle distributions, proteins can be described with 
a five letter alphabet6: ABEG0 (Figure 1C). This extends the secondary structure description beyond the 
simple alpha-helical (A), beta-sheet (B) and loop region, yet narrows the description of the loop 
conformational space which is necessary to guide the in silico folding process. Design protocols up-to this 
point were limited to using a single linear sequence in form of its ABEG0 sequence as a “blueprint” file or 
possibly a handful of blueprints which we eliminate with our approach in favor of an abstract description 
of a fold.  
Folds were in silico folded by inserting structured fragments curated from the PDB6, 7 (Fig. S1) specified 
by the architect-determined ABEG0 sequence into an extended chain of a poly-valine residues.  
  
Loop connection sampling  
Instead of sampling all possible loop conformation for a given loop length, only loop conformations 
commonly found between ab, ba and bb connections as previously discovered4 were sampled. In 
addition, our study identified new rules for the connection of helical elements which we also incorporated. 
As more principles are identified, they can be readily added. Furthermore, we enabled the possibilities to 
provide distance constraints between adjacent elements – if desired, incorporate “bulges” to introduce sheet 
curvature and de novo folding which we took advantage of to build beta-grasps. After defining each of these 
parameters, the protein is “folded” in silico in segments, starting with 2 secondary structure elements with 
values of the parameters above chosen from the allowed set. If the attempts fail to fulfill all specified filters, 
new parameters are selected. If the in silico folding attempt succeeds, parameters are stored and new cycle 
to add the next segment will be attempted. Previously discovered protein design priniciples8 are respected 
and the protein is dynamically assembled adding one segment at a time.   
 
Pairings 
Secondary structure elements that interact with one another in the desired fold are identified by “Pairings.” 
Movers and filters can then also use this information to obtain information about the desired fold. The 
different pairing types are “HelixPairing”, which describes a pairing between two helices (e.g. 
parallel/antiparallel); and “StrandPairing”, which describes a strand-strand pairing (e.g. parallel/anti-
parallel, register shift); and “HelixSheetPairing”, which describes an interaction between a helix and a beta-
sheet. 
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BetaSheetArchitect 
The BetaSheetArchitect is used to define de novo beta sheets by combining information from 
StrandArchitects. Sheets are defined spatially by looking at the face of the sheet (this does NOT use N-->C 
ordering). Strands are assumed to be paired to the strands that are defined above/below. 
The architect automatically adds the appropriate strand pairings. The architect will only attempt to build 
valid sheets, those where the fully built sheet has no unpaired residues.  
 
Distance constraints 
Distance constraints of any kind can be applied ambiguously without knowledge of the final length used in 
the dynamic algorithm. In addition, the user can define different kinds of constraints. Details are within 
each XML file for the computed folds.  
 
Helix “kink” 
This filter monitors the curvature of helices and allows to restrict them. We generally only allowed bending 
of less than 15º. 
 
Backbone design 
Briefly, each protein secondary structure can be described as a sequence describing the bins of the phi-psi 
angles in the Ramachandran plot; which we categorize into 5 different bins termed ABEG0 (Fig.1). To 
build the tertiary structure of a protein, short structured fragments with the desired ABEG0 sequence are 
used for its assembly.  Hence, previously to describe the tertiary structure to be built, the ABEG0 sequence 
is recorded in an individual blueprint file, which allowed no variation in lengths of any secondary structure 
element, registers shifts, bulges, as well as distant constraints. The latter would have to be specified for 
residues in specific blueprint. Further, structures that are longer than 40 amino acids would require two 
independent folding steps to avoid large amounts of time spent at sampling the possible backbone 
conformations within a given ABEG0 space. Thereby the infrastructure was limiting to large scale design 
of highly diverse scaffolds of a desired fold. 
 
For the design of a single protein of a given fold, parameters were defined, including which subsegments 
are folded initially. Folding of the backbone was followed as previously reported through fragment 
insertion, with the difference that fold a subsegment at a time, which enables efficient sampling within the 
pre-defined parameter space. The Perturber adjust dynamically the folding process (for instance by varying 
lengths or type of loop insertion, register shift) to satisfy all specified parameters of the folded backbone.  
 
Sequence design  
Backbone constructs representing the complete fold were stringently filtered for the omega and rama angles 
before designing their sequence. Two different design protocols were utilized, one utilizing the previously 
described pair-motifs1 to design the core of the proteins. The pair motif database contains two directly 
interacting side chains of two amino acids extracted from crystal structures, thus describing a “pair”. We 
observed that using this protocol, efficient sequence design was observed that passed all filters. The later 
were local structural geometry, average degree of connectivity within a certain radius to ensure good 
packing, Rosetta scores and several other(XML code and summary).  
 
Scoring matrix and design selection 
All score terms for filtering and evaluating designs are summarized in the SI. Their implementation can be 
found in the design protocols sequencedesign.xml and sequencedesign_w_motifs.xml, rescore15.xml and 
rescore16.xml followed by adding terms previously reported as “enhanced_score.sc”1. Resulting in 2,000-
12,000 finished design models per fold.  
 
Random Forest prediction model 
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Models were fit using the scikit.learn package. We used 500 as numbers of trees for the estimator and “gini” 
as criterion while allowing “out-of-bag” samples to estimate the generalization accuracy. While building 
the trees, default bootstrapping sampling was allowed.  
 
Library generation  
Amino acid sequences of designed proteins were encoded into DNA using DNAworks2.0 and “ecoli2” 
codons17. Oligo libraries encoding designs and control sequences were purchased from Agilent 
Technologies as part of a 27,000 oligonucelotide pool. Genes shorter than 230, additional amplification 
sequences were added as previously reported2 in order to amplify sequences equally. Amplification was 
performed using a qPCR (BioRad) to avoid overamplification. The number of cycles was chosen based on 
a test qPCR run in order to terminate the reaction at 50% maximum yield. Second, this reaction product 
was gel extracted to isolate the expected length product, and re-amplified by qPCR to obtain larger amounts. 
The amplified PCR product was gel extracted and concentrated for transformation of EBY100 yeast18 (1-2 
µg of insert and 1 µg of linearized vector). Yeast display employed the pETCON319 which was linearized 
by digesting its DNA with NdeI and XhoI. The amplified libraries included 40bp segments on either end to 
enable homologous recombination with the pETCON vector. Gel extraction and PCR purification were 
performed using QIAquick kits (Qiagen Inc).  
 
Yeast display proteolysis 
Protease reagents Trypsin-EDTA (0.25%) solution was purchased from Life Technologies and stored at 
stock concentration (2.5 mg/mL) at -20°C. α-Chymotrypsin from bovine pancreas was purchased from 
Sigma-Aldrich as lyophilized powder and stored at 1 mg/mL in TBS +100 mM CaCl2 at -20°C. Each 
reaction used a freshly thawed aliquot of protease.  
EBY100 yeast cell cultures were induced for 16-18 h at 30ºC in SGCAA20. Induced cells were digested 
with increasing concentrations of chymotrypsin and trypsin in separate tubes. Cells were normalized to 1 
mL at O.D. 1 (12-15M cells), washed and resuspended in 250 μL buffer (20 mM NaPi 150 mM NaCl pH 
7.4 (PBS) for trypsin reactions, or 20 mM Tris 100 mM NaCl pH 8.0 (TBS) for chymotrypsin reactions). 
Protolysis was initiated by adding 250 μL of room temperature protease in buffer (PBS or TBS) followed 
by vortexing and incubating the reaction at room temperature (proteolysis reactions took place at cell O.D. 
2).  
 
The library was assayed at five protease concentrations over different rounds of sequential selection rounds 
as summarized in the experiments.csv file. For trypsin digestions we used 0.07 μM, 0.21 μM, 0.64 μM, 
1.93 μM, and 5.78 μM protease; chymotrypsin assays used 0.08 μM, 0.25 μM, 0.74 μM, 2.22 μM, and 6.67 
μM protease. Selections at lower concentrations (selection strength 1 -3) concentrations of each protease 
were performed starting from the freshly transformed and induced yeast library. The following these 
selections, higher concentration conditions were performed as indicated in the experiment.csv file. This file 
contains the precise order of selections, including cells sorted and selected. Selection strengths (as indicated 
under “parent” reflects above listed concentrations respectively; parent 0 represents the starting library pool, 
whereas 1 reflects the lowest concentration as listed above (0.07 μM for trypsin and 0.08 μM for 
chymotrypsin. The highest concentration of protease was parent 5.78 μM for trypsin indicated as selection 
strength 5. These data are included in the file experiments.csv, and were used in the EC50 fitting procedure.  
 
After 5 minutes, the reaction was quenched by adding 1 mL of chilled buffer containing 1% BSA (referred 
to as PBSF or TBSF), and cells were immediately washed 4x in chilled PBSF or TBSF. Cells were then 
labeled with anti-c-Myc-FITC for 10 minutes, washed twice with chilled PBSF, and then sorted using a 
Sony SH800 flow cytometer using “Ultra Purity” settings. Events were initially gated by forward scattering 
area and back scattering area to collect the main yeast population, and then by forward scattering width and 
forward scattering height to separate individual and dividing cells (which were used for analysis) from 
aggregating cells. Following these gates, cells were gated by fluorescence intensity in one-dimension (Fig. 
1B). Small adjustments were made to this gate based on daily conditions to maximize the separation 
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between the major displaying and non-displaying populations. For each sort, we recorded the fraction of 
cells passing the fluorescence threshold before proteolysis (using cells from the same starting yeast 
population, but untreated with protease) and after proteolysis, and also recorded the total number of cells 
collected for each condition. Generally, about 10 million cells were sorted for each protease concentration.  
 
Next generation sequencing and processing of raw deep sequencing data 
Plasmids of sorted and unsorted populations where extracted using the Zymo prep kits (Zymo, version 2) 
with modifications as described previously19. Briefly after DNA extraction the prep was digested with Exo1 
and Lambda exonuclease (NEB). Cells were frozen at -80°C before and after the zymolase digestion step 
to promote efficient lysis. One-half the plasmid yield from the Zymoprep was used as the template for the 
first PCR amplification. Illumina adapters and 6-bp pool-specific barcodes were added in the second qPCR 
step. Unlike libraries prepared for transformation, DNA prepared for deep sequencing was gel extracted 
following the second amplification step. The DNA was pooled and sequenced using a mid-size kit on a 
NextSeq (Illumina) sequencer. Each library in a sequencing run was identified via a unique 6 bp barcode. 
Following sequencing, reads were paired using the PEAR program21. Reads were considered counts for a 
particular ordered sequence if the read (1) contained the complete NdeI cut site sequence immediately 
upstream from the ordered sequence, (2) contained the complete XhoI cut site sequence immediately 
downstream from the ordered sequence, and (3) matched the ordered sequence at the amino acid level.  
 
EC50 estimation from sequencing counts 
To determine protease resistance from our raw sequencing data we used the previously reported 
probabilistic model to calculate maximum a posteriori estimates of the protease EC50 of each member of 
the pool. It assumes that proteolysis (i.e. any cleavage that results in detachment of the epitope tag) follows 
pseudo-first order kinetics, with a rate constant specific to each sequence. Scripts were used exactly as 
previously reported without modification1 and directly taken from the reported repository 
https://github.com/asford/protease_experimental_analysis.  
 
Expression of individual proteins, purification and characterization  
Genes for selected design for detailed biochemical evaluations were cloned into pET29b+  and expressed 
in Lemo21 cells (DE3) (NEB)  supplemented with 50 ug/mL kanamycin either using Studier autoinduction 
media22 or at 18ºC in Terrific Broth (TB) media using 1 mM IPTG for a 3-4 h induction at an O.D. of 0.7. 
Briefly, starter cultures were grown overnight at 37°C TB medium overnight with added antibiotic and used 
to start a 500 mL culture at a 1/50 dilution. His-tagged proteins were purified using a nickel column 
purification step (QIAGEN). Following IMAC, designs (labeled and unlabeled) were further purified by 
size-exclusion chromatography on ÄKTAxpress (GE Healthcare) using a Superdex 75 10/300 GL column 
(GE Healthcare) in PBS buffer. The monomeric fraction of each run (typically eluting at the 15 mL mark) 
was collected and immediately analyzed by CD or flash frozen in liquid N2 for later analysis. Circular 
dichroism Far-ultraviolet CD measurements were carried out with an AVIV spectrometer, model 420 or an 
Olis DSM 1000 CD Spectrometer. Wavelength scans were measured from 260 to 195 nm at 25 and 95°C. 
Temperature melts monitored dichroism signal at 220 nm in steps of 2°C/minute with 30s of equilibration 
time. Wavelength scans and temperature melts were performed using 0.35 mg/ml protein in PBS buffer 
(20mM NaPO4, 150mM NaCl, pH 7.4) with a 1 mm path-length cuvette. 
Protein concentrations were determined by absorbance at 280 nm measured using a NanoDrop 
spectrophotometer (Thermo Scientific) using predicted extinction coefficients. Protein concentrations for 
designs lacking aromatic amino acids were measured by Qubit protein assay (ThermoFisher Scientific).  
 
Isotope labeling for NMR 
The expression of uniformly 13C, 15N-labeled protein for NMR analysis utilized M9 media with 13C glucose 
and 15N ammonium salts (Sigma) as the sole carbon and nitrogen sources, respectively. A 30 mL overnight 
culture was grown and used to induce a 500 mL M9 culture. At an O.D. of 0.5, cells were induced with 1 
mM IPTG and grown overnight at 18C. Purification was performed as described above. 
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NMR spectroscopy and solution structure determination 
All NMR spectra were acquired using a Varian INOVA instrument operating at 600 MHz (1H). The 
temperature of the sample was maintained at 25 °C. A single sample of uniformly 13C, 15N-labeled protein 
was used for all experiments. The included ~0.6 mM protein, 10 mM sodium phosphate, 10 mM NaCl, 
trace amounts of glycerol, and 5% D2O. The pH of the sample was ~6.8. The sample volume was 
approximately 300 uL in a susceptibility-matched NMR tube (Shigemi Inc.). Chemical shifts were 
referenced in the recommended manner using an external, standard sample of Na+DSS- in D2O23. Data were 
processed and analyzed using Felix NMR. 
 
The main chain, and some side chain, chemical shifts were assigned using established triple resonance 
approaches employing a standard suite of experiments ((1H, 15N)-HSQC, (1H, 13C)-HSQC, HNCA, 
HN(CO)CA, HNCACB, CBCA(CO)NH, HNCO, HN(CA)CO, HBHA(CBCACO)NH). Remaining side 
chain resonances were assigned using TOCSY, NOE, and aromatic-specific experiments (HCCH-TOCSY, 
HCCH-COSY, H(CCO)NH-TOCSY, C(CO)NH-TOCSY, (HB)CB(CGCD)HD, 1H-TOCSY relayed 
constant-time (1H, 13C) HMQC (aromatics), NOESY-(1H, 15N)-HSQC, NOESY-(1H, 13C)-HSQC, NOESY 
(1H, 13C)-HSQC (aromatics)). 
 
Data availability 
NMR structure has been deposited in the Protein Data Bank under accession code 7LDF. Scripts, xml files 
and examples will be placed under  https://github.com/strauchlab/scaffold_design.  
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