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Abstract 23 

Balancing instant gratification versus delayed, but better gratification is important for 24 

optimizing survival and reproductive success. Although psychologists and neuroscientists 25 

have long attempted to study delayed gratification through human psychological and brain 26 

activity monitoring, and animal research, little is known about its neural basis. We successfully 27 

trained mice to perform a waiting-and-water-reward delayed gratification task and used these 28 

animals in physiological recording and optical manipulation of neuronal activity during 29 

the task to explore its neural basis. Our results showed that the activity of DA neurons 30 

in ventral tegmental area (VTA) increases steadily during the waiting period. Optical 31 

activation vs. silencing of these neurons, respectively, extends or reduces the duration 32 

of waiting. To interpret this data, we developed a reinforcement learning (RL) model 33 

that reproduces our experimental observations. In this model, steady increases in 34 

DAergic activity signal the value of waiting and support the hypothesis that delayed 35 

gratification involves real-time deliberation. 36 

KEYWORDS 37 

Delayed Gratification, Dopaminergic, Ventral Tegmental Area, Ramping Activity, 38 

Reinforcement Learning, Continuous Deliberation  39 

  40 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.03.10.434739doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.10.434739


 4 

TEASER 41 

Sustained ramping dopaminergic activation helps individuals to resist impulsivity and 42 

wait for laerger but later return. 43 

INTRODUCTION 44 

To optimize survival and reproductive success, animals need to balance instant 45 

gratification versus delayed, but better gratification. Repeated exposure to instant 46 

gratification may disrupt this balance, thereby increasing impulsive decisions. Such 47 

decisions contribute to numerous human disorders, such as addiction and obesity(1, 2). 48 

Delayed gratification is an important process that balances time delay with increased 49 

reward (3). It is influenced by strengths in patience, will-power, and self-control(4). 50 

Although psychologists and neuroscientists have long studied this important behavior through 51 

human psychological and brain activity assessments as well as rodent-based studies, little is 52 

known about its neurological basis.  53 

During a well-controlled delayed gratification task, an individual must balance the 54 

benefits vs. risks of delay in receiving an available reward. Sustaining choice requires 55 

suppression of constant temptation by the expectation of enhanced reward in the future  56 

(3, 5, 6). Midbrain dopaminergic neurons are well known to play central roles in 57 

reward-related and goal-directed behaviors (7-12). Studies have revealed that DAergic 58 

activity signals proximity to distant rewards, either spatially or operationally (7, 13, 14), 59 

which has been postulated to sustain or motivate goal-directed behaviors while resisting 60 
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distractions. DAergic neurons play important roles in time judgment (15) and cost-61 

benefit calculations which are necessary for value-based decision making (13, 16-18). 62 

We successfully trained mice to perform a waiting-and-water-reward delayed 63 

gratification task. Recording and manipulation of neuronal activities during this task 64 

allows us to explore the cellular regulation of delayed gratification. We found that the 65 

activity of VTA DAergic neurons ramped up consistently while mice were waiting in 66 

place for rewards. Transient activation of DAergic neurons extended and inhibition 67 

reduced the duration of the waiting period. Then we adopted reinforcement learning 68 

(RL) computational models to predict and explain our experimental observations. 69 

RESULTS 70 

Mice can learn to wait for greater rewards by delayed gratification task training 71 

First, we trained mice to perform a one-arm foraging task (pre-training) in which 72 

delay did not result in increased reward (19). The period the mouse in the waiting 73 

zone was set as waiting duration and the time a mouse used in running from the 74 

waiting zone to fetch the water reward was as running duration (Fig. 1A, left panel). 75 

When a water-restricted mouse exited the waiting zone and licked the water port in 76 

the reward zone, it could receive a 10 µl of water drop regardless of the time spent in 77 

the waiting zone (Fig. 1A, right panel, black line). In a week of training, the average 78 

waiting and running durations both significantly decreased from Day 1 to Day 7 (p < 79 

0.001, n = 7 mice, Figs. 1C-E, Movie S1). All mice learned the strategy of reducing 80 
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durations of both waiting and running to maximize the reward rate (as ul of water per 81 

second in a trial, fig. S1A). 82 

Next, we trained the same mice using a delayed gratification paradigm, where the 83 

size of the reward increased quadratically with time spent in the waiting zone (Fig. 84 

1A, right panel, green line). Over the next three weeks, this resulted in shifting of the 85 

distributions of waiting duration towards longer time durations. The averaged waiting 86 

period significantly increased from Day 1 to Day 15 (p<0.001, Figs. 1F, H, and Movie 87 

S1), whereas the duration of running did not decrease beyond that observed initially 88 

(p = 0.97, n = 7 mice, Fig.s 1G, H). The reward rate increased steadily, indicating that 89 

the mice were learning to successfully delay gratification (fig. S1B). 90 

The activity of VTA DAergic neurons increases steadily during the waiting 91 

period  92 

To monitor the activity of VTA DAergic neurons during the delayed gratification 93 

task, we employed fiber photometry to record the calcium signals in VTA DAergic 94 

neurons in freely moving mice for as long as one month (Fig. 2A-C, optical fiber 95 

placement illustrated in fig S2). On the first day of pre-task training, the calcium signal 96 

rose rapidly on reward and quickly reached a peak. A few days of training dramatically 97 

reshaped the response pattern. Once the mice re-entered the waiting zone, the activities 98 

of DAergic neurons started to rise and reached the highest level when the animal 99 

received a reward (fig. 3SA).  100 
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We next analyzed the activity of these same neurons in the mice as they learned 101 

the delayed gratification task. The recording traces showed that training gradually 102 

reshaped the pattern and time course of activity (Fig. 2D). The activity started to ramp 103 

up once the mice entered the waiting zone, and then reached its highest level when 104 

animals exited. To investigate carefully the dynamical properties of the ramping 105 

activity during waiting, we sorted the calcium signals from one training day of one 106 

mouse by their length of waiting durations and plotted them with a heat map (Fig. 2E). 107 

We divided trials according to the trial outcome (reward volume) and calculated the 108 

calcium signals while the mouse exited waiting zone with different reward volumes. 109 

Our results showed that the Z-scored calcium signals at 0.5 sec before exit were 110 

significantly different while the reward volumes were different (Fig. 2F), but the mean 111 

signal curves raised along a similar trajectory regardless of trial outcome (Fig. 2G). 112 

Then, we calculated the slopes of signal curves with different outcomes over 4 time 113 

windows (0~2, 2~4, 4~6, 6~8 s) by linear regression analysis. The slopes during the 114 

same time window had no significant differences between reward groups (Fig. 2H). We 115 

pooled and plotted the slopes of different waiting periods together and found the activity 116 

curves kept rising steadily and almost saturated after 6 secs from the time the mice 117 

entered the waiting zone. Besides, the ramping DAergic activity became less variable 118 

along with delayed gratification task training in our experimental data (figs. S4A-D). 119 

All these results indicated the VTA DAergic neurons consistently ramp up their activity 120 

during waiting in as animals are trained in the delayed gratification task. 121 
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Optogenetic manipulation of VTA DAergic activity altered the waiting durations 122 

in delayed gratification task 123 

To determine whether VTA DAergic activity controls performance in the delayed 124 

gratification task, we manipulated VTA DAergic neurons temporally within 20% 125 

pseudo-randomly chosen trials utilizing optogenetic tools while the mice were waiting 126 

during the delayed gratification task (Figs. 3A-C). Activating the VTA DAergic 127 

neurons shifted the cumulative probability distribution to statistically significant longer 128 

waiting duration (Fig. 3D, blue), while inhibiting these same neurons shifted this 129 

distribution to significantly shorter periods(Fig. 3E, yellow). The impacts on the 130 

cumulative probability duration distributions were only observed in the Laser-ON trials. 131 

In contrast, the Laser-OFF trials, including the next trials after the Laser-ON as a single 132 

group, were not significantly different from the trials from the previous day (Figs. 3D-133 

E). The optical manipulations didn't influence the running durations in ChR2 or eNpHR 134 

3.0 expressing mice (figs. S5A-B), nor did it change the waiting duration distribution 135 

of mice that expressed mCherry in DAergic neuron in delayed gratification task (figs. 136 

S6A-B). To rule out the possibility of optogenetic manipulation-induced memory, we 137 

performed a random place preference test with the same stimulation dosage. Nither 138 

activating nor inhibiting VTA DAergic neurons significantly changed the transient 139 

waiting duration and pattern in the location in which the laser was activated in all tested 140 

mice (figs. S5C-F) as well as the mCherry expressing controls (figs. S6C-F). 141 

A reinforcement learning (RL) model suggests that ramping VTA DAergic 142 

activity signals the value of waiting for delayed gratification 143 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.03.10.434739doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.10.434739


 9 

How does a mouse manage to wait longer for a larger reward vs. smaller but more 144 

immediate reward options? We propose two models to explain behavioral scenarios to 145 

exemplify possible strategies a mouse may implement to achieve extended waiting 146 

performances: setting a goal of expected waiting duration before initiation of waiting 147 

or continuously deliberating during the waiting period. According to the first hypothesis, 148 

we modeled a RL agent that keeps timing until the preset moment has passed(Fig. 4A, 149 

Decision Ahead); In the second, we modeled a second RL agent that continuously 150 

balances the values of waiting versus leaving to control the decision on waiting versus 151 

leaving for the reward. Practically, we used a version of the state-action-reward-state-152 

action (SARSA) algorithm with a series of stares (20, 21)(Fig. 4A, Continuous 153 

Deliberation, see methods). The behaviors of both models were able to replicate the 154 

behavioral performance we observed in animal experiments (Figs. 4B-C). There was 155 

no significant difference between the Kullback-Leibler (KL) divergence we chose to 156 

quantitatively assess the divergence from the waiting distribution of simulated behavior 157 

to that of the animals for both RL models. We couldn’t determine which model is better 158 

based on behavioral performance alone, given that both models well reproduced the 159 

behavioral data (Fig. 4D). 160 

What does the ramping DAergic activity mean in the delayed gratification task? 161 

We tried to explain it with our RL model. In the Decision Ahead model, the agent keeps 162 

timing until the preset moment has passed, which suggests the ramping DAergic 163 

activity may relate to timing in delayed gratification task. Some studies have proposed 164 

that the ramping activity is consistent with a role in the classical model of timing with 165 
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the movement initiated when the ramping activity reaches a nearly fixed threshold value, 166 

following an adjusted slope of ramping activity(22-25). In contrast, our results showed 167 

that the DAergic activity ramped up to different values with similar trajectories on a  168 

nearly constant slope (Figs. 2F-H). This suggests that VTA DAergic neurons may not 169 

implement a decision variable for the Decision Ahead scenario. In the Continuous 170 

Deliberation RL model, we compared the curves of the value of waiting and leaving 171 

with the ramping DAergic activity and found the behavioral performance of both 172 

animals and model agents reached the asymptote. The values of waiting (Fig. 4E, light 173 

purple) and the leaving (Fig. 4E, green) each correlated positively with the ramp of 174 

DAergic activity during waiting (Fig. 4E, green, blue, Z-scored ΔF/F, 0.5 sec before 175 

exit from the last week of training). This detailed analysis suggested that the Continuous 176 

Deliberation RL model agreed with previous studies (13, 26-28) and that ramping 177 

DAergic activity signals the value of actions, either waiting or leaving, in the delayed 178 

gratification task. 179 

In the Decision Ahead RL model, if the agent keeps timing during waiting through 180 

ramping DAergic activity to encode the elapse of time (29-31), extra VTA DAergic 181 

activation should represent a longer time thus lead to an earlier stop of waiting. This 182 

deduction is contrary to our optogenetics result, namely DAergic activation led to a 183 

longer waiting (Fig. 3D). Instead, we reproduced the optogenetic manipulations in the 184 

Continuous Deliberation RL model by either increasing or decreasing the value of 185 

waiting (Qwait) in pseudo-random 20% trials. The increase or decrease in waiting 186 

durations only occurred in the Qwait－manipulated trials, whereas the remaining trials, 187 
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including the next trials after value manipulation, had no significant difference with 188 

control (Figs. 4F-G). Importantly, manipulating the value of leaving (Qleave) in pseudo-189 

random 20% trials induced the opposite results (figs. S8A-B) compared with 190 

experimental data of optogenetic manipulation. Our experimental data and Continuous 191 

Deliberation RL model together indicated that the ramping VTA DAergic activity 192 

profoundly influenced the waiting behavioral performance in the delayed gratification 193 

task, which suggested ramping DAergic activity signal the value of waiting, rather than 194 

the value of leaving. Our analysis conceptually revealed that the delayed gratification 195 

involved real-time deliberation. 196 

VTA DAergic activity during waiting predicts the behavioral performance in the 197 

delayed gratification task 198 

Our optogenetic manipulation experiments and Continuous Deliberation RL 199 

model indicated that VTA DAergic activity during waiting influenced the waiting 200 

durations while the mouse was performing the delayed gratification task (Figs. 3D-E 201 

and Figs. 4F-G). Although the activity of VTA DAergic neurons ramped up 202 

consistently during waiting (Figs. 2G-H), they still fluctuated to a certain extent 203 

moment by moment. Therefore, we are next to determine whether this fluctuation 204 

influences the waiting behavior in the delayed gratification task. A strong prediction 205 

given by the Continuous Deliberation model is that, if DAergic activity signals the 206 

value of waiting at each specific moment, the more likely the agent will keep waiting 207 

in the next "time bin", but not in the later ones (fig. S8E-F, the value of waiting is only 208 

positively correlated with the behavior of next time bin), which agrees with the Markov 209 
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property(32). We thus aimed to test the relationship between the amplitude of 210 

momentary VTA DAergic signal and the behavior (i.e., waiting or leaving) within each 211 

time bin to determine how the momentary DAergic activity (the calcium signal 212 

amplitude in 0~1 sec, 1~2 sec, 2~3 sec, or 3~4 sec after waiting onset, shown as each 213 

cluster of bars in Fig. 5B) affects the waiting performance in the subsequent periods 214 

(behavior within 1~2 sec, 2~3 sec, 3~4 sec, and 4~5 sec for DA in 0~1 sec, behavior 215 

within 2~3 sec, 3~4 sec and 4~5 sec for DA in 1~2 sec, and so on, Fig. 5A). To integrate 216 

data from multiple sessions as well as multiple animals, we took the advantage of the 217 

linear mixed model analysis (LMM, or linear mixed-effects, LME, see method) (33-218 

35). The regression coefficients between momentary DAergic activities and momentary 219 

waiting (1 for waiting and 0 for not) were significantly positive between adjacent 220 

DAergic and behavioral periods (Fig. 5B, 1sec for the bars on the most left of each 221 

cluster/adjacent DAergic-behavior). The pair of momentary DAergic activity in 3~4 222 

sec and waiting in 4~5 sec didn't show a significant correlation (p = 0.61, n = 7), which 223 

may possibly result from insufficient data for those long trials. This result indicates that 224 

the waiting decision of the current moment is only influenced by the most recent 225 

DAergic signal but not by DAergic signal further in the past, which suggests that 226 

deliberation for waiting in delayed gratification may be a Markov process as we 227 

formalized in the Continuous Deliberation RL model(32). 228 

In the Continuous Deliberation RL model, the probability of waiting (Pw) 229 

positively correlates with the value of waiting (Qwait). To explore the impact of DAergic 230 

activity on the probability of waiting in our experimental data, we binned DAergic 231 
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activity of every trial and normalized data points (VDA) in each momentary DAergic 232 

period (1 sec started from 0 to 9 s). Then, we divided the trials into two groups by 233 

setting a series of arbitrary thresholds (red, High DAergic activity, VDA-Z  ≥ Th; green, 234 

Low DAergic activity, VDA-Z  ≤ -Th, Th was the threshold for the analysis of high/low 235 

DAergic activity) from these trials (Fig. 5C, Th was set to 0.9). By analyzing the 236 

probability of waiting of low and high DAergic activity at different thresholds for the 237 

adjacent waiting period, we found that the probability of waiting increased rapidly as 238 

the absolute value of threshold was set larger and larger. The probability of waiting was 239 

significantly different between the high and low dopamine trials when the absolute 240 

value of Th (|Th|) was greater than 2.0 (Fig. 5D).  241 

Finally, we investigated the influence of fluctuations of intrinsic VTA DAergic 242 

activity on the waiting performance of mice in the delayed gratification task. There 243 

were trials whose DAergic activity in the whole waiting duration was significantly 244 

higher (red, high-ramping) or lower (green, low-ramping) than the mean DAergic 245 

activity (see Methods). Then we separated two groups of trials and found that the 246 

cumulative distribution of waiting durations of high-ramping trials shifted to the right 247 

with significantly higher normalized waiting durations compared with the normalized 248 

waiting durations of low-ramping trials (Fig. 4E), but there was no difference between 249 

the normalized waiting durations for the next-in series trials of high-ramping and low-250 

ramping trials (Fig. 4F). These results accorded with our optogenetic manipulation 251 

experiment (Figs. 3D-E) that optogenetically manipulated VTA DAergic activity 252 
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transiently influences the behavioral performance of waiting in delayed gratification 253 

task. 254 

DISCUSSION 255 

Here we reported a novel behavioral task to train the mice to learn a foraging task 256 

with a delayed gratification paradigm. Mice learned to wait for bigger rewards with the 257 

increase of waiting durations (Figs. 1F-H). Moreover, the calcium signal of VTA 258 

DAergic neurons ramped up consistently when the mouse waited in place before taking 259 

action to fetch an expected reward (Figs. 2G-H). Further data analysis showed that the 260 

ramping VTA DA activity indeed influenced the behavioral performance of waiting 261 

(Figs. 5B-E), which was confirmed with bi-directional optogenetic manipulations of 262 

VTA DAergic activity (Figs. 3D-E). At last, a RL model well predicted our 263 

experimental observations and consolidated the conclusion that the ramping VTA 264 

dopaminergic activity signaled the value of waiting in the delayed gratification task, 265 

which involves real-time deliberation (Figs. 4B-G).. 266 

DA release in NAc was previously conjectured for sustaining or motivating the 267 

goal-directed behavior as well as resisting distractions (13, 14). Here, we explicitly 268 

implemented continuous 'distractions' or less-optimal options along the delayed 269 

gratification process, in which, to achieve better performance, the mice need to sustain 270 

waiting as well as prevent/control impulsivity (3, 6, 36, 37). We found remarkable and 271 

sustaining DAergic activation when mice managed to wait longer, and further 272 

demonstrated a causal link between DAergic activation and the increase in transient 273 
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waiting probability. Furthermore, we found DAergic activity ramps up in a consistent 274 

manner during waiting, mimicking the value of waiting along with a series of states in 275 

our Continuous Deliberation RL model, both of which are presumably resulted from 276 

and contributed to resisting an increasing magnitude of distraction in our task. 277 

Intriguingly, the momentary DAergic activity was found positively correlated to the 278 

momentary waiting probability, which also suggested DAergic activity may be 279 

involved in the continuous deliberation process. Therefore, we not only for the first 280 

time to our knowledge demonstrated the behavioral significance of DAergic activity in 281 

delayed gratification, but also depicted a "Continuous Deliberation" framework where 282 

DAergic activity may participate and help achieve more flexible and sophisticated 283 

performance. 284 

Numerous works use Pavlovian conditioning in studying DA activity(10, 12, 38-285 

40). Some studies paired the reward with a cue (or cues), in which animals don't need 286 

effortful work to obtain rewards. It is well known this kind of DA activity signals the 287 

RPE via phasic firing. In the studies using operant conditioning or goal-directed 288 

behavior, the animals have to perform actions and need effortful work to obtain 289 

outcomes, and a ramping DA activity was reported to emerge while the animals were 290 

approaching the reward (13, 14, 41, 42). The ramping activity is suggested to signal the 291 

value of work (13) or distant rewards (14), but key evidence is lacking because the 292 

change of sensory input flow remarkably alters the DA activity over time. Under such 293 

mutual influence, it is impossible to identify RPEs or the value of work from external 294 

cues. The RPE model of ramping activity assumes that the value increases 295 
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exponentially (or at least in a convex curve) as the reward is approached. Under this 296 

model, sensory feedback is suggested to result in the RPE signal to ramp (41, 43, 44), 297 

while a lack of sensory feedback is predicted to make a flat RPE signal. In contrast, the 298 

ramping DAergic activity is well isolated from the external sensory inputs when 299 

performing a delayed gratification task in our model. The mice continuously deliberate 300 

the current state and future rewards without any external sensory inputs during waiting 301 

in place. We still observed the calcium signal of VTA DAergic neurons ramped up in 302 

a stable dynamic. This ramp may indicate an escalating value for the closer reward in 303 

temporal and represent the 'willpower' of waiting. 304 

Midbrain DAergic neurons play an important role in reinforcement learning(9, 11, 305 

12, 45, 46), where activation of DAergic neurons usually produces a reinforcement 306 

effect on associated action, stimulus, or place. But in our delayed gratification task, 307 

optogenetic manipulation of DAergic activity substantially influenced the ongoing 308 

behavior on the current trial without visible reinforcement effect on later trials. Notably, 309 

this optogenetic manipulation was not sufficient to induce a reinforcement effect in the 310 

random place performance test. These results revealed the distinct and potent 311 

instantaneous effect of DAergic activity during delayed gratification. The observations 312 

and analysis in our experiments integrate more reliable evidence for the value coding 313 

in VTA DAergic neurons and significantly update the understanding of the coding 314 

mechanisms and fundamental functions of the DAergic system in delayed gratification. 315 

Our design of the delayed gratification task recapitulates the realistic situation where 316 

distractions and less-valuable choices lie in the way of pursuing a larger but later benefit. 317 
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The deficit of resisting distractions (temptations), which disrupt the balance between 318 

constant reward and delayed reward, is closely related to a variety of disorders like 319 

obesity, gambling, or addiction(1, 47). The ramping VTA DAergic activity accords 320 

with the model about NOW vs LATER decisions that tonic/stable DAergic signal have 321 

a strong influence on dlPFC and favor LATER rewards(2). We proposed that the 322 

sustained VTA DAergic activity during the delayed period could serve as a 323 

conservative neural basis for the power to resist the ubiquitous distractions (temptations) 324 

and improve reward rate or goal pursuit in the long run. 325 

  326 
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MATERIALS AND METHODS 327 

Mice. Animal care and use strictly follow institutional guidelines and governmental 328 

regulations. All experimental procedures were approved by the IACUC at the Chinese 329 

Institute for Brain Research (Beijing) and ShanghaiTech University. Adult (8-10 330 

weeks) DAT-IRES-Cre knock-in mice (Jax stock# 006660) were trained and 331 

recorded. Mice were housed under a reversed 12/12 day/night cycle at 22–25°C with 332 

free access to ad libitum rodent food. 333 

Stereotaxic viral injection and optical fiber implantation. After deep anesthesia 334 

with isoflurane in oxygen, mice were placed on the stereoscopic positioning 335 

instrument. Anesthesia remains constant at 1~1.5% isoflurane supplied per anesthesia 336 

nosepiece. The eyes were coated with aureomycin eye cream. The scalp was cut open, 337 

and the fascia on the skull was removed with 3% hydrogen peroxide in saline. The 338 

Bregma and Lambda points are used to level the mouse head. A small window of 339 

300~500µm in diameter was drilled just above VTA (AP: -3.10 mm, ML: ±1.15mm, 340 

and DV: -4.20 mm) for viral injection and fiber implantation. 300 nl of AAV2/9-341 

hSyn-DIO-GCamp6m (10^12) solution was slowly injected at 30nl /min unilateral for 342 

fiber photometry recording. 300 nl either AAV2/9-EF1a-DIO-hChR2(H134R)-343 

mCherry (10^12) or AAV2/9-EF1a-DIO-eNpHR3.0-mCherry (10^12) was injected 344 

bilaterally for optogenetic experiments. The injection glass pipette was tilted with an 345 

angle of 8° laterally to avoid the central sinus. After injection, the glass pipette was 346 

kept in place for 10 min and then slowly withdraw. An optical fiber (200 μm O.D., 347 

0.37 NA; Anilab) hold in a ceramic ferrule was slowly inserted into the brain tissue 348 
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with the tip slightly above the viral injection sites. The fiber was sealed to the skull 349 

with dental cement. Mice were transferred on a warm blanket for recovery, then 350 

housed individually in a new home until all experiments were done. 351 

Behavioral tasks. One week after surgery, mice started a water restriction schedule to 352 

maintain 85–90% of free-drinking bodyweight for 5 days. The experimenter petted 353 

the mice 5 minutes per day for 3 days in a row and then started task training. All 354 

behavioral tasks were conducted during the dark cycle of mice. 355 

The foraging task shuttle box has two chambers (10×10×15 cm) connected by a 356 

narrow corridor (45×5×15 cm, Fig 1a). A water port (1.2 mm O.D. steel tube, 3 cm 357 

above the floor) is attached to the end of one chamber defined as the reward zone, the 358 

other as the waiting zone. The position of the mouse in the shuttle box is tracked online 359 

with a custom MATLAB (2016b, MathWorks) program through an overhead camera 360 

(XiangHaoDa, XHD-890B). The experimental procedure control and behavioral event 361 

acquisition are implemented with a custom MATLAB program and an IC board 362 

(Arduino UNO R3). 363 

One-arm foraging task (pre-training): A water-restricted mouse was put in the 364 

shuttle box for free exploration for up to 1 hour. When the animal started from the 365 

waiting zone through the corridor to the reward zone to lick the water port, 10 μl water 366 

was delivered by a step motor in 100 ms as a reward. A capacitor sensor monitors the 367 

timing and duration of licking. Then the animal returned to the waiting zone to re-368 

initiate a new trial. Exiting from the waiting zone triggered an auditory cue (200 ms at 369 
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4 kHz sine wave with 90 dB) to signal the exit from the waiting zone. The time in the 370 

waiting zone was defined as the waiting duration. The training was conducted every 371 

day in a week. All mice learned to move quickly back and forth between two chambers 372 

to maximize the reward rate within one week. 373 

Delayed gratification task. From the second week, the volume of water reward is 374 

changed to a function proportional to the waiting time: 0~2 s for 0 μl; 2~4 s, 2 μl; 4~6 375 

s, 6 μl; 6~8 s, 18 μl; >8 s, 30 μl as shown in Fig. 1A. There is no water delivered if the 376 

animal waits less than 2 sec. The training was conducted five days a week, from 377 

Monday to Friday. 378 

Pw Calculation. We divided all trials into two groups: Waiting Trials and Leaving 379 

Trials according to whether an animal to keep waiting or to leave in a given time 380 

duration such as 1 sec after each behavioral period. And then, we calculated the 381 

probability of waiting (Pw) in this given time duration by the number of 'Waiting Trials' 382 

(𝑁𝑁𝑤𝑤(𝑛𝑛)) and the number of 'Leaving Trials' (𝑁𝑁𝐿𝐿(𝑛𝑛)) in the time window n: 383 

Pw(n)= 𝑁𝑁𝑤𝑤(𝑛𝑛)

𝑁𝑁𝑤𝑤(𝑛𝑛)+𝑁𝑁𝐿𝐿(𝑛𝑛)
 384 

Then we can get the Pw for a given time duration: 385 

Pw(n) =  
∑ 𝑁𝑁𝑤𝑤(𝑛𝑛)
9
0

∑ 𝑁𝑁𝑤𝑤(𝑛𝑛)
9
0 +∑ 𝑁𝑁𝐿𝐿(𝑛𝑛)

9
0

 386 

Linear Mixed Model. We implemented the Linear Mixed Model Analysis using the 387 

open-source Python package "statsmodels" (https://www.statsmodels.org/stable/mixe 388 

d_linear.html). The binary value of waiting or leaving during a specific behavioral 389 

period tbeh was set as the dependent factor (tbeh=[1, 2), [2, 3), [3, 4), or [4, 5), unit: 390 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.03.10.434739doi: bioRxiv preprint 

https://www.statsmodels.org/stable/mixe%20d_linear.html
https://www.statsmodels.org/stable/mixe%20d_linear.html
https://doi.org/10.1101/2021.03.10.434739


 21 

second); the fluctuation of momentary DA signal from its mean during a preceding 391 

period tDA was set as a fixed effect (tDA=[0, 1), [1, 2), [2, 3), [3, 4), unit: second. Note 392 

that tDA is always smaller than tbeh); the animal identity and session numbers were set 393 

as a random effect (n=5 for each animal from the third week). The parameters of the 394 

model are estimated by restricted maximum likelihood estimation (REML). 395 

Optogenetic stimulation. Lasers, 473 nm for activation and 589 nm for inhibition, 396 

were coupled to the common end of a patchcord (200 µm O.D., 1-m long, 0.37 NA). 397 

The patchcord split through an integrated rotatory joint into two ends connecting to 398 

chronically implanted optical fibers (200 µm O.D., 0.37 NA) for bilateral light delivery. 399 

First, the mice were trained for 3 weeks to learn the delayed gratification task. Optical 400 

stimulation was delivered pseudo-randomly in ~20% of behavioral trials in the test 401 

experiment. 20 ms square pulses at 10 Hz for activation or a continuous stimulation for 402 

inhibition were delivered. The laser was set to ON when the animal entered the reward 403 

zone and to OFF on the exit. The maximal laser stimulation was no longer than 16 404 

seconds, even in the case a mouse stayed in the waiting zone longer than this time. 405 

Continuous laser power at the tip of splitting patchcord was about 10 mW for 473 nm 406 

laser and 8 mW for 589 nm laser, respectively. 407 

Random place performance test (RPPT). After finishing optogenetic tests for 408 

delayed gratification, all mice took an RPPT. RPPT is carried on in a rectangular 409 

apparatus consisted of two chambers (30×30×30 cm) separated by an acrylic board. 410 

With an 8 cm wide door open, the mice could move freely between the two chambers. 411 

Before testing, each mouse was placed into the apparatus for 5-min free exploration. 412 
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RPPT consists of two rounds of 10-min tests. First, we randomly assigned one chamber 413 

as a test chamber. Laser pulses were delivered in 20% possibility while the mouse 414 

entered the test chamber. The delivery of light, no longer than 16 sec, stopped while the 415 

mouse exited the test chamber. Next, we switched the chamber to deliver laser pulses. 416 

The laser output power and pulse length were set the same as optogenetic manipulations 417 

in the delayed gratification task. 418 

Fiber photometry recording. During the behavioral task training and test, we 419 

recorded the fluorescence signal of VTA dopaminergic (DAergic) neurons. The signal 420 

was acquired with a fiber photometry system equipped with a 488 nm excitation laser 421 

and a 505~544 nm emission filter. The GCaMP6m signal was focused on a 422 

photomultiplier tube (R3896 & C7319, Hamamatsu) and then digitalized at 1 kHz and 423 

recorded with a 1401 digitizer and Spike2 software (CED, Cambridge, UK). An 424 

optical fiber (200μm O.D., 0.37 NA, 1.5-m long, Thorlabs) was used to transfer the 425 

excitation and emission light between recording and brain tissue. The laser power 426 

output at the fiber tip was adjusted to 5~10 μW to minimize bleaching. 427 

All data were analyzed with custom programs written in MATLAB (MathWorks). 428 

First, we sorted the continuously recorded data by behavioral trials. For each trial, the 429 

data spanned the range between 1 s before the waiting onset and 2 s after the reward. 430 

Before hooking the fiber to the mouse, we recorded 20 s of data and averaged as Fb as 431 

the ground baseline. For each trial, we averaged 1-sec data before the waiting onset as 432 

baseline F0 and then calculated its calcium transient as: 433 
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∆F/F (%) = (F−F0)/(F0−Fb) × 100 (%) 434 

In the correlation analysis between VTA DAergic activity before waiting and 435 

waiting duration of mice, we used averaged 1-sec data before the waiting onset as the 436 

DAergic activity before waiting. 437 

In the analysis of high-ramping and low-ramping DAergic activity, we compared 438 

the whole calcium signal of every trial with the average curve (the same length as the 439 

analyzed calcium signal) of all trials from one mouse in a single training day with paired 440 

t-test.  441 

To facilitate presenting the data, we divided each trial data into four segments, 442 

including 1 s before waiting onset, waiting, running, and 2 s after rewarding. For 443 

comparing the rising trends, we resampled the data segments at 100, 100, 50, and 100 444 

data points, respectively. In the delayed gratification task, the trial data were aligned to 445 

the waiting onset and presented by the mean plots with a shadow area indicating SEM 446 

of fluctuations. 447 

Reinforcement learning model. We investigate two potential scenarios. One was 448 

that the mouse decided on a waiting duration before entering the waiting area, and 449 

then waits according to the decided goal. The other scenario was that the mouse 450 

entered the waiting zone, and determined whether to wait or leave as an ongoing 451 

process throughout the whole waiting period. We called these two scenarios 452 

"Decision Ahead" and "Continuous Deliberation", respectively, and formulated 453 
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corresponding reinforcement learning based models for simulation using Python 454 

(Python Software Foundation, version 2.7. Available at https://www.python.org/). 455 

Decision Ahead. Inspired by animal behavior, we simply set three optional "actions" 456 

with different expected waiting durations that could empirically cover the main range 457 

of animal's waiting duration across training (Ta1 = 1.65 sec for action1, Ta2 = 2.72 sec 458 

for action2, Ta3 = 4.48 sec for action3). These waiting durations were equally spaced on 459 

the log-time axis, consistent with Weber’s law (that is, ln(Ta1) = 0.5, ln(Ta2) = 1, ln(Ta3) 460 

= 1.5). During the execution of action ai, we imposed additional noise to the timing so 461 

that the actual waiting time τai for action ai follows a Gaussian distribution on the log-462 

time axis centered at the Tai, ln ~𝒩𝒩(ln(𝛵𝛵𝑎𝑎𝑎𝑎) , 0.42), 𝑖𝑖 = 1, 2, 3. These settings allowed 463 

us to best capture the animal's waiting performance in the model. For each trial, the 464 

agent chose action randomly based on three action values and a Boltzmann distribution 465 

(Softmax): 466 

𝑃𝑃𝑎𝑎𝑖𝑖 =
𝑒𝑒𝛽𝛽𝑄𝑄𝑎𝑎𝑖𝑖

∑ 𝑒𝑒𝛽𝛽𝑄𝑄𝑎𝑎𝑗𝑗𝑗𝑗=1,2,3
 467 

Where 𝑃𝑃𝑎𝑎𝑖𝑖 was the probability of choosing action ai and waiting for τai. 𝑄𝑄𝑎𝑎𝑖𝑖 was the 468 

value for ai. 𝛽𝛽  was the inverse temperature constant tuned to 5 according to our 469 

experimental data. After waiting, the agent would get a reward according to the same 470 

reward schedule used in our experiment. Each action value was updated separately 471 

during the reward delivery: 472 

𝛿𝛿 = 𝑟𝑟 –𝑄𝑄𝑎𝑎 473 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.03.10.434739doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.10.434739


 25 

𝑟𝑟 = 𝑅𝑅/(𝜏𝜏 + 1) 474 

𝑄𝑄𝑎𝑎 ← 𝑄𝑄𝑎𝑎 + 𝛼𝛼 ∗ 𝛿𝛿 475 

Where the reward prediction error 𝛿𝛿 was calculated by the difference between the 476 

hyperbolically discounted reward r (or "reward rate", given by the absolute reward R 477 

dividing total time τ+1 for obtaining the reward, where τ was the waiting duration and 478 

the additional 1sec was the estimated delay for running between two zones) and the 479 

chosen action value 𝑄𝑄𝑎𝑎. The reward prediction error was then used to update the value 480 

of the chosen action. We tuned the learning rate α to 0.002 to fit the animal behavioral 481 

data. 482 

Continuous Deliberation. In each trial, the agent would go through a series of hidden 483 

states, each lasting for 0~2sec randomly according to a Gaussian distribution (mean at 484 

1 sec). At each hidden state, the agent had two action options, either to keep waiting or 485 

to leave. If it chose to keep waiting, the agent would transition to the next hidden state, 486 

with the past time of the previous state cumulated to the whole waiting duration. If the 487 

choice was to leave, the cumulation would cease and a virtual reward dependent on the 488 

duration will be delivered, and then a new trial would begin from the initial state. The 489 

reward schedule was identical to that used for the animals during the experiments. 490 

The action choice for the future was determined randomly by a Boltzmann 491 

distribution (SoftMax) and action values: 492 

𝑃𝑃𝑎𝑎𝑤𝑤
(𝑇𝑇+1) =

𝑒𝑒𝛽𝛽𝑄𝑄𝑎𝑎𝑤𝑤
(𝑇𝑇+1)

𝑒𝑒𝛽𝛽𝑄𝑄𝑎𝑎𝑤𝑤
(𝑇𝑇+1)

+ 𝑒𝑒𝛽𝛽𝑄𝑄𝑎𝑎𝐿𝐿
(𝑇𝑇+1) 493 
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𝑃𝑃𝑎𝑎𝑤𝑤
(𝑇𝑇+1) was the probability of choosing to wait for the next state 𝑇𝑇 + 1. 𝑄𝑄𝑎𝑎𝑤𝑤

(𝑇𝑇+1) 494 

and 𝑄𝑄𝑎𝑎𝐿𝐿
(𝑇𝑇+1) were the value of waiting and leaving, respectively, for state 𝑇𝑇 + 1. 𝛽𝛽 495 

was the inverse temperature constant tuned to 5. 496 

 The action values for each hidden state 𝑇𝑇 were updated by temporal difference 497 

learning algorithm (SARSA): 498 

𝛿𝛿 = 𝑟𝑟 + 𝛾𝛾 ∗ 𝑄𝑄𝑎𝑎′
(𝑇𝑇+1) – 𝑄𝑄𝑎𝑎

(𝑇𝑇) 499 

𝑟𝑟 = 𝑅𝑅/(𝜏𝜏 + 1) 500 

𝑄𝑄𝑎𝑎
(𝑇𝑇) ← 𝑄𝑄𝑎𝑎

(𝑇𝑇) + 𝛼𝛼 ∗ 𝛿𝛿 501 

Where the future action 𝑎𝑎′ was determined by the Boltzmann distribution in the 502 

previous step. The current action a and the future action 𝑎𝑎′ could both be either 503 

waiting or leaving. The prediction error 𝛿𝛿 was calculated by the sum of reward rate r 504 

(r remained zero until the reward R was delivered. τ+1 was the total time for obtaining 505 

the reward, where τ was the waiting duration and the additional 1sec was the 506 

estimated delay for running between two zones) and the future action value 𝛾𝛾 ∗507 

𝑄𝑄𝑎𝑎′
(𝑇𝑇+1) discounted by γ (γ = 0.9), minus the current action value 𝑄𝑄𝑎𝑎

(𝑇𝑇). When a was 508 

leaving, the future action value 𝑄𝑄𝑎𝑎′
(𝑇𝑇+1) would always be zero. This error signal 𝛿𝛿 509 

was used to update 𝑄𝑄𝑎𝑎
(𝑇𝑇) with learning rate α = 0.001.  510 

As a Markov process, each state would be identical to the agent no matter how 511 

the state was reached or what the following actions are. So, we extracted the learned 512 

value of waiting as a time series along all the hidden states to compare with the averaged 513 

curve of VTA DAergic activity. For each trial, we also extracted the time series of the 514 
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transient waiting value for a trial-wise analysis. Apart from the value of waiting, we 515 

could also extract the time series of RPE for each trial. 516 

For optogenetics manipulation, we simulated it in the model after normal training 517 

was accomplished as in the animal experiments. 518 

Value manipulation. In 20% trials of the stimulation session, the future waiting value 519 

throughout the whole waiting period was manipulated. The optogenetics activation was 520 

simulated as an extra positive value added onto the future waiting value, and the 521 

optogenetics inhibition corresponded to a proportional decrease of the future waiting 522 

value as follows: 523 

𝑄𝑄𝑎𝑎𝑤𝑤
(𝑇𝑇+1) ← 𝑄𝑄�𝑎𝑎𝑤𝑤

(𝑇𝑇+1), 𝑓𝑓𝑓𝑓𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑟𝑟𝑖𝑖𝑎𝑎𝑡𝑡 524 

𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑄𝑄�𝑎𝑎𝑤𝑤
(𝑇𝑇+1) = �

𝑄𝑄𝑎𝑎𝑤𝑤
(𝑇𝑇+1) + ∆𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣−𝑣𝑣𝑒𝑒𝑒𝑒, 𝑖𝑖𝑓𝑓 "𝐶𝐶ℎ𝑅𝑅2 − 𝑡𝑡𝑖𝑖𝑙𝑙ℎ𝑡𝑡𝑓𝑓𝑐𝑐"

𝜅𝜅𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣−𝑎𝑎𝑛𝑛ℎ𝑄𝑄𝑎𝑎𝑤𝑤
(𝑇𝑇+1), 𝑖𝑖𝑓𝑓 "𝑒𝑒𝑁𝑁𝑃𝑃𝑒𝑒𝑅𝑅 − 𝑡𝑡𝑖𝑖𝑙𝑙ℎ𝑡𝑡𝑓𝑓𝑐𝑐"

 525 

and, 𝛿𝛿 = 𝑟𝑟 + 𝛾𝛾 ∗ 𝑄𝑄�𝑎𝑎𝑤𝑤
(𝑇𝑇+1) – 𝑄𝑄𝑎𝑎

(𝑇𝑇),       𝑖𝑖𝑓𝑓 𝑎𝑎′ = 𝑎𝑎𝑤𝑤  526 

Here we set ∆𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣−𝑣𝑣𝑒𝑒𝑒𝑒= 0.15 , and 𝜅𝜅𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣−𝑎𝑎𝑛𝑛ℎ = 0.9 , so that the change in 527 

averaged waiting duration in the simulated "light-on" trials can capture the magnitude 528 

of the instantaneous effect of optogenetic stimulations on the current trials. Using these 529 

parameters "calibrated" by the current trial effect, we were able to compare the 530 

stimulation effect on the light-off or the following trials in both real and simulated 531 

situations. Also note that if the future action was chosen as waiting, the manipulated 532 

value of waiting would be used in the RPE calculation and thus current action value 533 

updating as well. 534 
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RPE manipulation. Under this situation, in 20% trials of the stimulation session, 535 

instead of future waiting value, RPE (𝛿𝛿) was manipulated throughout the whole waiting 536 

period as follows: 537 

𝛿𝛿 = � 𝛿𝛿 + ∆𝑅𝑅𝑅𝑅𝑅𝑅−𝑣𝑣𝑒𝑒𝑒𝑒, 𝑖𝑖𝑓𝑓 "𝐶𝐶ℎ𝑅𝑅2 − 𝑡𝑡𝑖𝑖𝑙𝑙ℎ𝑡𝑡𝑓𝑓𝑐𝑐"
𝛿𝛿 − ∆𝑅𝑅𝑅𝑅𝑅𝑅−𝑎𝑎𝑛𝑛ℎ, 𝑖𝑖𝑓𝑓 "𝑒𝑒𝑁𝑁𝑃𝑃𝑒𝑒𝑅𝑅 − 𝑡𝑡𝑖𝑖𝑙𝑙ℎ𝑡𝑡𝑓𝑓𝑐𝑐" 538 

and, 𝑄𝑄𝑎𝑎
(𝑇𝑇) ← 𝑄𝑄𝑎𝑎

(𝑇𝑇) + 𝛼𝛼 ∗ 𝛿𝛿 539 

we set ∆𝑅𝑅𝑅𝑅𝑅𝑅−𝑣𝑣𝑒𝑒𝑒𝑒= 15, and ∆𝑅𝑅𝑅𝑅𝑅𝑅−𝑎𝑎𝑛𝑛ℎ= 20, which was calibrated by the current trial 540 

effect of real light stimulation. 541 

To simulate the fluctuation in real DAergic signal, we simply multiplied the future 542 

waiting value during each state by a factor 𝜎𝜎~𝒩𝒩(1, 0.32) (determined by the averaged 543 

signal-dependent noise magnitude / relative standard deviation for all momentary 544 

DAergic amplitudes), additionally to the original model (this is only implemented for 545 

figs. S8E~F). 546 

Electrophysiological recordings. Adult (8-10 weeks) DAT-IRES-Cre knock-in male 547 

mice 4 weeks after injection with AAV2/9-EF1a-DIO-ChR2(H134R)-mCherry or 548 

AAV-DIO-eNpHR3.0-mCherry were anesthetized with an intraperitoneal injection of 549 

pentobarbital (100 mg kg-1) and then perfused transcardially with ice-cold oxygenated 550 

(95% O2/5% CO2) NMDG ACSF solution (93 mM NMDG, 93 mM HCl, 2.5 mM 551 

KCl, 1.25 mM NaH2PO4, 10 mM MgSO4·7H2O, 30 mM NaHCO3, 25 mM glucose, 552 

20 mM HEPES, 5 mM sodium ascorbate, 3 mM sodium pyruvate, and 2 mM 553 

thiourea, pH 7.4, 295-305 mOsm). After perfusion, the brain was rapidly dissected out 554 

and immediately transferred into an ice-cold oxygenated NMDG ACSF solution. 555 
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Then the brain tissue was sectioned into slices horizontally at 280 mm in the same 556 

buffer with a vibratome (VT-1200 S, Leica). The brain slices containing the VTA 557 

were incubated in oxygenated NMDG ACSF at 32℃ for 10~15 min, then transferred 558 

to a normal oxygenated solution of ACSF (126 mM NaCl, 2.5 mM KCl, 1.25 mM 559 

NaH2PO4, 2 mM MgSO4·7H2O, 10 mM Glucose, 26 mM NaHCO3, 2 mM CaCl2) at 560 

room temperature for 1h. A slice was then transferred to the recording chamber, 561 

which was submerged and superfused with ACSF at a rate of 3 ml/min at 28℃. Cells 562 

were visualized using infrared DIC and fluorescence microscopy (BX51, Olympus). 563 

VTA DAergic neurons were identified by their fluorescence and other 564 

electrophysiological characteristics. Whole-cell current-clamp recordings of VTA 565 

DAergic neurons were made using a MultiClamp 700B amplifier and Digidata 1440A 566 

interface (Molecular Devices). Patch electrodes (3-5 MΩ) were backfilled with 567 

internal solution containing (in mM): 130 K-gluconate, 8 NaCl, 10 HEPES, 1 EGTA, 568 

2 Mg·ATP and 0.2 Na3·GTP (pH:7.2, 280 mOsm). Series resistance was monitored 569 

throughout the experiments. For optogenetic activation, blue light was delivered onto 570 

the slice through a 200-µm optical fiber attached to a 470 nm LED light source 571 

(Thorlabs, USA). The functional potency of the ChR2-expressing virus was validated 572 

by measuring the number of action potentials elicited in VTA DAergic neurons using 573 

blue light stimulation (20 ms, 10 Hz, 2.7 mW) in VTA slices. For optogenetic 574 

inhibition, yellow light (0.7 mW) was generated by a 590 nm LED light source 575 

(Thorlabs, USA) and delivered to VTA DAergic neurons expressing eNpHR3.0 576 

through a 200-µm optical fiber. To assure eNpHR-induced neuronal inhibition, 577 
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whole-cell recordings were carried out in current-clamp mode and spikes were 578 

induced by current injection (200 pA) with the presence of yellow light. Data were 579 

filtered at 2 kHz, digitized at 10 kHz, and acquired using pClamp10 software 580 

(Molecular Devices). 581 

Immunostaining. Mice were deeply anesthetized with pentobarbital (100 mg/kg, i.p.), 582 

following saline perfusion through the heart. After blood was drained out, 4% 583 

paraformaldehyde (PFA) was used for fixation. Then the head was cut off and soaked 584 

in 4% PFA at room temperature overnight. The brain was harvested the next day, 585 

post-fixed overnight in 4% PFA at 4°C, and transferred to 30% sucrose in 0.1 M PBS, 586 

pH 7.4 for 24~48 h. Coronal sections (20 µm) containing the VTA were cut on a 587 

cryostat (Leica CM3050 S). The slides were washed with 0.1 M PBS, pH 7.4, 588 

incubated in blocking buffer (0.3% Triton X-100, 5% bovine serum albumin in 0.1 M 589 

PBS, pH 7.4) for an hour, and then transferred into the primary antibody (rabbit anti-590 

tyrosine hydroxylase antibody, 1:1,000; Invitrogen) in blocking buffer overnight at 591 

4°C. The sections were washed three times in 0.1 M PBS, then incubated with donkey 592 

anti-rabbit IgG H&L secondary antibody (conjugated to fluor-488 or fluor-594, 593 

1:1,000; Jackson ImmunoResearch) at room temperature for 2 h. The nucleus was 594 

stained with DAPI (4',6-diamidine-2-phenylindole). Sections were mounted in 595 

glycerine and covered with coverslips sealed in place. Fluorescent images were 596 

collected using a Zeiss confocal microscope (LSM 880). 597 

Quantification and statistics. All statistics were performed by MATLAB (R2016b, 598 

MathWorks) and Python (V2.7, Python Software Foundation) routines. Data were 599 
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judged to be statistically significant, while the P-value less than 0.05. Asterisks denote 600 

statistical significance *p < 0.05; **p < 0.01; ***p < 0.001. Unless stated otherwise, 601 

values were presented as Mean ± s.e.m.. 602 
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 1 

Fig. 1. The behavioral performance of mice during a delayed gratification task 1 

learning. (A) Left panel, schematic of the delayed gratification task. Right panel, the 2 

relationship between reward volumes and waiting durations in the two behavioral tasks. 3 

(B) This plot presents the Transistor-Transistor Logic (TTL) signals for the 4 

chronological sequence of behavioral events in the tasks. (C-E). The waiting duration 5 

and running duration both decreased with the training process in the pre-training phase 6 

(Day1, Waiting: 5.58±0.63 sec; Running: 3.46±0.28 sec; p<0.001; Day 7, Waiting: 7 

1.99±0.19 sec; Running: 1.28±0.09 sec, p<0.001, n=7 mice, Friedman test). (F) The 8 

distribution of waiting durations from the behavioral session on the last analyzed day 9 

(Day 15, light red), revealing significantly longer waiting durations compared with that 10 

from day 1 (D 1, gray, n=7 mice). (G) The distribution of running durations from D1 11 

and D15 did not differ with training. (H) The plots show that the continuous training 12 

steadily increased the averaged waiting duration from 2.76 ± 0.15s on Day 1 to 4.62 ± 13 

0.30 s on Day 15 (p < 0.001, n = 7 mice, Friedman test), whereas the training did not 14 

change the average running duration from 1.19±0.13s on Day 1 to 1.24 ± 0.10 s on Day 15 

15 (p = 0.97, n = 7 mice, Friedman test). All error bars represent the s.e.m..  16 
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 2 

Fig. 2. VTA DAergic activity ramps up consistently while the mice are waiting for 17 

the reward. (A) Schematic of stereotaxic virus injection procedures. (B) Confocal 18 

images illustrating GCaMP6m (green) expression in VTA TH+ neurons (red). Scale bar: 19 

20 μm. (C) An example of a live-recording trace (magenta line) of Ca2+ signal in VTA 20 

DA neurons and running speed (black line) when a Dat-Cre: GCaMP6m mouse was 21 

performing the delayed gratification task. Delayed gratification task events over time 22 

(top): the dashed vertical lines indicated waiting onset (blue), waiting termination 23 

(green), and reward onset (red). (D) The scaled Ca2+ signals curves (magenta) and GFP 24 

signals (green) curves of VTADA neurons from the last day in pre-training and day 1 to 25 

day 15 in the delayed gratification task training (black line, speed). (E) Sorted Ramping 26 

Ca2+ signal data from one mouse on the last day (D15) of the delayed gratification task 27 

training (150 trials). The signal traces were aligned to waiting onset, sorted in waiting 28 

duration length, and separated into five groups of the reward outcomes (0, 2, 6, 18, and 29 

30μl). f. Z-scored ΔF/F values at 0.5s before exit were significantly different while the 30 

reward volumes were different (F=24.67, p<0.01, n=7, one-way ANOVA). (G) 31 

Averaged Ca2+ signal curves with different outcomes from Fig. E. Slopes of Ca2+ 32 

signals for every outcome, showing that there were no differences in all DAergic 33 

ramping periods throughout the last week of training (0~2s, F=0.10, p=0.96; 2~4s, 34 

F=1.03, p=0.38; 4~6s, F=1.00, p=0.34, n=7, one-way ANOVA). All error bars represent 35 

the s.e.m.. For (D) and (G), the shaded region represents s.e.m..36 
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 3 

Fig. 3. Optogenetic manipulation of VTA DAergic activity altered the waiting 37 

durations. (A) Left panels: schematic of stereotaxic virus injection and surgical 38 

procedure. Right panels: the behavioral events and optogenetic manipulation protocol. 39 

(B) Top panels: confocal image showing ChR2-mCherry (red) expression in VTA TH+ 40 

neurons (green). Bottom panels: whole-cell recording of VTA TH+ neurons in brain 41 

slice showing action potentials evoked by 10-Hz 473 nm laser flash sequences (50 42 

flashes, 20ms interval). (C) Top panels: confocal image showing eNpHR3.0-mCherry 43 

(red) expression in VTA TH+ neurons (green). Bottom panels: whole-cell recording of 44 

VTA TH+ in brain slice showing that action potentials evoked by 200pA current 45 

injection were inhibited by continued 589nm laser. Scale bar: 20 μm. (D) Cumulative 46 

probabilities of waiting durations. The waiting durations of optogenetically activated 47 

trials were significantly increased (blue, F=12.93, p=0.002, n=6 mice, one-way 48 

ANOVA) than that of the previous day's trials (gray); note that the waiting duration of 49 

unstimulated trials (red) did not differ from that of the previous day's trials (magenta, 50 

p=0.96), or the next trials following photoactivation (green, p=0.63). Insert: a bar graph 51 

of the normalized waiting durations from lasing stimulation (blue), the previous day's 52 

trials (gray), photoactivated trials (blue, 1.19±0.03), unstimulated trials (red, 53 

1.00±0.02), and the next trials following the photoactivation (green, 1.05±0.04). (E) 54 

The same experimental configuration as in (D), but VAT TH+ neurons were 55 

optogenetically inhibited by a yellow laser. Optogenetic inhibition decreased the 56 

waiting duration (yellow, 0.80±0.05, F = 7.76, p=0.008, n=6 mice, one-way ANOVA), 57 

whereas there was no difference between uninhibited trials (red, 1.03±0.03, p=0.80), 58 

the trials following the photoinhibition (green, 0.98±0.04, p=0.80), and the previous 59 

day's trials (gray). All error bars represent the s.e.m..  60 
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 4 

Fig. 4. Behavioral performances and ramping VTA DAergic activity are explained 61 

by RL model. (A) Two reinforcement learning computational models, Decision Ahead 62 

in the dark blue box and Continuous Deliberation in the light blue box, simulating the 63 

decision processes and variables under the delayed gratification task. In Decision Ahead: 64 

Q(an) is the value for action a(n) and P(Tan) is the probability of action a(n); Q(an) was 65 

used to compute the probability of action a(n). In Continuous Deliberation: probability 66 

of waiting, Pwait
(n) ; waiting action value, Qwait

(n) ; probability of leaving, Pleave
(n) ; leaving 67 

action value, Qleave
(n) ; R(n), received reward; Qwait

(n)  and Qleave
(n)

 were used to compute 68 

the probability of waiting or leaving. (B-C) The distributions of waiting durations from 69 

the early session and late session simulated in Decision Ahead model (B) and 70 

Continuous Deliberation model (C) both displayed a similar distribution with our 71 

experiment data (Fig. 1F). (D) The distributions of behavioral performances between 72 

early training days and late training days from experiment data were very different, in 73 

which the Kullback-Leibler (KL) divergence was big enough (0.39 ± 0.06). The KL 74 

divergences between the distributions of simulated behavioral performances from both 75 

models in early or late session and experiment data of every mouse cross whole training 76 

sessions were significant small (p = 0.005, n = 7 mice, Friedman test), in which there 77 

was no difference (p > 0.99) between Decision Ahead RL model and Continuous 78 

Deliberation RL model in late and early session. Data are represented as mean ± SEM. 79 

(E) Plots of Z-scored ΔF/F values (DAw, light blue) at 0.5s before the waiting ended, 80 

the scaled values of waiting (Qwait, light purple), and the value of leaving (Qleave, green) 81 

from Continuous Deliberation model in last training session. The Qwait and Qleave both 82 

predicted the experimental observation well (Qwait: r = 0.99, p<0.001; Qleave: r = 0.91, p 83 

= 0.002, Pearson correlation). (F-G) Computational reinforcement learning model 84 

(continuous deliberation)-simulated data, dependent on manipulating the value of 85 

waiting (Qwait) in delayed gratification task. As with the experimental data in Fig. 3D-86 

E, the model-simulated data also shows that increased Qwait only increases the waiting 87 

durations of Qwait increased trials ((F) ,p<0.001, Friedman test, n=10) whereas 88 

decreased Qwait can decrease the waiting durations of Qwait decreased trials ((G), 89 
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 5 

p<0.001, Friedman test, n=10). The unstimulated trials including the next trials after 90 

Qwait manipulation had no difference with the last round regular running ((F-G), 91 

p>0.999, Friedman test, n=10). All error bars represent the s.e.m..  92 
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 6 

Fig. 5. VTA DAergic activity during waiting predicts the behavioral performance 93 

in the delayed gratification task. (A) Schematic of waiting probability (Pwait) in 94 

waiting periods after momentary DAergic periods from the experimental data. For 95 

momentary DAergic activity in each period, the mouse has Pwait, which is calculated by 96 

the waiting durations and trial number, in any waiting periods after the momentary 97 

DAergic period. (B) Relationship between momentary VTA DAergic activity (Ca2+ 98 

signals) and its waiting probability. For each momentary DAergic period, its DAergic 99 

activity is only highly correlated (p<0.001, n = 7 mouse, black lines, regressed 100 

coefficient median; boxes, 50% confidence interval; whisker, 95% confidence interval) 101 

with Pwait in the adjacent waiting period (the left bar of each cluster). (C) The 102 

distribution of Z-scored mean ΔF/F of momentary DAergic periods. Three colors 103 

illustrate high dopamine activity (High DA: red, greater than the threshold value, gray 104 

dash line, while the threshold value is positive) trial numbers, low dopamine activity 105 

(Low DA: green, less than the threshold value, while the threshold value is negative) 106 

trial numbers, and all other (gray) dopamine activity trial numbers. (D) The waiting 107 

probability of High DA (red) and Low DA (green) activity trials for the adjacent period 108 

after the momentary DA periods. The Pw of High DA and Low DA activity trials fit 109 

well with a fifth-degree polynomial function (R2=0.93, -2.1≤ threshold≤2.1). While the 110 

absolute values of the threshold are big enough (|Th|≥1.7), the Pw of the High DA 111 

activity trails is significantly (p=0.04, F(1,12)=5.483, Two-way ANOVA) higher than 112 

the Pwait of the Low DA-ramping activity trials in adjacent waiting periods 113 

(|threshold|=2.0, p=0.02; |threshold|=2.1, p<0.001, Sidak's multiple comparisons test, 114 

n=7). (E-F) Cumulative probabilities of waiting durations for the high DA-ramping 115 

trials (e, H-R, red), the lower-DA-ramping trials (E, L-R, green) and their "next-in-116 

series" trials (F). Bar graph showing that the normalized waiting durations (1.03±0.01) 117 

of the higher-DA-ramping trials are significantly longer than that of the lower-DA-118 

ramping trials ((E), 0.98±0.01, p=0.024, n=7, paired Student's t-test), but have no 119 

difference between their "next-in-series" trials ((F), next trial of H-R, 1.01±0.01; next 120 
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 7 

trial of L-R,0.99±0.01; p=0.290, n=7, paired Student's t-test). All error bars represent 121 

the s.e.m.. 122 
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Fig. S5. Optical activation or inhibition of VTA DA activity didn’t change the motivation of mouse in the delayed

gratification tasks and the duration the mouse stayed in the given box in RPPT. (A) The running duration didn’t change

while the VTA DA neurons were optically activated (F=0.20, p=0.82, one-way ANOVA). (B) The result was the same as

Figure A while optical inhibiting the VTA DA neurons (F=0.12, p=0.88, one-way ANOVA). (C) The heatmap of mouse traces

in RPPT in which the VTA DA neurons were optically activated pseudo-randomly in 20% probability while the mouse entered

into the given box (red rectangle). (D) The Z-scored duration that the mouse stayed in the given box while the VTA DA

neurons were activated (Laser-On In) had no significant difference (F=0.75, p=0.44, one-way ANOVA, n=6) with the un-

inhibited durations (Laser-Off In) and durations in another box (Out). (E) The heatmap of mouse traces as shown in Figure C

while inhibiting the VTA DA neurons in the given box (red rectangle). (F) Optical inhibiting the VTA DA neurons also didn’t

change the duration the mouse stayed in the given box (F = 0.17, p = 0.73, one-way ANOVA, n=6). All error bars represent

the s.e.m..
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Fig. S6. Optogenetic manipulation of DAT-Cre mouse expressed mCherry in the delayed gratification tasks and RPPT.

(A) Waiting durations in 473nm laser delivered trials (blue) are not different compared with those of all other trials (p=0.17,

Friedman test, n=7). (B) Waiting durations of 589nm laser un-delivered trials (magenta) slightly increased compared with the

waiting duration of the previous day (p=0.02, Friedman test, n=7). (C) Heat-map of mouse traces in RPPT in which the VTA of

the mouse was delivered 473nm laser pseudo-randomly in 20% probability while the mouse entered into a randomly chosen

box (red rectangle). (D) Mean durations that the mouse stayed in chosen box while the laser delivered (Laser-On In), laser off

(Laser-Off In) and the other box. There is no significant difference in waiting duration between Laser-On In and Laser-Off In

(F=3.54, p=0.09, one-way ANOVA, n=7). (E) Heatmap of mouse traces same as shown in (c) while the mouse was delivered

589nm laser in a randomly chosen box (red rectangle). (F) Mean durations that the mouse stayed in chosen box while 589nm

laser delivered (Laser-On In), laser off (Laser-Off In), and in the other box. 589nm laser delivering to mCherry mouse didn’t

alter waiting duration mouse stayed in any boxes under all experimental conditions (F=2.64, p=0.14, one-way ANOVA, n=7).

All error bars represent the s.e.m..
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Fig. S8. Manipulation of value of leaving and RPE in RL model. (A-B) Either increasing or decreasing the value of

leaving (Qleave) in the continuous deliberation model as with the manipulation of Qwait induced the opposite results compared

with the optogenetics manipulating DAergic activity (increasing Qleave in A: p<0.001, Friedman test, n=10; decreasing Qleave

in B: p <0.001, Friedman test, n=10) and had no influences on other trials (A-B, p>0.999, Friedman test, n=10). (C-D) Either

increasing (C) or decreasing (D) the RPE in the continuous deliberation model as with the experimental data, alters the

waiting durations in the same direction in all trials, whether or not the RPEs-manipulation (increasing RPEs in c: p<0.001,

Friedman test, n=10; decreasing RPE in (D): p <0.001, Friedman test, n=10). (E) The value of waiting is only positively

correlated (0.23±0.02, p =0.03±0.01, n =20) with the adjacent behavior in the Continuous Deliberation RL model. (F) The p

values of correlation coefficients in E. All error bars represent the s.e.m..
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