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ABSTRACT4

The fitness cost of complex pleiotropic mutations is generally difficult to assess. On the one5

hand, it is necessary to identify which molecular properties are directly altered by the mutation. On6

the other, this alteration modifies the activity of many genetic targets with uncertain consequences.7

Here, we examine the possibility of addressing these challenges by identifying unique predictors of8

these costs. To this aim, we consider mutations in the RNA polymerase (RNAP) in Escherichia coli9

as a model of complex mutations. Changes in RNAP modify the global program of transcriptional10

regulation, with many consequences. Among others is the difficulty to decouple the direct effect11

of the mutation from the response of the whole system to such mutation. A problem that we solve12

quantitatively with data of a set of constitutive genes, which better read the global program. We13

provide a statistical framework that incorporates the direct effects and other molecular variables14

linked to this program as predictors, which leads to the identification that some genes are more15

suitable predictors than others. Therefore, we not only identified which molecular properties16

best anticipate costs in fitness, but we also present the paradoxical result that, despite pleiotropy,17

specific genes serve as better predictors. These results have connotations for the understanding of18

the architecture of robustness in biological systems.19
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INTRODUCTION20

One recurrent problem in Biology is to understand the impact that mutations have on fit-21

ness (Griffiths et al. 2015). Admittedly, this topic has been the center of most recent research in22

Molecular Biology, with a catch. The majority of mutations, for which we have a well-defined23

knowledge of the underlying causes of their fitness costs, are "simple". By simple, we refer to24

mutations in molecular elements with a specific function, e.g., an enzyme catalyzing a particular25

metabolic reaction or a transcription factor linked to the activation of a given gene.26

Wewill not examine here fitness costs of simple mutations but alternatively of those considered27

“complex”. Complex mutations can be commonly established by the pleiotropic action of the28

molecular agents experiencing the mutation (Dudley et al. 2005). For instance, these agents29

could refer to a core element of the metabolic or expression cellular machinery, whose function is30

recognized to be highly pleiotropic. One way to further outline this definition is to add that the31

said molecular element is active in different contexts (He and Zhang 2005), i.e., that it presents a32

characteristic environmental fitness cost map. In this map, one represents pairs of fitness values33

for both the wild type (WT) and a given mutant in a set of environmental conditions (Fig. 1A).34

Impairment of a pleiotropic agent should lead to a proportional decrease in fitness characterized35

by a global scale factor compared to simple mutations that uniquely display fitness costs in specific36

situations (Fig. 1B).37

In this work, we initially exemplify these concepts using a genome-wide computational model38

ofEscherichia coli’s metabolism (Feist et al. 2007). We then consider the RNApolymerase (RNAP)39

as experimental model. Three different mutations of the gene rpoB, which encodes the V subunit of40

the RNAP, follow the characteristic environmental fitness cost map of a complex mutation. Indeed,41

mutations in rpoB, usually obtained in response to rifamycins (Rif) (Goldstein 2014) –a class of42

antibiotics–, have been studied in many species and they entail a long list of pleiotropic effects (Jin43

and Gross 1989; Tóth et al. 2003; Cai et al. 2017; Karthik et al. 2019).44

Once we define these mutations as complex, we then ask what set of molecular properties could45

be a priori relevant to understand their cost in fitness. We thus hypothesize several features, which46
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organize in two broad categories, linked to the global program of transcription and the alarmone47

(p)ppGpp, or ppGpp onwards.48

The former is motivated by the ubiquitous role of the RNAP in gene expression and its coupling49

to the growth rate. In fact, early works attributed fitness costs to a decreased transcriptional50

efficiency of the RNAP in E. coli (Reynolds 2000), while subsequent studies found larger, genome-51

wide, transcriptional reprogramming in Pseudomonas Aeruginosa (Qi et al. 2014),Mycobacterium52

Tuberculosis (Trauner et al. 2018) and E. coli (Wytock et al. 2020) that was not clearly connected53

to these costs. Our work will enable us to reexamine these issues.54

The second broad category includes different features of the interaction between the RNAP and55

ppGpp mediated by the gene dksA (Paul et al. 2004; Irving and Corrigan 2018; Sanchez-Vazquez56

et al. 2019). Notably, the RNAP associated with rpoB mutants was found to work like a stringent57

RNAP (Zhou and Jin 1998), and an altered stringent response was held responsible for fitness costs58

in E. coli (Wytock et al. 2020). On top of all, the concentration of ppGpp tightly controls optimal59

resource allocation and hence, growth rate (Zhu and Dai 2019).60

Finally, we quantify all these properties in a collection of constitutive genes as "reporters".61

These genes are useful for reading the RNAP regulatory signal since they do not present any class62

of specific regulation (Schaechter et al. 1958; Maaløe 1979).63

Armed with this data collection, we develop a quantitative framework to predict fitness costs.64

This leads us to reconsider earlier results. Transcriptional efficiency, i.e., the rate of mRNA65

production does emerge as a relevant determinant. However, comparing transcription levels between66

a WT and a mutant that grows at a slower rate calls for special care. Indeed, empirical laws of67

resource allocation show that gene expression in general, and transcriptional promoter activity in68

particular, are structurally dependent on the availability of global resources, which in turn, impact69

growth rate (Liang et al. 1999; Klumpp and Hwa 2008; Klumpp et al. 2009). This is all captured70

in our results.71

Note that while in this example we had some knowledge of the biology involved, in general, our72

approach does not necessarily need a mechanistic rationale to select a particular predictor. And,73
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although this could seem a significant drawback, it can, in turn, serve to guide research in situations74

where the origin of fitness costs is unknown. The statistical model can potentially integrate any75

number of predictors without prior knowledge about their relevance. In such a case, however,76

the number of experimental points needed to distinguish spurious correlations from significant77

ones would quickly increase. These are common problems, of course, in other theoretical and78

applied areas where multiple regression analysis is applied, e.g., Quantitative Genetics (Falconer79

and Mackay 1996) or Ecology (Johnson and Omland 2004).80

More broadly, our work contributes to the general program of predicting cellular phenotypes81

from amolecular basis by effectively decreasing the dimensionality assumed to determine such phe-82

notypes and has implications for our comprehension of the architecture of robustness in biological83

systems.84

RESULTS85

Complex mutations display global fitness costs86

We first explore complex mutations in silico, using a genome-scale metabolic model. Specifi-87

cally, we employed one convenient model of Escherichia coli that incorporates 1260 open reading88

frames (ORFs) and 2077 reactions (Feist et al. 2007). We simulate the effect of a mutation on a89

given enzyme by constraining the fluxes of the reactions in which it participates. Then, we compute90

the fitness of theWT andmutant strains in a minimal medium supplemented with one of 174 carbon91

sources (Fig. 1A, Methods). This enables us to distinguish between a global effect of the mutation,92

and specific gene-environment interactions through the environmental fitness cost map (Fig. 1B).93

Enzymes involved in the energetic regulation of the metabolism are potential candidates for94

complex mutations. As a case study, we examined a series of nuoB mutants, an oxidoreductase95

which is part of the respiratory chain, that spanned the entire range of the effect of a mutation:96

from unconstrained (WT) to null (knockout) flux. Figure 1C indicates that mutants manifest a97

stronger decrease in relative global fitness (U; U<1 indicating fitness costs) for larger effects of the98

mutation. In the limiting case, when the reactions are turned off, we obtain the relative global99

fitness of the nuoB knockout (83%). Note that the complex character of these mutations is linked100

4 Yubero & Poyatos

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2021.03.10.434744doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.10.434744
http://creativecommons.org/licenses/by-nc-nd/4.0/


to a considerable reorganization of metabolic fluxes (Fig. 1D; see Supplementary Text and Fig. S1101

for further examples and a comprehensive discussion of these mutations).102

Overall, complex mutations manifest themselves in a multitude of different environments and103

are not specific to a particular external cue. This highlights the broader reach of these mutations104

and their coupling to core enzymes involved in cell growth.105

Mutations in rpoB are complex106

We next establish how RNAP mutants represent a well-grounded experimental model system107

for complex mutations given RNAP’s essential role during gene expression and cellular growth.108

Specifically, we consider the WT strain REL606 of the bacterium E. coli (Barrick et al. 2009) and109

three mutant derivatives in the rpoB gene (with the following amino acid substitutions: H526L,110

S512Y, and Q513P) that have been selected experimentally through Rif resistance (Garibyan et al.111

2003; Jin and Gross 1988).112

To obtain an experimental environmental fitness cost map, we measured the growth rate of the113

four strains in M9 minimal media with different carbon sources (Methods). Figure 2 shows this114

map for the three mutants. We observe that while the derivative H526L (Fig. 2A) exhibits no fitness115

cost, S512Y (Fig. 2B) and Q513P (Fig. 2C) exhibit mild 4% and large 24% costs, respectively. This116

global response is similar to the one produced by complex mutations in the genome-scale metabolic117

model in the previous section. In this case, since these mutations correspond to RNAP (localized118

in the rpoB gene), we can characterize a set of molecular features directly related to the change in119

transcriptional performance. Ultimately, we will assess these features as potential candidates for120

anticipating the fitness cost of complex mutations in a statistical model.121

Mutations in rpoB alter the global transcriptional program122

We quantified changes in the transcriptional activity of the RNAP by measuring the promoter123

activity (PA), i.e., the rate of mRNA production. As gene expression is strongly dependent on the124

growth rate, and consequently on the availability of global resources (Liang et al. 1999; Klumpp125

et al. 2009), changes in PA observed in the mutants present two possible causes. One is associated126

to a decrease in growth rate, while a second is directly linked to changes in the functional activity127
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of the mutant RNAP (Utrilla et al. 2016). To uncouple these effects, we measured PA as a function128

of growth rate ` during balanced growth in multiple carbon sources (Fig. 3A). We introduced the129

notion of the total and direct promoter activity changes PA) and PA� , respectively (Fig. 3B). While130

PA) measures the difference in PA between theWT and a mutant in a given condition (and different131

growth rates), PA� is the expected change in PA between the WT and a mutant when growing at132

the same rate (and different environmental conditions). This second measure quantifies in this way133

the potential change in the activity of the mutated RNAP controlling for changes in the availability134

of global resources due to fitness costs.135

We experimentally measure PA in all strains as the accumulation rate of a reporter green136

fluorescent protein (GFP) of a selected set of promoters (Methods). We selected eleven constitutive137

promoters available in a reporter plasmid library (Zaslaver et al. 2006). Constitutive genes are138

particularly suitable because their expression does not rely on the concentration of any specific139

transcription factor, and thus they read the availability of global resources and the performance140

of the pool of RNAPs (Schaechter et al. 1958; Maaløe 1979; Klumpp and Hwa 2008). We then141

model the growth-rate dependencies of promoter activities, PA(`), from PA measurements during142

exponential growth in eight different media (Methods).143

Figure 3C shows the growth-rate dependencies of the promoter activities of the selected genes,144

in all strains, together with the best fit to a Michaelis-Menten equation PA(`) = +<`/( < +`) with145

parameters V<, maximum expression, and K<, growth rate at which PA is half-maximal (Fig. 3A,146

Methods). We recovered not only that, in general, each promoter follows a specific profile with147

different parameters V< and K<, but also that some of them reside in the linear regime with large148

K< (Liang et al. 1999; Gerosa et al. 2013; Yubero and Poyatos 2020).149

Most importantly, the activity of promoters in the RNAP mutant strains still follow hyperbolic150

patterns although different across strains. We found a significant tendency of H526L and S512Y151

towards smaller values of V< whereas Q513P displayed a general decrease in K< (Fig. S2A-152

B). However, the quantitative change in these parameters are mutation- and promoter-specific.153

Therefore, changes in these profiles, i.e., in the global transcriptional program, are candidates for154
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predictors of fitness costs.155

The availability of a predictive model of PA(`) for all promoters in all strains enables us to156

distinguish between the direct effect of a mutation, PA� to the total change in promoter activity PA) .157

Interestingly, in most promoters, we observe significant direct effects. Even if RNAP mutations do158

not produce fitness costs, as in strain H526L, most promoter activities are significantly altered in a159

consistent manner across environments (> 80%, Fig. S2C-H). Hence, apart from the total effects160

on PA, we also consider separately the direct effects as potential fitness predictors.161

Mutations in rpoB alter the action of ppGpp-RNAP162

The performance of the RNAP is strongly dependent on its interaction with the alarmone ppGpp163

playing a pivotal role in controlling growth rate in bothminimal and richmedia (Irving and Corrigan164

2018; Potrykus et al. 2011; Zhu and Dai 2019) and during the stationary phase (Hirsch and Elliott165

2002). Besides, changes in the concentration of ppGpp, together with the presence of dksA, alters166

the genome-wide transcriptional pattern with profound consequences in resource allocation (Paul167

et al. 2004; Zhu and Dai 2019; Sanchez-Vazquez et al. 2019). Since some rpoB mutants also168

display defective RNAP-ppGpp action (Zhou and Jin 1998), we posit that mutations should also169

impact both growth and transcription during the stringent response at the exit of the exponential170

phase, and during the stationary phase.171

Thus, we considered the following three proxies to quantitatively assess alterations in RNAP-172

ppGpp interactions: the promoter activity and protein level during stationary phase and the de-173

celeration in growth rate during the stringent response. The first assesses the transcriptional174

reprogramming in stationary phase. The second is a measure of the aggregate effect of PA dereg-175

ulation during both balanced growth and stationary phase. Finally, the deceleration rate measures176

the efficiency of RNAP-ppGpp in arresting growth.177

Firstly, we measured the promoter activities in stationary phase during the last two hours of the178

experiment (PA 5 , Fig. 4A; note that other time windows produce qualitatively similar results). This179

parameter describes the appropriate ability of the pair RNAP-ppGpp to reprogram transcription180

when nutrients are depleted. We observe that only a subset of 4, 1, and 3 promoters in strains181
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H526L, S512Y and Q513P, respectively, have a significant under/over-activity in stationary phase182

across different growth media.183

Secondly, in analogy to PA 5 , we measure the protein level also in stationary phase (p 5 , Fig. 4E)184

to assess the combined effect of reduced promoter activity and growth rate. We find that these185

are more often altered than PA 5 , although the responses are still mutation- and promoter-specific186

(Fig. 4F-H). Note that p 5 relative to the WT, tend to be negative in strains H526L and S512Y as187

opposed to Q513P.188

Finally, we used the deceleration rate as a proxy of the interaction RNAP-ppGpp at the onset of189

the stringent response, given its fundamental role in arresting growth at the exit of the exponential190

phase. We measure the deceleration rate as the slope of the linear fit to the instantaneous growth191

rate during 4h after the exponential phase (Fig. 4I, again, other time windows produce similar192

results). Unsurprisingly, across all strains we observed a strong negative linear correlation between193

the deceleration rate and the growth rate during balanced growth (Fig. 4J). Thus, reaching a larger194

growth rate during exponential phase leads to a faster deceleration rate during growth arrest. Then,195

we searched for changes in the normalized deceleration rates across mutants, which controls for196

the respective exponential phase growth rates. Figure 4K shows that both strains with fitness197

costs display a significantly reduced normalized deceleration rate with respect to the WT across198

environments.199

A statistical model for complex fitness predictions200

The characterization of all previous features equipped us with the necessary data to introduce201

a statistical model capable of explaining the fitness costs of three rpoB mutants in eight different202

growthmedia from specificmolecular determinants. Given the uncoordinated changes in expression203

observed in the previous sections, not only do we seek which determinants are best suited for fitness204

costs prediction but also of which reporter genes.205

Specifically, we considered the following predictors related to gene expression: the total and206

direct promoter activity changes PA) and PA� , respectively; the global transcriptional program207

parameters V< and K<; the promoter activity during stationary phase PA 5 ; the protein level during208

8 Yubero & Poyatos

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2021.03.10.434744doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.10.434744
http://creativecommons.org/licenses/by-nc-nd/4.0/


stationary phase ? 5 , and the normalized deceleration rate during growth arrest mC`. The model209

describes the relative growth rate of mutants as a function of the relative change of predictors. The210

expression for each gene, in Wilkinson notation, is:211

` − `FC
`FC

∼ 1 +
∑
8

?8 − ?8,FC
?8,FC

, (1)212

where ` is the growth rate; ?8 is the i-eth predictor; the subscript FC denotes the WT strain213

and 1 refers to a constant intercept. Therefore, a positive parameter estimate implies that the214

relative change of the predictor correlates positively with the relative change in the growth of the215

mutant (Fig. S3 shows all cross-correlations between variables). Each model integrates data of the216

three mutants during growth in the eight media, fitting a total of 24 points.217

With the statistical model, we seek which genes best describe the fitness changes and with218

which combinations of predictors. To do so, we used an algorithm with a step-wise addition and219

subtraction of predictors to an initially constant model following Bayes’ information criterion to220

prevent overfitting. Figure 5 and Table 1 show the results, where we observe that all promoters221

reach a convenient root mean squared error (RMSE) and R2
039

(Fig. 5A), with the exception of corA,222

an ion transporter; pyrB, part of the pyrimidine biosynthesis pathway; and pcnB involved in RNA223

polyadenylation.224

Moreover, the structure of the best models for each gene is represented in Fig. 5B. We observe225

a clear pattern of PA) and PA� as the principal predictors of fitness costs. Interestingly, the226

coefficients for PA� and PA) have opposite signs across all promoters studied, likely highlighting a227

general mechanism. On the one hand, a positive coefficient of PA) implies that mutations in rpoB228

preserve the general shape of PA(`) profiles as a monotonically increasing function (Fig. S4A). On229

the other hand, a negative coefficient of PA� highlights that for a fixed growth rate, larger fitness230

costs are associated with the overexpression of constitutive promoters (Fig. S4B). This effect is clear231

when observing the PA(`) profiles of the strain with the largest fitness cost (Q513P in Fig. 3C).232

Overall, we find that a multivariate regression with as little as four (median) predictors antici-233

pates the fitness costs of different rpoB mutants growing in a variety of carbon sources.234
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DISCUSSION235

One encounters three potential problems when characterizing the fitness costs of complex236

mutations: 1/to define which molecular elements are likely subjects of complex mutations, 2/to237

recognize which of the molecular features altered by these mutations are driving the costs, and238

3/to identify whether some specific target elements (of the molecular agent) can act as a distinctive239

reporter of such modified features and, in this way, of the costs. We find an answer to the first240

problem with the use of the environmental fitness cost map and to the second by dissecting a set241

of potential predictors, quantified in reporter genes, that are ultimately integrated into a statistical242

model. By identifying patterns in the models of a variety of genes, this approach also helps us243

to resolve the third problem: which targets could be most relevant to predict the fitness costs of244

mutations.245

That we observe complex mutations in a metabolic model supports the idea that they are246

likely prevalent in regulatory networks and hence, in biological systems. Moreover, we verify that247

such perturbations are associated with fundamental organismal functions and a larger system-level248

reprogramming as they are apparent in all environments. The larger reach of these mutations could249

be connected to pleiotropic effects. Here we find not only that mutations in E. coli’s RNAP are250

complex, but also that their phenotype changes are highly specific to the mutation.251

The use of RNAP as an experimental (model) system presents some advantages. First, we can252

select predictors with clear biological significance. These predictors are mainly related to either the253

performance of RNAP or its interaction with the alarmone ppGpp. Second, we can test the validity254

of our approach to earlier discussions on the fitness costs of RNAPmutations. Last, we can consider255

constitutive genes as an appropriate set of reporters. These genes are valid reporters of both direct256

effects on transcriptional efficiency and indirect ones on cell physiology (see below). Given that the257

sensitivity to the latter (the global program of transcription) is gene-dependent (Liang et al. 1999;258

Gerosa et al. 2013; Yubero and Poyatos 2020), we identify some genes within this class that are259

eventually better predictors than others through the same subset of variables to acceptable levels260

(but three genes fail terribly in the task; see Fig. S5 for analysis of specific molecular attributes).261

10 Yubero & Poyatos

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2021.03.10.434744doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.10.434744
http://creativecommons.org/licenses/by-nc-nd/4.0/


We propose that genes that perform better are somehow sensitive to growth rate. This sensitivity262

could be read through the changes in a set of features, e.g., their expression, as in the following263

scenarios. First, a gene whose expression is highly robust to a mutation producing fitness costs264

will likely fail at predicting these costs, as even in the presence of such mutation there will be no265

observable change in the features. Second, a gene that is disrupted by the presence of the mutation266

will again be a bad predictor as its expression becomes irrelevant or unreliable. We hypothesize that267

in between these scenarios, there are a few genes whose predictability is maximal as they are only268

partially affected by the mutation. We verify this by quantifying the overall effect of a mutation269

on a gene as the sum of the squared relative change of the predictors included in the statistical270

framework (Fig.S6).271

Moreover, a comparison of the expression response of a mutant to the WT for a fixed growth272

rate could further confirm constitutive genes as the best reporters of fitness costs. To this aim,273

we used RNA-seq data of the rpoB mutant E546V and its WT ancestor (Utrilla et al. 2016). The274

transcriptional changes produced by E546V at two different (fixed) growth rates correlate only275

slightly (Spearman’s d = 0.12; Fig. S7A). But most importantly, we found that this correlation276

greatly originates from the response of constitutive rather than regulated genes (Fig. S7B). Should277

this be a general case, it highlights not only that the transcriptional changes produced by a mutation278

in rpoB are dependent on the growth rate, but also that constitutive genes display a more coordi-279

nated response. Consequently, these genes are probable better fitness costs predictors than genes280

subjected to more specific regulation. In other words, the regulatory network can partially buffer281

the transcriptional changes produced by the mutant RNAP.282

Specific implications to the interplay between transcriptional efficiency and fitness cost in283

Rif-resistant rpoB mutants284

Mutations in rpoB are most commonly found in antibiotic resistance and adaptive evolution285

experiments and have been studied extensively due to their implications in tuning fitness. More286

specifically, mutants producing fitness costs have been traditionally correlated to changes in the287

transcriptional efficiency of the mutant RNAPs. However, there are several issues with the previous288
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studies.289

First, changes in transcriptional efficiency are promoter, environment, and (mutant) strain-290

dependent. A restricted number of any of these variables limits, therefore, the generality of these291

results. However, alleviating this largely increases the cost and difficulties of such studies. Our292

data set is a compromise that allows having a broader view of the impact of mutations in rpoB on293

the transcription of different promoters across multiple growth media.294

Second, there exists a core dependency between growth rate and gene expression unaccounted295

for in previous studies. This relationship is most evident in the PA(`) profiles of constitutive genes296

as PA increases together with growth rate (Fig. 3) what anticipates a decrease in transcription297

when cells grow at a reduced rate even in the absence of mutations. Moreover, mutations in rpoB298

directly affect the transcriptional activity of the RNAP producing fitness costs, which in turn, further299

constrain the efficiency of the RNAP.300

For this reason, total changes in PA have a direct contribution to the mutation, and what we301

called an indirect contribution of the fitness cost. To dissect these effects, one can control for302

the same growth rate enabling the quantification of changes in PA when WT and mutant strains303

share an equivalent "physiological state", i.e., PA� . To our knowledge, this is the first quantitative304

description of how RifR mutations modify the global transcriptional program in general, and PA(`)305

profiles in particular (Fig. 3). That we observe the direct effect of mutations upon promoter activity,306

PA� , as an important determinant accentuates the intricate relationship between RNAP activity and307

fitness. Moreover, in the strain with the most visible fitness costs, there is a significant contribution308

to changes in PA) from the limited availability of global resources.309

General implications.310

All these results show that decoupling the direct effect is fundamental for a better understanding311

of the transcriptional reprogramming observed in rpoB mutants and its impact on fitness costs.312

A partially similar approach was used to find a decisive shift in two other rpoB mutations whose313

RNAPs prioritize growth over hedging genes (Utrilla et al. 2016). The authors also compare the314

genome-wide expression between WT and mutants at a constant growth rate to control for a similar315
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physiological state.316

This is a particular example of a more general problem in which the target of a mutation and a317

phenotype are coupled. Conditions in which a phenotypic change is produced not only by a direct318

perturbation of a molecular agent, but also by the system-level adaptation to such perturbation319

are widespread. Some of these systems, but not only, can be found in the context of fitness costs320

produced by antibiotic resistance mutations when such mutations occur in the molecular target of321

the antibiotic. Indeed, these perturbations potentially result in complex mutations since antibiotics322

may impede general cellular functions vital for bacterial growth, for example, DNA replication323

(quinolones), protein synthesis (macrolides), or transcription (rifamycins) as in our work. But this324

problem also applies to more specific mutations that also cause genome-scale rewiring. Many325

open questions remain on whether this rewiring is limited by particular genomic mechanisms,326

e.g., the possibility of transcriptional compensation (Kafri et al. 2005; Wong and Roth 2005), and327

thus signifies no fitness costs, or is eventually deleterious, and consequently involves additional328

costs (Kovács et al. 2020).329

Finally, the fact that only a subset of the genes influenced by a complex mutation contributes to330

fitness appears to subscribe to a model in which extended phenotypic pleiotropy and fitness-relevant331

modularity coexist (Kinsler et al. 2020). Thus, we notice that many genes –molecular phenotypes–332

can be affected by thesemutations implying extended phenotypic pleiotropy, like that also suggested333

by genome-wide association studies (Visscher and Yang 2016). However, only a few anticipate334

fitness hence displaying fitness-relevant modularity like that observed in many laboratory evolution335

experiments (Tenaillon et al. 2012). We need to continue studying these issues to finally discern336

how robust function encoded in cells shapes their response to genetic variation.337
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MATERIALS AND METHODS338

Computational models of complex mutations339

We used the genome-scale metabolic model of E. coli iAZ1260 (Feist et al. 2007) together with340

the Cobrapy toolbox (Ebrahim et al. 2013) to compute the fitness of theWT and mutants in an array341

of media. We simulated mutations on an enzyme by imposing a limit in the flux of reactions in342

which it participates. The limit is a fraction of the maximum flux observed across all media in the343

WT strain and it is fixed for a given mutant during growth in any media. We used minimal media344

supplemented with one of the 174 carbon sources found in the original study that support growth345

(Feist et al. 2007). The exchange rate for any carbon source was set equal to that of glucose (8346

mmol gDW−1 h−1). We compute the relative global fitness as the slope of the robust least-squares347

fit (bisquare method) of the fitness of the mutant relative to the WT. Data points where the mutant348

is lethal are excluded from the fit. We also used the tool Escher to produce Fig. 1D (King et al.349

2015).350

Strains and growth conditions351

We used E. coli Rel606 as WT, and three mutant derivatives with the following amino acid352

substitutions in the gene rpoB; H526L, S512Y, and Q513P obtained previously through rifampicin353

resistance. In general, strains were retrieved from −80◦C frozen stocks, plated in agar plates354

with selective media (when necessary), and grown overnight at 37◦�. Reporter plasmids were355

extracted from a library (Zaslaver et al. 2006) and purified with the Qiagen Mini-prep kit following356

the manufacturer’s protocol. Then, each strain was transformed with each reporter plasmid with357

TSS (Chung et al. 1989). When necessary, selective media for rpoB mutants was prepared with358

rifampicin (100 `g/ml), and for plasmid-bearing strainswith kanamycin (50`g/ml). Both antibiotics359

were used simultaneously when selecting rpoB mutants bearing the fluorescent reporter plasmid.360

All bacterial growth was at 30◦C unless otherwise specified. Also, cultures were grown under the361

shade to prevent rifampicin degradation.362

Growthmedia consisted ofM9minimal media supplemented i) with one of the following carbon363

sources at 0.5%(w/v): glycerol, sucrose, fructose, and glucose, and ii) either with or without amino364
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acids to a final concentration of 0.2% (w/v), thus making 8 different nutrient conditions in total.365

Single colonies were pre-cultured in 1mL of M9 minimal media supplemented with glucose366

at 0.5%(w/v) for 3h. Then, 96-well flat-bottom plates filled with the corresponding media were367

inoculated with 20`L of pre-culture to a final volume of 220`L, we then added 30`L of mineral oil368

to prevent evaporation. Optical density at 600nm, and fluorescence 490/535nm when appropriate,369

were assayed in a Victor X2 (Perkin Elmer) at 5min intervals with orbital shaking (30s, 1mm) for370

more than 12h.371

Data processing and promoter activity modeling372

First, OD and GFPmeasurements were corrected for background levels by subtracting the value373

of blank wells filled with each corresponding growth media. GFP measurements were further cor-374

rected by subtracting the autofluorescence produced during the growth of the corresponding strain375

transformed with the pUA66 promoterless plasmid (Zaslaver et al. 2006). Only then, growth rate376

time series were computed as the two-point finite differences of log2(OD), `(C) = Δ log2(OD)/ΔC377

(in doublings per hour), and promoter activities were computed as the two-point finite difference378

in time of fluorescence per OD unit, PA?; (C) = ΔGFP/ΔC/OD (in units of GFP/OD/h). Balanced-379

growth data was computed from the mean time-series measurements of three technical replicates380

as the average value in a 1h time-window during observable exponential growth.381

Promoter activity dependence on growth rate was modelled with a Michaelis-Menten equation382

as PA(`) = +<`/( < + `) where +< is the maximum promoter activity and  < is the growth rate383

at which PA is half-maximal (Liang et al. 1999). Data from balanced growth was fit to this equation384

through robust least squares (bisquare) with an upper limit of K<=3 dbl/h to avoid overfitting linear385

profiles (Yubero and Poyatos 2020).386
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(Intercept) PA) PA� V< K< PA 5 p 5 mC` RMSE
hisL 0.00(6) 0.32(8) −0.54(8) 0.3(1) - - −0.11(5) - 0.096
rsd −1.6(4) 0.85(4) −0.60(4) −2.3(5) −3.91(4) - - - 0.114
serW −0.13(4) 0.32(8) −0.3(1) - - - −0.26(5) - 0.146
rpsT −0.09(3) - - - - - −0.31(6) - 0.149
maoP −0.18(7) - −0.07(3) −0.3(2) - - - −0.19(4) 0.188
rpsB −0.11(5) - - 0.4(1) - - −0.19(3) - 0.189
mltD −0.10(5) 0.5(1) −0.6(1) - - - - - 0.225
pyrG −0.11(6) 0.4(1) −0.5(1) - - - −0.10(6) - 0.230
corA† −0.5(3) - −3.0(5) - 1.7(4) −1.8(4) 3.7(6) −2.1(7) 0.933
pyrB† 1.7(6) - - - - - 2.1(9) - 1.75
pcnB† 0.5(4) - - - - - - - 1.89
Median -0.10 0.40 -0.54 0 -1.1 -1.8 -0.11 -1.17 0.189

Table 1. Linear models for the anticipation of fitness costs. We show the coefficients of the
predictors (columns) obtained for the data set of each promoter (rows). The number in parentheses
is the standard error of the coefficient in the last decimal digit shown. The last column contains
the root mean squared errors as a measure of goodness of fit. Models were selected in a step-wise
manner following the Bayesian information criterion (Methods). † genes with largest rmse that fit
poorly the fitness costs.
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Figure 1. Complexmutations have a characteristic environmental fitness costmapbecause they
affect globally. (A) Environmental fitness cost maps are obtained by measuring, and comparing,
the phenotype of a genetic mutant and its WT relative in different environments. In our case,
we focus on growth rate. (B) Sketch of an environmental fitness cost map. It facilitates the
identification of complex mutations and specific gene-environment interactions (GxE). While the
former is a rescaling of the fitness in most environments (red line, relative global fitness U), the
latter are shown as outliers from this trend. (C) We computed the value of U for multiple mutants of
nuoB using a computational metabolic model of E. coli (Methods). Error bars denote the 95% CI
of the slope after robustly fitting data to a linear trend (as in panel B; Methods; 100% flux reduction
denotes a knockout, KO). (D) Sketch of E. coli’s nuoBKOmetabolism with the median flux change
across all environments. We show only the 10% of reactions that are most affected by the mutation.
Transhydrogenase (th), ATP synthase (atp), carbonate (ct), and ubiquinone reduction/oxidation (u)
pathways are also shown.
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Figure 2. Experimental rpoB mutants display global fitness costs. (A-C) Growth rate of the
three rpoB mutant strains (H526L, S512Y, and Q513P) and their WT relative in eight different
growth media (markers, asterisks denote the addition of casamino acids; Methods). Their fitness is
proportional to that of the WT, and hence can be described by their relative global fitness U (with
its 95% CI interval). Error bars denote one standard deviation among 12 replicates.
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Figure 3. Uncoupling the total and direct effects of mutations on promoter activity. (A) Sketch
illustrating the typical growth-rate dependency of the promoter activity of constitutive genes (red
line). These are obtained from PA and growth-rate values during balanced growth in media with
different carbon sources (blue symbols) and they are characterized by V< (the maximal PA), and
K< (growth rate at which PA is half-maximal). (B) Sketch depicting the difference between the
total and direct effects of a mutation, PA) , and PA� respectively. PA) measures the change in
PA between the WT and the mutant in the same environment (black solid circles) but at different
growth rates due to fitness costs (Δ`). Quantifying the PA(`) profiles in the WT and mutant (black
dotted, and red solid lines respectively) enables us to capture PA� , which measures the expected
change in PA when WT and mutant grow at the same rate. (C) PA(`) profiles (red lines) of eleven
constitutive genes in an array of growth media in all four strains (markers and colors, respectively,
as in Fig. 2). The corresponding profile of the WT is also shown for comparability (black dotted
line).
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Figure 4. Promoter activity and protein concentration during stationary phase, and the
deceleration rate constitute additional potential predictors of fitness costs. (A) Relative final
promoter activity (ratio mutant PA 5 over WT) of the rsd gene. (B-D) Relative PA 5 of all promoters
and mutant backgrounds (x-axis). (E) Relative final protein level (ratio mutant [p] 5 over WT) of
rsd. (F-H) Relative [p] 5 of all promoters and mutant backgrounds (x-axis). I) deceleration rate
during growth in M9 and glucose of H526L. (J) Deceleration rates correlate strongly with the
exponential growth rates reached in that particular media (markers) in all strains (colors; Pearson’s
d < −0.86 and p<0.01 in all strains). (K) Even when controlling for this correlation, the relative
deceleration rates of different mutants differ significantly. Note that while the first two scores are
measured during the last two hours of the experiment when cultures are in stationary phase (red
horizontal lines), the deceleration rate is computed from the change in growth rate right after the
exponential phase (slope of the red line). In all panels, we tested a homogeneous response, either
positive or negative, across all environments using a two-sided Wilcoxon sign rank test for medians
(* p<0.05 and ** p<0.01). Colors and markers denote strain and media composition as in Fig.2.
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Figure 5. Anticipating fitness costs from molecular predictors of a variety of promoters. To
predict the fitness costs of three rpoB mutants growing in eight different media conditions, we
used a linear model with step-wise addition and subtraction of predictors following the Bayesian
information criterion to avoid overfitting. (A) Goodness of fit as described by the root mean
squared error (RMSE, top) and the adjusted '2 (R2

039
, bottom) of the final linear models (* p<0.05,

** p<0.01 and *** p<0.001). (B) Model coefficient values (size, clipped to 1 for comparability,
see Table 1), sign (marker), and significance (t-test p-value; colors are proportional to its log10) of
each predictor and each promoter in the final linear models.
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