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Abstract

Multivalent cell surface receptor binding is a ubiquitous biological phe-
nomenon with functional and therapeutic significance. Predicting the amount
of ligand binding for a cell remains an important question in computational bi-
ology as it can provide great insight into cell-to-cell communication and rational
drug design toward specific targets. In this study, we extend a mechanistic, two-
step multivalent binding model to account for multiple ligands and receptors,
optionally allowing heterogeneous complexes. We derive the macroscopic pre-
dictions for both specifically arranged and randomly assorted complexes, and
demonstrate how this model enables large-scale predictions on mixture bind-
ing and the binding space of a ligand. This model provides an elegant and
computationally efficient framework for analyzing multivalent binding.
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1 Introduction

Binding to extracellular ligands is among the most fundamental and uni-
versal activities of a cell. Many important biological activities, and cell-to-cell
communication in particular, are based on recognizing extracellular molecules
via specific surface receptors. For example, multivalent ligands are common
extracellular factors in the immune system [8], and many computational mod-
els have been applied to study IgE-FcεRI [5], MHC-T cell receptor [7], and
IgG-FcγR interaction [16].

In this study, we extend a simple two-step, multivalent binding model to
cases involving multiple receptors and ligand subunits [1, 2, 3, 12, 7]. By har-
nessing the power of combinatorics via applying the multinomial theorem and
focusing on macrostates, we can predict the amount of binding for each ligand
and receptor at the equilibrium state. Our model provides both generality and
computational efficiency, allowing large-scale predictions such as characterizing
synergism of using a mixture of ligands and depicting the binding space of a
compound. The compactness and elegance of the formulae enable both ana-
lytical and numerical analyses. We expect this binding model will be widely
applicable to many biological contexts.
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2 Preliminaries

2.1 Vector and matrix notation

In this work, we denote a vector in boldface letter and its entry in the same
letter but with subscript and not in boldface, e.g. C = [C1, C2, . . . , Cn]. The
sum of elements for a vector is denoted as |C| =

∑n
i=1 Ci.

For any matrix (Aij) of size m× n, we denote the vector formed by its i-th
row as Ai• = [Ai1, Ai2, · · · , Ain], and the vector formed by its j-th column as
A•j = [A1j , A2j , · · · , Amj ]. The row sums of matrix (Aij), therefore, can be
written as |A1•|, |A2•|, · · · , |Am•|, and column sums |A•1|, |A•2|, · · · , |A•n|.

In this work, multinomial coefficients such as n choose k1, k2, · · · , kn will be
written as (

n

k

)
=

(
n

k1 k2 · · · kn

)
=

n!

k1!k2! · · · kn!
.

The implicit assumption here is that |k| = n, and each ki ∈ N.

2.2 Some useful theorems in combinatorics

From the binomial theorem, we know that

f∑
i=0

(
f

i

)
Φi = (1 + Φ)f .

Differentiating both sides by Φ, we get

f∑
i=0

i

(
f

i

)
Φi = fΦ(1 + Φ)f−1. (1)

We can derive similar property from the multinomial theorem. Assume the
elements of a nonnegative integer vector q add up to f , or |q| = f . Given
another nonnegative vector ϕ with sum of elements |ϕ|, we have∑

|q|=f

(
f

q

)∏
i

ϕi
qi = |ϕ|f .

Differentiate both sides by ϕm where ϕm can be any entry of ϕ, and rear-
range, we have ∑

|q|=f

(
f

q

)
qm
∏
i

ϕi
qi = ϕmf |ϕ|f−1. (2)

We can multiply two different multinomial theorem equations together, too.
Let u and v are two nonnegative integer vectors, a and b are two nonnegative
vectors, and |u| = m, |v| = n, we have∑

|u|=m
|v|=n

(
m

u

)(
n

v

)∏
i

aui
i

∏
j

b
vj
j = |a|m|b|n.
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Throughout this paper, we consolidate multiple summation symbols into
one. In this case, we use

∑
|u|=m,|v|=n as a shorthand for

∑
|u|=m

∑
|v|=n.

From Eq.(2), we can derive the sum of a linear combination of two exponents
from each multinomial term as

∑
|u|=m
|v|=n

(
m

u

)(
n

v

)
(k1up + k2vq)︸ ︷︷ ︸

linear combination

∏
i

aui
i

∏
j

b
vj
j = k1apm|a|m−1|b|n + k2|a|mbqn|b|n−1

=

[
k1map
|a|

+
k2nbq
|b|

]
|a|m|b|n,

where k1 and k2 are constants.
We can extend this to the product ofN multinomial equations. Let q1, · · · ,qN

be N nonnegative integer vectors, each with |qi| = θi, and ψ1, · · · ,ψN be N
nonnegative vectors. Then, the sum of any linear combination of exponent terms∑
r krqsrtr , where kr’s are constants and each qsrtr is the tr-th element of qsr ,

can be calculated as

∑
|q1|=θ1
...

|qN|=θN

(∑
r

krqsrtr

)
N∏
i=1

(
θi
qi

)∏
j

ψ
qij
ij

 =

[∑
r

krθsrψsrtr
|ψsr |

]
N∏
i=1

|ψi|θi . (3)
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3 Model setup

3.1 Parameters and notations

R1

NL = 3
NR = 3

NR ( j )

NL( i )

NL( i )

U R2 R3

L1

L1

Ka,21 Ka,33L1

1
i =

0 1 2 3 = j

2
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0
= ( qĳ ) = θ θ0

1

1

1

0

0
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row
sum

# of distinct
complexes

Monovalent Binding
Model Parameters

binding
configuration
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complexes formed via
specific arrangement
or random assortment

complex
construction
represented as

an element of

Figure 1: General setup of the model. In this study, we investigate the binding
behavior of complexes formed by monomer ligands in either specific arrangement
or random assortment. We propose that the binding configuration between a
complex and several receptors on a cell can be described as a matrix (qij). The
construction of a complex can be written as a vector θ. The figure shows the
dimensions of the model’s parameters: Ci, the monomer compositions, are in
a vector of NL; Rtot,j and Req,j , the receptor expression and equilibrium level
are in vectors of NR; the binding affinities, Ka,ij , are in a matrix of NL ×NR;
ϕij and ψij are in the matrices of NL × (NR + 1). Θ is a set of all possible θ’s,
with Cθ as their compositions. Each θ is a vector of NL, and Cθ should be in
a vector of the same size as Θ.

In this study, we investigate the binding between multivalent ligand com-
plexes and a cell expressing various surface receptors. As shown in Figure 1, we
consider NL types of distinct monomer ligands, namely L1, L2, ..., LNL

, and
NR types of distinct receptors expressed on a cell, namely R1, R2, ..., RNR

.
The monovalent binding association constant between Li and Rj is defined as
Ka,ij . A ligand complex consists of one or several monomer ligands, and each
of them can bind to a receptor independently. Its construction can be described
by a vector θ = [θ1, θ2, ..., θNL

], where each entry θi represents how many Li
this complex contains. The sum of elements of vector θ, |θ|, is f , the valency
of this complex.

The binding configuration at equilibrium between an individual complex and
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a cell expressing various receptors can be described as a matrix (qij) with NL
rows and (NR + 1) columns. For example, the complex bound as shown on the
top left corner in Figure 1 can be described as the matrix below it. Entry qij
represents the number of Li to Rj binding, and qi0, the entry on the 0-th column,
is the number of unbound Li on that complex in this configuration. This matrix
can be unrolled into a vector form q = [q10, q11, ..., q1NR

, q20, ..., q2NR
, q30, ..., qNLNR

]
of length NL(NR + 1). Note that this binding configuration matrix (qij) only
records how many Li-to-Rj pairs are formed, regardless of which exact ligand
on the complex binds. For example, in Figure 1, swapping the two L2’s binding
to R2’s will give us the same configuration matrix. Therefore, we will need to
account for this combinatorial factor when applying the law of mass action.

We know from the conservation of mass that for this complex, θi = qi0 +
qi1 + qi2 + · · · + qiNR

= |qi•| must hold for all i. Mathematically, vector θ is
the row sums of matrix (qij). The corresponding θ of a binding configuration
q, θ(q) which is written in the format of a function, can be determined by this
relationship. Also, the sum of elements in q, |q| = f , the valency.

The concentration of complexes in the solution is L0 (not to be confused
with Li, the name of ligands, when i = 1, 2, · · · , NL). The number of ligand
complexes in the solution is usually much greater than that of the receptors
and so it is a common practice to assume binding does not deplete the ligand
concentration.

On the receptor side, Rtot,i is the total number of Ri expressed on the cell
surface. This usually can be measured experimentally. Req,i is the number of
unbound Ri on a cell at the equilibrium state during the ligand complex-receptor
interaction, and it needs to be calculated from Rtot,i as we will explain later.

The binding of a ligand complex, a large molecule, is complicated. To sim-
plify the matter, we will need to make some key thermodynamic assumptions.
In this model, we make two assumptions on the binding dynamics:

1. The initial binding between a free (unbound) complex and a surface recep-
tor Rj has the same affinity (association constant, Ka,ij) as the monomer
ligand Li;

2. In order for the detailed balance to hold, the affinity constant of any sub-
sequent binding event on the surface of a cell after the initial interaction
must be proportional to their corresponding monovalent affinity. We as-
sume the subsequent binding affinity in multivalent interactions between
Li and Rj to be K∗xKa,ij .

K∗x is a term coined as the crosslinking constant. It captures the difference
between free and multivalent ligand-receptor binding, including but not limited
to steric effects and local receptor clustering [4]. In practice this term is often
fit to apply this model to a specific biological context.

We create two more variables that will help to simplify our equations through-
out this work. For all i in {1, 2, ..., NL}, we define ψij = Req,jKa,ijK

∗
x and

ϕij = Req,jKa,ijK
∗
xCi where j = {1, 2, ..., NR}, and we define ψi0 = 1, ϕi0 = Ci.

Therefore, ϕij = ψijCi holds for all i and j. Then we define the sum of this new
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matrix (ϕij) as
∑NL

i=1

∑NR

j=1 ϕij = Φ, and
∑NL

i=1

∑NR

j=0 ϕij = Φ+
∑NL

i=1 Ci = 1+Φ.
The rationale of these definitions will become clear in future sections.

3.2 The amount of a specific binding configuration

Now we will derive the amount of complexes bound with the configuration
described as q on a cell at equilibrium, vq.

Within the definitions of our model, we know that the composition of any
complex can be described by a vector θ of length NL, where each entry θi repre-
sents the number of monomer Li this complex consists of. We can enumerate all
possible binding configuration of θ complex by filling the matrix (qij) with any
nonnegative integer values so long as its row sums equal θ. Conversely, we can
imply the complex composition given any binding configuration q by finding its
row sums, θ(q). For a certain configuration q, its θ(q) is determined and has
concentration L0Cθ(q). If the corresponding complex θ(q) does not exist in the
solution, Cθ(q) = 0. Since we assumed that binding will not deplete the ambient
concentration of any θ(q), it will remain L0Cθ(q) at equilibrium.
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0

0

0

0
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0

0

0

0

1

3

1

θ(q) qa

q(1)

qb

q(2)

Ka,ĳ Kx*Ka,ĳ

initial
binding

subsequent
binding

Figure 2: A scheme of cell-complex binding step by step. We assume the initial
binding event has the same affinity as monomer binding, Ka,ij , while subsequent
binding has an association constant scaled by K∗x, the crosslinking constant.
Each binding configuration scheme above can be described by the q right below,
if we ignore the statistical factors. θ(q) is the structure of the complex and can
be derived from q.

Initial binding We start with the initial binding reaction of a complex, Li-to-
Rj . As shown in Figure 2, the reactants of this reaction are the free complexes
and the free receptors Rj (in this case R2), and the product are Li-to-Rj (in this
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case L2-R2) monovalently bound complexes q(1). We denote the concentration
of this new complex as vq(1)

. The concentration of free complexes is L0Cθ(q(1)).
By the assumption of the model, the equilibrium constant for the reaction is
Ka,ij . Therefore, we have

vq(1)
= L0Cθ(q(1))Req,jKa,ij .

While the binding configuration of q(1) can be described by qa, the total
amount of complexes that bind as described as qa may not be the same as vq(1)

,
since qa does not consider the number of ways this binding Li can be chosen.
An equivalent explanation is that, q(1) is only one possible microstate to achieve
the qa configuration, and we need to count how many microstates are possible
for qa. Accounting for this statistical factor, we have

vqa = vq(1)

(
θi
1

)
= vq(1)

(
θi

qa,i•

)
,

vqa = L0Cθ(qa)Req,jKa,ij

(
θi

qa,i•

)
,

since θ(q(1)) = θ(qa). qa,i• is a vector formed by the i-th row of qa. For

example, in Figure 2, qa,2• = [2, 0, 1, 0]. Conceptually,
(
θi

qa,i•

)
can be understood

as the number of ways to split θi Li’s into qi0 of unbound units, qi1 of R1-bound,
qi2 of R2-bound, ..., and qiNR

of RNR
-bound. Here, only qi0 and qij will be

nonzero, with qi0 = θi − 1 and qij = 1, so it is effectively the same as
(
θi
1

)
.

However, the multinomial coefficient expression can be generalized into more
complicated cases.

Subsequent binding For a subsequent binding between Li and Rj (i and j
are not necessarily the same as in initial binding), we have the reactants as a
bound complex, q(1), and a free receptor Rj (in the case shown by Figure 2, R2),
while the product is another bound complex, q(2). The equilibrium constant is
K∗xKa,ij , then

vq(2)
= vq(1)

Req,jK
∗
xKa,ij .

To account for the statistical factors for vqb
, we have vqb

= vq(2)

(
θi

qb,i•

)
. For

example, in Figure 2, qb,2• = [1, 0, 2, 0]. Putting these together, we have

vqb
= vqaReq,jK

∗
xKa,ij

(
θi

qb,i•

)(
θi

qa,i•

) .
By recursion, we can solve vq for any q from these equations. It is

vq =
L0Cθ(q)

K∗x

(NL,NR)∏
(i,j)=(1,1)

(Req,jK
∗
xKa,ij)

qij

NL∏
i=1

(
θi
qi•

)
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=
L0Cθ(q)

K∗x

(NL,NR)∏
(i,j)=(1,0)

ψ
qij
ij

NL∏
i=1

(
θi
qi•

)

if we define ψij = Req,jK
∗
xKa,ij for j = 1, 2, · · · , NR and ψi0 = 1 for all i.∏(NL,NR)

(i,j)=(1,0) is a shorthand for
∏NL

i=1

∏NR

j=0. In the next section, we will use this

formula repeatedly.
Notice that this equation is not suitable for calculating the concentration

of unbound q, when every nonzero values are on its 0-th column. The con-
centration of unbound ligands should always be L0Cθ(q). However, for alge-
braic convenience, we allow such definition and will name it v0,eq which equals
L0Cθ(q)/K

∗
x.
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4 Macroscopic equilibrium predictions

From here we will investigate the macroscopic properties of binding, such
as the total amount of ligand bound and receptor bound on a cell surface at
equilibrium. We consider two different ways complexes in the solution to be
formed. First, complexes can be formed in a specific arrangement. In this case,
the structure and exact concentration for each kind of complex are designed
and known. Alternatively, we can set a fixed valency f for all complexes given
the known proportion of each ligand monomer. Through random assortment,
any combination of f monomer ligands can form a complex, and their concen-
tration will follow a multinomial distribution. We will explore these two cases
separately.

4.1 Complexes formed in a specific arrangement

When complexes are specifically arranged, the structure and proportion of
each kind are well-defined. To formulate this mathematically, we assume that we
have various kinds of complexes, and each of them can be described by a vector
θ of length NL, with each entry θi as the number of Li in this complex. The
valency of each complex may be different, and for complex θ its valency is |θ|.
The proportion of θ among all complexes is defined as Cθ, and the concentration
of each θ complex will be L0Cθ. For example, if we create a mixture of 20%
of bivalent L1 and 80% of bispecific L1 − L2, then θ1 = [2, 0], θ2 = [1, 1],
Cθ1 = 20%, and Cθ2 = 80%. If the mixture solution has a total concentration
of 10 nM, then the concentration of θ1 is 2 nM, and the concentration of θ2 is
8 nM.

We further conceptualize that Θ is a set of all existing θ’s. By this setting, we
should have

∑
θ∈Θ Cθ = 1. These complexes will bind in various configurations

which can all be described as a q. We define Q as a set of all possible q’s, and
we borrow the notation q ⊆ θ to indicate any binding configuration q that can
be achieved by complex θ. This is equivalent to |qi•| = θi for all i, or θ is the
row sum of (qij).

Solve the amount of free receptors A remaining problem in the model
setup is that in practice we can only experimentally measure the total amount
of receptor of each kind expressed by a cell, Rtot,j , while the amount of free
receptors at equilibrium, Req,j , though being used extensively in the model
derivation, is unknown. To find Req,j , we first need to derive the amount of
bound receptors of each kind, Rbound,j , then use conservation of mass to solve
Req,j numerically.

To calculate the amount of bound ligand Rbound,n, we can simply add up all
entries at the n-th column for every q’s:

Rbound,n =
∑
q∈Q
|q•n|vq
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=
∑
q∈Q
|q•n|

L0Cθ(q)

K∗x

(NL,NR)∏
(i,j)=(1,0)

ψ
qij
ij

NL∏
i=1

(
θi
qi•

)

=
L0

K∗x

∑
θ∈Θ

Cθ
∑
q⊆θ

|q•n|
(NL,NR)∏

(i,j)=(1,0)

ψ
qij
ij

NL∏
i=1

(
θi
qi•

)

=
L0

K∗x

∑
θ∈Θ

Cθ

[
ψ1n

|ψ1•|
θ1 + · · ·+ ψNLn

|ψNL•|
θNL

] NL∏
i=1

|ψi•|θi

=
L0

K∗x

∑
θ∈Θ

Cθ

[
NL∑
i=1

ψin
|ψi•|

θi

]
NL∏
i=1

|ψi•|θi ,

where |q•n| =
∑NL

m=1 qmn, and |ψi•| =
∑NR

j=0 ψij .
By the conservation of mass, we have

Rtot,n = Req,n +Rbound,n

= Req,n +
L0

K∗x

∑
θ∈Θ

Cθ

[
NL∑
i=1

ψin
|ψi•|

θi

]
NL∏
i=1

|ψi•|θi .

In this equation, Rtot,n are known, and any ψi• is a function of every Req,j ,
j = 1, 2, · · · , NR, so all Req,j need to be solved together. This system of equa-
tions usually does not have a closed form and must be solved numerically. When
implementing, we suggest taking the logarithm of both sides of these equations
so the exponents can be eliminated and the range is restricted to positive num-
bers.

As a side note, the total amount of bound receptors regardless of which kind
is

Rbound =

NR∑
n=1

Rbound,n

=
L0

K∗x

∑
θ∈Θ

Cθ

NR∑
n=1

[
ψ1n

|ψ1•|
θ1 + · · ·+ ψNLn

|ψNL•|
θNL

] NL∏
i=1

|ψi•|θi

=
L0

K∗x

∑
θ∈Θ

Cθ

[
(1− ψ10

|ψ1•|
)θ1 + · · ·+ (1− ψNLn

|ψNL•|
)θNL

] NL∏
i=1

|ψi•|θi

=
L0

K∗x

∑
θ∈Θ

Cθ

[
|θ| −

NL∑
i=1

θi
|ψi•|

]
NL∏
i=1

|ψi•|θi .

The amount of bound ligand complexes Our model makes many macro-
scopic predictions readily accessible. For example, the amount of ligand bound
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at equilibrium is a useful quantity when measuring the overall quantity of tagged
ligand. To compute this number, we can add up all vq except the q’s that only
have nonzero values on the 0-th column, v0,eq. Consequently, the model predic-
tion of bound ligand at equilibrium is

Lbound =
∑
q∈Q

vq − v0,eq

=
∑
q∈Q

L0Cθ(q)

K∗x

(NL,NR)∏
(i,j)=(1,0)

ψij
qij

NL∏
i=1

(
θi
qi•

)
− L0

K∗x

∑
θ∈Θ

Cθ

=
L0

K∗x

∑
θ∈Θ

Cθ

∑
q⊆θ

(NL,NR)∏
(i,j)=(1,0)

ψij
qij

NL∏
i=1

(
θi
qi•

)
− 1


=
L0

K∗x

∑
θ∈Θ

Cθ
[
|ψ1•|θ1 |ψ2•|θ2 . . . |ψNL•|θNL − 1

]
=
L0

K∗x

∑
θ∈Θ

Cθ

[
NL∏
i=1

|ψi•|θi − 1

]

when |ψi•| =
∑NR

j=0 ψij , and the predicted amount of bound complex θ
(complex of each kind) is

Lbound,θ =
L0Cθ
K∗x

[
NL∏
i=1

|ψi•|θi − 1

]

The amount of fully bound ligands In multivalent complexes like bispe-
cific antibodies, drug activity may require that all subunits be bound to their
respective targets [13]. The predicted amount of ligand bound f -valently can
be calculated as

vf,eq =
∑
θ∈Θ

∑
q10,...,qNL0=0

L0Cθ
K∗x

(NL,NR)∏
(i,j)=(1,1)

ψ
qij
ij

(
θ1

q∗1•

)
. . .

(
θNL

q∗NL•

)

=
L0

K∗x

∑
θ∈Θ

Cθ

NL∏
i=1

NR∑
j=1

ψij

θi

=
L0

K∗x

∑
θ∈Θ

Cθ

NL∏
i=1

(|ψi•| − 1)
θi ,

with q∗i• = (qi1, . . . , qiNR
), the qi• vector without qi0. In this equation, the

multinomial coefficient
(
θi
q∗
i•

)
describes the number of ways one can allocate θi
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receptors to any position in the i-th row of the (qij) matrix except the 0-th row
which stands for unbound.

In fact, the predicted amount of any specific-valently bound ligands can
be derived in such manner. For example, the amount of ligands that bind
monovalently can be calculated as

v1,eq =
∑
θ∈Θ

L0Cθ
K∗x

NL∑
i=1

NR∑
j=1

ψ
qij
ij

(
θi
1

)

=
∑
θ∈Θ

L0Cθ
K∗x

NL∑
i=1

|ψi•|θi.

This can be used for estimating the amount of multimerized ligands, Lmulti =
Lbound − v1,eq, and multimerized receptors, Rmulti = Rbound − v1,eq.

4.2 Complexes formed through random assortment

Another common mode of forming multivalent complexes in biology, such as
in the formation of antibody-antigen complexes [16], is engagement of monomer
units to a common scaffold. Instead of resulting in a specific arrangement, we
provide binding compounds of a fixed valency f and a litany of monomer ligands,
and complexes can form through random assortment. The concentration of these
complexes, therefore, will follow a multinomial distribution.

To formulate this mathematically, we denote the proportion of Li as Ci, and∑NL

i=1 Ci = 1. For example, we have 40% L1 and 60% L2 in the solution to
form dimers (f = 2), then C1 = 40%, C2 = 60%. Assume complex formation
follows a binomial distribution, there will be 16% bivalent L1, 36% bivalent L2,
and 48% L1 − L2 complex. When a complex is randomly assembled from the
monomer ligands, the probability of such complex formed as described by θ is

Cθ =

(
f

θ

)
Cθ11 Cθ22 . . . C

θNL

NL
=

(
f

θ

) NL∏
i=1

Cθii

Since
∑NL

i=1 Ci = 1, we know that

∑
θ∈Θ

Cθ =
∑
θ∈Θ

(
f

θ

) NL∏
i=1

Cθii = (C1 + C2 + . . .+ CNL
)f = 1

Plugging this relationship between Cθ and Ci into the equation for the
amount of a specific binding configuration derived in the previous section, we
have

vq =
L0

K∗x

(
f

θ(q)

) NL∏
i=1

C
θi(q)
i

(NL,NR)∏
(i,j)=(1,1)

ψ
qij
ij

NL∏
i=1

(
θi(q)

qi•

)
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=
L0

K∗x

(
f

q

) (NL,NR)∏
(i,j)=(1,0)

C
qij
i

(NL,NR)∏
(i,j)=(1,1)

ψ
qij
ij

=
L0

K∗x

(
f

q

) (NL,NR)∏
(i,j)=(1,0)

ϕ
qij
ij ,

where ϕij = Req,jKa,ijK
∗
xCi and ϕi0 = Ci.

Solve the amount of free receptors Like in the specific arrangement case,
we still need to solve Req,n numerically from Rtot,n. We first derive the amount
of bound receptors of each kind at equilibrium as

Rbound,n =
∑
q∈Q
|q•n|vq

=
∑
q∈Q
|q•n|

(
f

q

)
L0

K∗x

(NL,NR)∏
(i,j)=(1,0)

ϕ
qij
ij

=
L0

K∗x

∑
q∈Q

NL∑
m=1

qmn

(
f

q

) (NL,NR)∏
(i,j)=(1,0)

ϕ
qij
ij

=
L0

K∗x

NL∑
m=1

ϕmnf

 (NL,NR)∑
(i,j)=(1,0)

ϕij

f−1

=
L0f

K∗x
|ϕ•n|(1 + Φ)f−1.

Then by the conservation of mass, we have the equation to numerically solve
for Req,n:

Rtot,n = Req,n +Rbound,n

= Req,n +
L0f

K∗x
|ϕ•n|(1 + Φ)f−1.

Again, since Φ is a function of every Req,n, all Req,n need to be solved
together.

The amount of k-valently bound complexes For randomly assorted com-
plexes, we first derive the amount of ligands that bind k-valently. As we will
show, it has a nice expression that can used to calculate many other quantities
conveniently. First, let’s break q into two separate vectors, q = (q•0,q•x). We
define the vector formed by the 0-th column of q which stand for unbound as
q•0, and the one formed by the other elements as q•x. By the model setup, we
know |q| = f , |q•x| = k, and |q•0| = f − k. We then have
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vk,eq =
∑
|q•x|=k
|q•0|=f−k

vq =
∑
|q•x|=k
|q•0|=f−k

(
f

q•x q•0

)
L0

K∗x

(NL,NR)∏
(i,j)=(1,0)

ϕij
qij

=
∑
|q•x|=k
|q•0|=f−k

(
f

k

)(
k

q•x

)(
f − k
q•0

)
L0

K∗x

(NL,NR)∏
(i,j)=(1,1)

ϕij
qij

i=NL∏
i=1

Ci
qi0

=
L0

K∗x

(
f

k

) ∑
|q•x|=k

(
k

q•x

) (NL,NR)∏
(i,j)=(1,1)

ϕij
qij

 ∑
|q•0|=f−k

(
f − k
q•0

) i=NL∏
i=1

Ci
qi0


=
L0

K∗x

(
f

k

) (NL,NR)∑
(i,j)=(1,1)

ϕij
qij

k [i=NL∑
i=1

Ci

]f−k
=
L0

K∗x

(
f

i

)
Φk.

The amount of total bound ligands and receptors Many macroscopic
properties can be derived from vk,eq. For example, the amount of total bound
ligands is simply the sum of ligands bound monovalently to fully, and can be
simplified to

Lbound =

f∑
k=1

vk,eq =

f∑
k=0

vk,eq − v0,eq

=

f∑
k=0

L0

K∗x

(
f

k

)
Φk − L0

K∗x

(
f

0

)
Φ0

=
L0

K∗x

[
(1 + Φ)f − 1

]
.

Similarly, the total bound receptors should be

Rbound =

f∑
k=1

kvk,eq =

f∑
k=1

k
L0

K∗x

(
f

k

)
Φk

=
L0

K∗x
fΦ(1 + Φ)f−1.

As we show here, these quantities all have elegant closed form solutions, and
they are only dependent on Φ, a single value that incorporate all information
about receptor amounts, monomer ligand compositions, and binding affinities.

The number of cross-linked receptors In some biological contexts such
as T cell receptor-MHC [7] or antibody-Fc receptor [16] interactions, signal
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transduction is driven by receptor cross-linking due to multivalent binding. The
amount of total cross-linked receptors can be derived from vk,eq as

Rmulti =

f∑
k=2

kvk,eq = Rbound − v1,eq

=
L0

K∗x
fΦ(1 + Φ)f−1 − L0

K∗x

(
f

1

)
Φ =

L0

K∗x
fΦ
[
(1 + Φ)f−1 − 1

]
.

To find the number of crosslinked receptors of a specific kind, Rn, requires
extra consideration. Similar to how vk,eq was found, we break break q into
three separate vectors, q = (q•0,q•n,q•x). q•0 is the vector formed by the 0-th
column of q, q•n is the vector formed by the n-th column of q, and q•x contains
all others. If we assume that a complex is s-valently bound, then |q•0| = f − s.
We further assume that |q•n| = t, then |q•x| = s− t. By this setup, we have

Rmulti,n =

f∑
s=2

s∑
t=0

t
∑

|q•x|=s−t
|q•n|=t
|q•0|=f−s

vq =

f∑
s=2

s∑
t=0

t
∑

|q•x|=s−t
|q•n|=t
|q•0|=f−s

(
f

q

)
L0

K∗x

(NL,NR)∏
(i,j)=(1,0)

ϕij
qij

=

f∑
s=2

s∑
t=0

tL0

K∗x

(
f

s− t t f − s

) ∑
|q•x|=s−t

(
s− t
q•x

) (NL,NR)∏
(i,j)=(1,0)

j 6=n

ϕij
qij


 ∑
|q•n|=t

(
t

q•n

) NL∏
i=1

ϕin
qin

 ∑
|q•0|=f−s

(
f − s
q•0

) NL∏
i=1

Ci
qi0


=

f∑
s=2

s∑
t=0

tL0

K∗x

(
f

s− t t f − s

)
(Φ− |ϕ•n|)s−t|ϕ•n|t

(
NL∑
i=1

Ci

)f−s

=

f∑
s=2

L0

K∗x

[
s∑
t=0

t

(
s

t

)(
|ϕ•n|

Φ− |ϕ•n|

)t](
f

s

)
(Φ− |ϕ•n|)s

=

f∑
s=2

L0

K∗x
s

(
|ϕ•n|

Φ− |ϕ•n|

)(
Φ

Φ− |ϕ•n|

)s−1(
f

s

)
(Φ− |ϕ•n|)s

=
L0

K∗x

[
f∑
s=2

s

(
f

s

)
Φs

]
|ϕ•n|

Φ

=
L0

K∗x

|ϕ•n|
Φ

[
fΦ(1 + Φ)f−1 − fΦ

]
=
L0f

K∗x
|ϕ•n|[(1 + Φ)f−1 − 1].
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This formula can useful when investigating the role of each receptor in a
pathway that requires multimerized binding.

Of course, the macroscopic predictions provided in this section cannot ex-
haust many biological quantities one may wish to study, but with the ideas we
have demonstrated here, the readers can derive their own formulae as needed.
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5 Application examples

In previous sections, we have shown how all macroscopic predictions made
in this work can be written in closed form formulae. Therefore, many com-
putational methods such as auto-differentiation and sensitivity analysis can be
easily applied. These analyses will bring great insights into the complex behav-
ior of multivalent binding. Here, we provide two examples to demonstrate the
advantage of large-scale predictions made possible by this model.

5.1 Mixture binding prediction

Leveraging the synergistic effect among two or more drugs is of great interest
in pharmaceutical development. A challenge in investigating synergy is to iden-
tify its underlying source. Most biological pathways follow a similar pattern:
when the drug binds to certain surface receptors of a cell, a downstream pathway
in the cell is initiated, leading to some actions. Therefore in general, synergism
can come from either the initial binding events themselves or downstream pro-
cesses. Binding-level synergy means that merely using a combination of ligands
boosts the amount of binding to the important receptors and thus intensifies
the overall effect. Downstream effect synergy indicates that the benefit of using
mixtures arises from other cellular regulatory mechanisms two ligands can bring
about. The binding model we introduced can help to investigate this issue by
offering accurate predictions for the binding of multivalent complex mixtures.

Mixture Composition

[2 0] 0.0%
[1 1] 100.0%

[2 0] 50.0%
[1 1] 50.0%

[2 0] 100.0%
[1 1] 0.0%
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Figure 3: Prediction on mixture binding of θ1 = [2, 0] and θ2 = [1, 1]. The left
panel shows the predicted total ligand binding, while the right shows the amount
of bound R3 at equilibrium. Shaded areas are simulated confidence interval by
varying the receptor levels up and down by 10%. The red dots on the left panel
are simulated experimental results. In case a (red circles), since most data
points are inside the confidence interval, we can assume the measurement error
can explain these variations. In case b (red squares), however, the synergism of
these complexes are beyond the binding level.
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In Figure 3, we provide an example of mixture binding predictions. We
investigate a mixture of two types of ligand complexes, bivalent L1 (θ1 = [2, 0])
and bispecific L1 − L2 (θ2 = [1, 1]). The crosslinking constant is set to be
K∗x = 10−12, similar to previous results [16]. We predict the amount of binding
of this mixture to a cell expressing three types of receptors, with Rtot = [2.5×
104, 3×104, 2×103] cell−1. The affinity constants of L1 to these three receptors
are Ka,1• = [1 × 108, 1 × 105, 6 × 105] M−1, and of L2, Ka,2• = [3 × 105, 1 ×
107, 1×106] M−1. Figure 3 shows the predicted ligand bound (left panel) and R3

bound (right panel) for only θ1 or θ2 with L0 from 0 to 1 nM, and their mixtures
in every possible composition with total concentration L0 = 1 nM (from Cθ1 = 0
and Cθ2 = 1 to Cθ1 = 1 and Cθ2 = 0).

Mixture binding prediction can help us identify the source of synergy. To
connect model predictions to experimental measurements, ligand binding might
be measured by fluorescently-tagged ligands, while the number of bound re-
ceptors of a specific type might associate with an indirect measurement such
as cellular response. After making a series of measurements for different com-
positions of mixtures, we can fit the 100% of one complex cases (numbers on
the two ends on the plot) first and then compare the mixture measurements
to the predictions. Determining whether the downstream effect contributes to
the observed synergy (or antagonism) can be framed as a hypothesis testing
problem:

H0: The synergism of the mixture can be explained solely by binding.

The uncertainty of mixture binding prediction comes from measurement er-
rors of receptor abundance and binding affinities. Usually, the receptor expres-
sion of a cell population has an empirical distribution which can be measured.
The confidence interval in Figure 3 is drawn with the assumption that receptor
expression fluctuates up and down for 10%, similar to the confidence interval of
a log-normal distribution. Also, due to the measurement technique, the binding
affinities may be over- or underestimated [14]. The confidence interval of mix-
ture prediction can be determined by the model with all these considered, and
a p-value can be even derived.

If most mixture measurements fall within the confidence interval of the pre-
dictions (such as case a annotated by the red circles in Figure 3, left panel), the
synergy will very likely come from binding only. However, if the measurements
are obviously beyond the confidence interval (case b, the red squares), it is rea-
sonable to suspect a synergistic (or antagonistic) effect beyond binding alone.
Because of the binding model’s flexibility, this method can also be extended to
a mixture of more than two compounds.

5.2 Binding space of a ligand

When a dose of ligands (drug, hormone, cytokine, etc.) is released into
the circulation system of an individual due to either physiological responses or
exogenous administration, the compounds will spread and bind to many cell
populations to varying extents. An essential question in pharmacology is how
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much a compound will bind to their intended target populations compared to
off-target ones. This question is important for understanding basic biology as
well as developing new therapeutics. For example, hormones and cytokines are
important signaling molecules, and having a quantitative prediction of on- and
off-target binding can help us understand their mechanism greatly. For drug
development, binding prediction can guide optimization to improve specificity
toward the intended targets [18]. A cell population can be defined by the protein
they express, especially their surface receptors. Therefore, given the parameters
of the dose and the receptor profile of a cell population, our model can make all
the predictions discussed previously.

From the perspective of this binding model, there is nothing special about
one specific cell population. If the local concentration is constant everywhere,
our model can map any cell with a certain receptor expression to the amount
of binding induced by this dose. If the biological activity of this compound on
a cell is related to the quantity of binding to a certain ligand or receptor, the
effect of this dose can be written as a function f , with

Rtot ∈ RNR
+ 7→ f(Rtot) ∈ R+,

where Rtot is a vector of nonnegative entries that describes the cell’s expres-
sion of NR receptors, and f(Rtot) is the amount of binding. Here, we define
the binding behavior of this dose (or any compound) as its binding space.
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Figure 4: The binding space of 1 nM θ = [2, 0]. The left panel shows the amount
of total ligand bound, while the right panel shows receptorR2 bound predictions.
The x- and y-axis show the expression of R1 and R2, while the expression of R3 is
a constant, 2.0×103 cell−1, and not shown. Any cell population can be drawn on
the binding space. For example, the red ellipse on the left panel represents a cell
population with receptor expression at about Rtot = [1.0, 10.0, 2.0]×103 cell−1.
We can alternatively project points of experimental single cell expression data
onto a binding space, as shown on the right panel.

In Figure 4, we plot the binding space of a bivalent L1 ligand θ = [2, 0] with
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concentration 1 nM. The binding affinities are the same as described in the
last subsection. In this binding space, we consider three receptors, R1, R2, and
R3. We plot how the amount of binding relates to the cell expression profile,
Rtot. Here, the amount of R1 and R2 varies with the two axes, while R3 is held
constant at 2.0 × 103 cell−1. Then we use colors and contour lines to show the
amount of binding. From these two plots, we can see that although both ligand
binding and R2 binding increase with more receptors, ligand binding is more
sensitive to R1 amounts, and R2 binding R2 amounts. To consider any specific
cell population, we only need to determine where its expression profile falls on
the plot and read the predictions from the contour line. For example, on the left
panel, the red cell population will have about e5.2 = 181 bound ligands per cell.
The number of contour lines a population ride on can also show intrapopulation
variation. In this case, we expect the variation in ligand binding to fall between
e4.3 = 74 and e6.0 = 403.

The binding space can provide ample information about the compound. It
is an intrinsic property of a ligand given its concentration and other ligand it
mixes with, independent of any specific cell. The biological process of drug
diffusion to a certain cell is analogous to sampling a point from this binding
space. Its gradient indicates in which direction the binding level increases the
fastest, as well as to which receptor it is more sensitive. An inactive antagonist
that introduces binding competition with the ligand can distort its binding
space, and we can visualize it by the change of shape in the contour lines.
This plot can also intuitively demonstrate intrapopulation binding variance and
interpopulation cell specificity of the compound. With the development of high-
throughput single-cell methods such as flow cytometry, the expression profiles
of a collection of cells can be identified en masse, and we can overlap their
results onto a binding space plot (as in Figure 4, right panel). This shows
the promise of applying our model to single-cell data. Although we can only
visualize two receptors in a plot, binding space applies to any NR types of
receptors. Theoretically, the concept of the binding space of a ligand is only
complete when all relevant surface receptors are considered.
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6 Discussion

In this work, we propose a mechanistic multivalent binding model that ac-
counts for the interaction among multiple receptors and a mixture of ligand
complexes formed by binding monomers. We first derive the amount of lig-
and of a specific binding configuration at equilibrium through the law of mass
action. Using this formula, we make macroscopic predictions by applying the
multinomial theorem strategically. Our predictions cover cases where complexes
are formed by specific arrangement or random assortment. Finally, we provide
two practical examples of how this model can help with biological research.

Compared with many previous approaches, this model has several clear ad-
vantages. First of all, it is extremely efficient, and it is capable of handling a
large number of receptors, ligands, and complexes types. This allows the model
to make large-scale predictions easily, enabling mixture synergy analysis and
binding space calculations. The mathematical elegance of the model welcomes
analytical studies and incorporating it into more complicated frameworks.

The assumptions made in this model may compromise its accuracy in some
cases. For example, the steric effects of a multivalent ligand can be more com-
plicated and context-dependent. Our setup has a single crosslinking constant,
K∗x, to reflect the multivalency effect. In practice, this model works well in
predicting experimental binding results [18, 15]. Some other computational ap-
proaches investigate the steric effect more meticulously, but inevitably introduce
considerable added complexity [4]. When the actual situation is not known, our
model can serve as an adequate starting point.

Although this model is very general purpose, it mainly focuses on the binding
dynamics on a cell surface, similar to the previous work on which it is based [1, 2,
3]. For intracellular ligands discordant with the multivalent velcro shape shown
in Figure 2, this model may be less suitable. For example, some previous works
focus scaffold proteins in the cell signaling system for quantitative analysis [9],
and various computational models different from ours have been developed [11,
6, 10].

Surface receptor binding is a universal event in biology. A prevalent question
calls for a general enough solution. The model we present in this work can be
successfully applied to many contexts, including predicting Fc-FcγR interaction
[16] and fitting epithelial cell adhesion molecule binding data [18, 15]. With
the arise of multispecific drugs in the recent decade [17], we expect this model
to apply even more widely, exhibit its full competence and facilitate both basic
scientific research and new therapy development.
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