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 3 

Abstract 37 

Genomic prediction (GP) integrates statistical, genomic and computational tools 38 

to improve the estimation of breeding values and increase genetic gain. Due to the broad 39 

diversity in biology, breeding scheme, propagation method, and unit of selection, no 40 

universal GP approach can be applied in all crops. In a genome-wide family prediction 41 

(GWFP) approach, the family bulk is the basic unit of selection. We tested GWFP in two 42 

loblolly pine (Pinus taeda L.) datasets: a breeding population composed of 63 full-sib 43 

families (5-20 individuals per family), and a simulated population with the same pedigree 44 

structure. In both populations, phenotypic and genomic data was pooled at the family 45 

level in silico. Marker effects were estimated to compute genomic estimated breeding 46 

values at the individual (GEBV) and family (GWFP) levels. Less than six individuals per 47 

family produced inaccurate estimates of family phenotypic performance and allele 48 

frequency. Tested across different scenarios, GWFP predictive ability was higher than 49 

those for GEBV in both populations. Validation sets composed of families with similar 50 

phenotypic mean and variance as the training population yielded predictions consistently 51 

higher and more accurate than other validation sets. Results revealed potential for 52 

applying GWFP in breeding programs whose selection unit are family bulks, and for 53 

systems where family can serve as training sets. The GWFP approach is well suited for 54 

crops that are routinely genotyped and phenotyped at the plot-level, but it can be 55 

extended to other breeding programs. Higher predictive ability obtained with GWFP 56 

would motivate the application of GP in these situations.  57 
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Introduction 58 

Genomic (Elshire et al. 2011), statistical (Meuwissen et al., 2001; Gianola et al., 59 

2009), and computational advances have allowed significant increases in genetic gain by 60 

applying genomic prediction (GP) in breeding programs across several species (e.g., 61 

Hayes et al., 2009; Fe et al., 2015, 2016; Gezan et al., 2017; de Bem Oliveira et al., 2020; 62 

Amadeu et al., 2020). Taking advantage of the ever-reducing cost of molecular markers 63 

(Wetterstrand, 2020), the concept of GP was derived (Meuwissen et al., 2001) as an 64 

alternative method to marker-assisted selection (MAS). Genomic prediction utilizes a 65 

dense panel of molecular markers covering the whole genome to predict genomic 66 

estimated breeding values (GEBV) of individuals with no phenotypic records 67 

(Meuwissen et al., 2001). Traditional GP pipelines involve developing a training set (TS), 68 

for which available genotypic and phenotypic data is fitted to build a prediction model. 69 

This model is later used to predict GEBV of selection candidates in a validation set (VS), 70 

composed of individuals that are genotyped but not phenotyped. Cross-validation 71 

schemes are implemented taking sub-samples from the TS to calibrate the model and then 72 

use the model into the remaining part of the TS to estimate and evaluate its predictive 73 

ability, i.e. the correlation between GEBVs and phenotypic values (Perez-Cabal et al., 74 

2012).  75 

Genomic prediction has been quickly adopted in animal breeding (Hayes et al., 76 

2009) due to readily accessible genomic data, large reference populations with accurate 77 

pedigree records, and the impossibility of phenotyping sex-linked traits (Stock and 78 

Reents, 2013). In dairy cattle, GP can double the genetic gain compared to selection 79 

based on progeny test (Xu et al., 2020). On the contrary, the application of GP in plants 80 
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has been lagging behind due to less accessible high-throughput genotyping methods, lack 81 

of accurate pedigree records, and the wide range of variation in life cycle, ploidy level, 82 

and mating systems found in plants (Hough et al., 2013). All these plant-specific 83 

characteristics are key factors affecting predictive ability in GP due to their influence in 84 

breeding methods, effective population size, population structure, and linkage 85 

disequilibrium (Lin et al., 2014). Pioneer studies implementing GP in plants were 86 

performed in mayor crop species with traditional hybrid selection such as maize 87 

(Massman et al., 2013; Combs and Bernardo, 2013) and trees (Resende et al., 2012; 88 

Kumar et al., 2012), or variety selection in self-pollinating species (Poland et al., 2012). 89 

Genomic prediction showed to be a powerful tool to achieve higher genetic gain in plant 90 

breeding in many other species (Crossa et al., 2017; Lara et al., 2019; de Bem Oliveira et 91 

al., 2020; Esfandyari et al, 2020). Large commercial breeding companies have been 92 

applying GP; however, the success of the process depends strongly on the species 93 

architecture and the breeding program scheme (Xu et al., 2020; Voss-Fels et al., 2019) 94 

 Several species are bred as populations of large full or half-sib families, and 95 

commercially used as populations of different levels of relationship (i.e. synthetic 96 

cultivars) as in some forage species, such alfalfa (Medicago sativa L.) (Annichiarico et 97 

al., 2015; Biazzi et al. 2017) and ryegrass (Lolium perenne L.) (Fe et al., 2016; Cericola 98 

et al., 2018). In these species, the family (full or half-sibs) is the basic unit for 99 

phenotyping (e.g. plot-level measurement for yield rather than plant level) and selection. 100 

Thus, due to the mating system nature (allogamy), individual plants are of limited interest 101 

because commercial varieties represent a homogenous population composed of 102 

heterozygous individuals (Poehlman, 1987). Also, it is not straightforward to link 103 
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phenotypic data collected on individual spaced-plants to plot-based swards in crops such 104 

as forage and turfgrass, which are mostly allogamous (Poehlman, 1987), and single-plant 105 

performance has been shown to poorly predict plot-based data (Wang et al., 2016). 106 

Therefore, the application of genome-wide family prediction (GWFP) would be 107 

advantageous for traits that are phenotyped using family pools in swards or plots. The 108 

phenotypic data collection at the plot level could be extended to other organisms grown 109 

and evaluated in families, such as turfgrasses (Lolium perenne L.), forages (Medicago 110 

sativa L.), sugarcane (Saccharum officinarum L.), cassava (Manihot esculenta L.), and to 111 

aquaculture species such as shrimp (Litopenaeus vannamei) (Barbosa et al., 2012; Torres 112 

et al., 2019; Pembleton et al., 2018, Jia et al., 2018, Wang et al., 2017). The application of 113 

GWFP has already been reported for crops that are bred and farmed as family pools, such 114 

as cross-pollinated forage species (Fe et al., 2015, 2016; Guo et al., 2018; Cericola et al., 115 

2018, Annichiarico et al., 2015; Biazzi et al. 2017; Jia et al., 2018). 116 

The GWFP approach considers family-pools as the measurement unit. Here, both 117 

allele frequencies and phenotypic records are expressed as a single average record of a 118 

given family. Therefore, the additive genetic variance in full-sib families is half of the 119 

additive variance between individuals (i.e. only 50% of the genetic variation is exploited 120 

in GWFP), which would result in higher predictive ability when compared to GEBV 121 

(Ashraf et al. 2014). Despite the initial efforts to test the predictive ability of GWFP 122 

using empirical data, there is a need to explore further implementation of GWFP in 123 

breeding schemes. As a first aspect, it is essential to compare the predictive ability of 124 

GEBV vs. GWFP models, and to develop strategies to combine both approaches. For 125 

this, datasets that contain family structures but genotyped and phenotyped at the single 126 
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plant level are ideal. Another aspect is the understanding of the influence that family/pool 127 

size and phenotypic variances in training/validation sets have in the predictive ability for 128 

various traits.  129 

In order to evaluate these aspects, two loblolly pine (Pinus taeda L.) populations 130 

were studied: a) an observed breeding population composed of 63 families 131 

(CLONES_real), and b) a simulated population that reproduced the same pedigree as 132 

CLONES_real. The objectives of this study are: i) to identify the minimum number of 133 

individuals per family required to calculate allele frequency and phenotypic mean values 134 

with reasonable accuracy; ii) to investigate the effect of contrasting phenotypic mean and 135 

variance between training and validation sets on predictive ability; and iii) to assess the 136 

predictive ability of GEBV and GWFP. Loblolly pine is not normally bred in family 137 

pools, but existing real and simulated datasets were used to compare GEVB and GWFP 138 

approaches.  139 
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Materials and Methods 140 

Observed population 141 

The loblolly pine (Pinus taeda L.) population known as “comparing clonal lines 142 

on experimental sites” (CCLONES_real) has previously been used for predicting 143 

performance of individual trees (Resende et al., 2012). In this study, GWFP was tested by 144 

pooling individual trees belonging to the same full-sib family. The population is 145 

composed of 923 individuals from 70 full-sib families obtained by crossing 32 parents in 146 

a circular diallel mating design with additional off-diagonal crosses (Baltunis et al., 147 

2007). The number of individuals per family ranged from 1 to 20, with an average of 13 148 

trees per family (standard deviation = 5). In this study, families with less than five 149 

individuals were removed, and 63 full-sib families were used for analyses. Data 150 

collection was described in detail in Resende et al. (2012) and Munoz et al. (2014). In 151 

summary, all 923 genotypes from CCLONES_real was phenotypically characterized in 152 

three replicated studies and was genotyped using an Illumina Infinium assay (Illumina, 153 

San Diego, CA; Eckert et al. 2010) with 7,216 SNPs, each representing a unique pine 154 

EST contig. In the current study, four traits representing growth, quality, and diseases 155 

were selected based on their narrow-sense heritability and genetic architecture as reported 156 

by Resende et al. (2012). These correspond to: a) lignin concentration (Lignin) (h
2
 = 0.11, 157 

polygenic trait), b) tree stiffness (Stiffness) at year 4 (km
2
/sec

2
) (h

2
 = 0.37, polygenic 158 

trait), c) rust susceptibility (Rust) caused by Cronartium quercuum Berk. Miyable ex 159 

Shirai f. sp. Fusiforme (h
2
 = 0.21, oligogenic trait), and d) diameter at breast height 160 

(Diameter) at year six (cm) (h
2
 = 0.31, polygenic trait). 161 

Simulated Population 162 
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A simulated population (CCLONES_sim) exhibiting similar genetic properties as 163 

CCLONES_real was also considered in this study. Genomic prediction approaches using 164 

individual trees were previously explored using this synthetic population (de Almeida 165 

Filho et al., 2016, 2019). For its simulation, the base population was created (G0 = 1,000 166 

diploid individuals) by randomly sampling 2,000 haplotypes from a population with an 167 

effective size of Ne = 10,000 and a mutation rate of 2.5 × 10
-8

. Then, the 10% highest 168 

phenotypic values from G0 were selected and randomly mated to generate the first 169 

breeding generation (G1). From G1, 42 individuals were selected and used in a circular 170 

diallel mating design that reproduced the pedigree as in CCLONES_real (G2), comprised 171 

of 923 individuals and 71 full-sib families. However, only 63 families, with more than 172 

five individuals, were used in this study. Subsequently, 42 individuals were selected from 173 

G2 and used in crosses to the next generation (G3, CCLONES_sim_prog), a population 174 

composed of 1,176 individuals and 71 families. Only the 63 families with more than five 175 

individuals were used for analyses. The simulated genome had 12 chromosomes and 176 

5,000 polymorphic loci, and only the scenario exhibiting an absence of dominance (d
2
 = 177 

0.0) and h
2
 = 0.25 were used for analyses in this study. Two traits with different genetic 178 

architectures were simulated: i) oligogenic: 30 QTL were sampled from a gamma 179 

distribution with rate 1.66 and shape 0.4, with positive or negative QTL effects 180 

(Meuwissen et al., 2001), and ii) polygenic: 1,000 QTL were used, and their additive 181 

effects were sampled from a standard normal distribution (Hickey and Gorjanc, 2012). 182 

Phenotypic and Genotypic Data Pooling 183 

In both populations, phenotypic and genotypic data were pooled at the family 184 

level in silico. The phenotypic data were averaged across all individuals belonging to the 185 
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same full-sib family; therefore, the average phenotypic value by family was used as the 186 

response for all analyses. In the case of the genomic data, the allele frequency (p) was 187 

calculated for each SNP per family, considering the reference allele (A) as follows: 188 

𝑝𝑖𝑗 = (2𝑛𝐴𝐴𝑖𝑗
+ 𝑛𝐴𝑎𝑖𝑗

)/2𝑁𝑖𝑗  

Where pij refers to the allele frequency for SNP i in the j family; 𝑛𝐴𝐴𝑖𝑗
 and 2𝑛𝐴𝑎𝑖𝑗

 189 

are number of individuals with genotype AA and Aa respectively for SNP i in the family 190 

j; 𝑁𝑖𝑗 are number of individuals in family j with non-missing genotype data for SNP i. 191 

Missing values for allele frequency were imputed at the family level using the average 192 

allele frequency for that given SNP across families. Markers were excluded from 193 

analyses when more than 50% of the families exhibited missing values, and SNPs were 194 

not removed based on minor allele frequency. A total of 4,740 polymorphic SNPs 195 

(CCLONES_real) and an average of 5,000 polymorphic SNPs for CCLONES_sim and 196 

CCLONES_sim_prog (average across simulated replicates) were used in the analyses. 197 

Number of Individuals per Family 198 

A total of 10 families from CCLONES_real with at least 15 individuals were 199 

selected to evaluate the minimum number of individuals required to estimate allele 200 

frequency and phenotypic family means with the most reasonable accuracy. Families 201 

were specifically selected to represent segregation ratios (1:1 and 1:2:1) for 10 SNPs. 202 

Allele frequencies per family and family phenotypic means were calculated varying the 203 

number of individuals per family from one to 15. These values were used to compute the 204 

squared deviations between the mean value obtained with i number of individuals (i = 1 205 

to 15) and the mean value obtained with the entire family (15 individuals), under the 206 

assumption that 15 individuals per family provide accurate estimates of allele frequencies 207 
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and phenotypic mean in our families. This assumption can be validated using the concept 208 

of genetic representativeness, given by the effective population size (Ne). The estimator 209 

of the Ne within a full sib family is given by Ne = [2n/(n+1)] (Resende and Barbosa, 210 

2006). The maximum (when n goes to infinite) Ne within a full sib family is 2. With n 211 

equal to 15 individuals the Ne is 1.88, which is 94% of this maximum of 2.  212 

Statistical Methods 213 

Marker effects were estimated at the individual (GEBV) and family (GWFP) 214 

levels with two distinct whole-genome regression approaches using the package BGLR 215 

(Perez and de los Campos, 2014) in R (R Development Core Team, 2018): i) Bayes B 216 

which considers that markers have heterogeneous variances, i.e., many loci with no 217 

genetic variance and a few loci explain a large portion of the genetic variation 218 

(Meuwissen et al., 2001; Perez and de los Campos, 2014); and ii) Bayes RR a Bayesian 219 

method that assumes common variance across all loci; therefore, SNPs with the same 220 

allele frequency explain the same proportion of variance and have the same shrinkage 221 

effect (Gianola, 2013; Perez and de los Campos, 2014). 222 

In total, 20,000 Markov chain Monte Carlo iterations were used, of which the first 223 

5,000 were discarded as burn-in, and every third sample was kept for parameter 224 

estimation. We fitted the following model for individual and family models: 225 

𝑦 = 1𝜇 + 𝑍𝑚 +  𝑒,  

Where y is the vector of the averaged phenotype by family in the case of GWFP 226 

and by individual in the multiple clones in the case of GEBV, μ is the overall mean fitted 227 

as a fixed effect, m is the vector of random marker effects, and e is the vector of random 228 

error effects, 1 is a vector of ones, and Z is the incidence matrix indicating allele 229 
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frequencies in the case of GWFP (ranging from 0 to 1), and marker dosage (0, 1 and 2) 230 

for GEBV. 231 

After fitting the model described above for each trait, the GEBV and GWFP of 232 

family/individual j (gj) were obtained using the following expression: 233 

𝑔̂𝑗 = ∑ 𝑍𝑖𝑗𝑚̂𝑖 , ̂

𝑝

𝑖

  
 

Where i is the allele frequency/marker dosage of the i-th marker on 234 

family/individual j, and p is the total number of markers, and 𝑚̂𝑖, is the estimated effect 235 

of i-th SNP. 236 

Creating Training/Validation Sets Using Contrasting Phenotypes 237 

Phenotypic values for each trait in both populations were sorted and divided into 238 

three classes: the smallest 10%, the largest 10%, and values between both extremes. Five 239 

validation sets were created for each trait using these phenotypic classes: a) Low: 10% 240 

families with the lowest phenotypic values; b) High: 10% families having the highest 241 

values; c) Low+High: combining four families from Low and three families from High; 242 

d) Middle: seven families showing phenotypes around the population mean, e) 243 

Combined: two families from Low, two families from High, and three families from 244 

Middle. For the populations Low+High (c), Middle (d), and Combined (e), three 245 

replicates were created by taking random samples from each phenotypic class. The other 246 

56 families were used as training sets to build prediction models. 247 

Split-Families as Training/Validation Sets 248 

All families with more than ten individuals (59 in total) were randomly split into 249 

two equivalent size groups. One group of individuals phenotypic and genotypic data were 250 
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pooled at the family level and used as the training set (TST) for GWFP models. The other 251 

group of individuals was used as the validation population (VST) based on two 252 

approaches: i) predicting the performance of individuals trees not included in the TST 253 

(GWFP_Fam_Ind), and ii) pooling individuals at the family level to predict performance 254 

of families composed of individuals not included in the TST (GWFP_Fam_Fam).  255 

Prediction in the Following Generation in CCLONES_sim 256 

The GP models were developed by using the G2 CCLONES_sim population as 257 

the TST. These training models were used and validated in the G3 generation using 258 

individuals (GEBV) and family pools (GWFP), and models were assessed by calculating 259 

predicted ability and prediction accuracy. Predicted ability was estimated by calculating a 260 

Pearson’s correlation between the phenotypic values and the estimated breeding values, 261 

and prediction accuracy was estimated by calculating a Pearson’s correlation between the 262 

real breeding value and the estimated breeding value. 263 

Model Validation and Predictive Ability 264 

Prediction models for GEBV and GWFP were validated using 10-fold cross-265 

validation and leave-one-out (LOO) approaches. For the 10-fold CV, data was randomly 266 

partitioned into ten subsets, and TST populations were created with 90% of the 267 

families/individuals, while the remaining 10% of families/individuals were used as VST. 268 

This scheme was repeated until the ten subsets were used as VST. In the LOO approach, 269 

models were constructed using NT -1 families (where NT = is the total number of families) 270 

in the TST. The validation set was the single family not included in the training group. 271 

This scheme was repeated NT times until all 63 families were used as the TST. 272 
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Each time the models were fitted using a different VST, the model’s predictive 273 

ability was estimated calculating a Pearson’s correlation between the observed/simulated 274 

phenotypes and the GWFP/GEBV estimates for the families/individuals included in the 275 

VST. 276 

Data Availability 277 

All phenotypic and genotypic data utilized in this study have been previously 278 

published as a standard data set for development of genomic prediction methods 279 

(Resende et al. 2012; de Almeida Filho et al., 2016). Simulated data available from the 280 

Dryad Digital Repository: http://dx.doi.org/10.5061/dry- ad.3126v.  281 
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Results 282 

Number of Individuals per Family 283 

The minimum number of individuals per family was calculated assessing allele 284 

frequency and phenotypic mean deviations using families with at least 15 individuals. For 285 

genotypic and phenotypic data, the lowest number of individuals needed to accurately 286 

estimate allele frequency and family means was six (Figure 1). Allele frequency 287 

deviations (Figure 1 A-D) and mean phenotypic deviations (Figure 1 E-F) indicated that 288 

families with less than six individuals were not providing accurate estimates of the 289 

family’s genotypic and phenotypic means in both populations. We assumed that the 290 

observed values based on 15 individuals per family provides with a reasonable estimation 291 

of allele frequency and phenotypic mean for a diploid species. Therefore, all 63 families 292 

with six or more individuals were used for further analyses in this study. Both 293 

populations showed similar trends for the genotypic and phenotypic estimates (Figure 1). 294 

The average allele frequency deviations were lower for SNPs exhibiting a 1:1 ratio in 295 

both populations (Figure 1 A and C), compared to SNPs segregating into a 1:2:1 ratio 296 

(Figure 1 B and D). For phenotypic data, CCLONES_sim showed slightly smaller 297 

deviations, especially for a lower number of individuals (Figure 1 F), compared to 298 

CCLONES_real for the trait diameter (Figure 1 E). Other traits in CCLONES_real 299 

exhibited a similar behavior (data not shown). 300 

Statistical Method and Cross-Validation 301 

Two Bayesian statistical methods (Bayes B and Bayes RR) and two cross-302 

validation approaches were used to test the predictive ability of GWFP in four traits 303 

measured in CCLONES_real (Figure 2). Both statistical methods yielded high and similar 304 
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predictive abilities for the four traits (Figure 2 A and B). However, standard errors for 305 

predictive ability were larger with the LOO approach (Figure 2 A and B). Additionally, 306 

GWFP predictive abilities obtained with the LOO approach were slightly lower than for 307 

the 10-fold cross-validation scheme (except for trait Stiffness) (Figure 2 A and B). 308 

Therefore, the 10-fold cross validation approach was selected to perform further analyses. 309 

Predictive Ability of GWFP Using Training/Validation Sets with Contrasting 310 

Phenotypes 311 

The effect of phenotypic data in the predictive ability of GWFP was explored by 312 

creating five VST’s using contrasting sets of phenotypic data between TST and VST 313 

(Figure 3 A). The predictive ability for GWFP for all traits were least accurate and had 314 

larger standard errors when the VST was composed of families exhibiting small and large 315 

phenotypic values (bottom and top classes) (Figure 3 B). When VST’s were composed of 316 

families exhibiting phenotypes corresponding to the middle class, predictive ability 317 

increased for all traits, but standard errors were still large (Figure 3 B). As expected, there 318 

was an increase in predictive ability and a large reduction in standard errors when VST’s 319 

were composed of families showing similar phenotypic mean and variance to the TST, 320 

corresponding to the classes "Low+High" and "Combined" (Figure 3 B). 321 

Predictive Ability of GEBV and GWFP 322 

Predictive ability obtained with Bayes B using different methods and schemes 323 

(Table 1) is presented in Figure 3 for the 63 families from both populations. The 324 

traditional GP approach with individuals in the TST and VST (GEBV) was contrasted 325 

with predictive ability obtained with the family-based (GWFP) method following a 10-326 

fold cross validation scheme. The scenarios GWFP_Fam_Ind and GWFP_Fam_Fam 327 
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were run only once because CCLONES (real and simulated) had a limited number of 328 

individuals per family (Figure 4). 329 

Predictive ability was always greater for GWFP methods in both populations and 330 

all traits, except for the scenario GWFP_Fam_Ind that showed similar or lower accuracy 331 

than GEBV for most traits (Figure 4). Additionally, predictive ability was greater for 332 

traits with higher heritability (Figure 4). Specifically, GWFP provided predictive abilities 333 

at least 40% greater than traditional GEBV for most of the traits in both populations. 334 

Moreover, GWFP_Fam_Fam exhibited similar or greater predictive ability than GWFP 335 

for most traits in both populations, except for rust (Figure 4). Both sets of traits from the 336 

simulated CCLONES population exhibited very similar accuracies for all schemes 337 

(Figure 4). 338 

Predictive Ability and accuracy of GEBV and GWFP in the Following Generation 339 

Accuracy and predictive ability of GEBV and GWFP were obtained with the 340 

prediction models built with the CCLONES_sim (G2) population as the TST, and models 341 

were validated in the following generation (G3). The GEBV showed higher accuracy 342 

than GWFP for the oligogenic trait, and similar accuracy for the polygenic trait (Figure 343 

5). Predictive ability for the oligogenic and polygenic traits were higher for GWFP 344 

(Figure 5). Additionally, greater predictive ability and accuracy were observed for the 345 

oligogenic trait, and the difference between accuracy and predictive ability was greater 346 

for the oligogenic trait (Figure 5).  347 

 348 

349 
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Discussion 350 

We quantified the predictive ability of GWFP in real and simulated loblolly pine 351 

breeding populations for different traits and cross-validation approaches. Moderate to low 352 

predictive ability values were obtained with the traditional GP approach, as previously 353 

reported for both populations, using individual trees as the basic phenotypic and 354 

genotypic unit (Resende et al., 2012; de Almeida Filho et al., 2016). In general, GWFP 355 

outperformed GEBV in the predictive ability for most traits; including the predictive 356 

ability for the oligogenic and polygenic traits in CCLONES_sim when using the 357 

following generation (G3) as the VST. 358 

Family Size 359 

The size and structure of the training population affects the accuracy of GP 360 

models (Van Raden et al., 2009; Daetwyler et al., 2010; Habier et al., 2010; Grattaglia 361 

and Resende, 2011;  Edwards et al., 2019; de Bem Oliveira et al., 2020). In our study, the 362 

size of the TP refers to the number of families and the number of individuals within a 363 

family. The number of families was fixed and limited to 70 families, so we did not focus 364 

on studying the effect of a variable number of families. However, the minimum number 365 

of individuals per family to obtain reasonable accurate estimates of family allele 366 

frequency and family phenotypic mean was found to be six. When studying the effect of 367 

size and composition of training population in blueberry (Vaccinium spp.), De Bem 368 

Oliveira et al. (2020) found a high predictive ability using six individuals per family for 369 

some traits. Thus, in their study family variance was accurately represented with six 370 

individuals per family in this autotetraploid species. Using the estimator of the Ne within 371 

a full sib family, given by Ne = [2n/(n+1)] (Resende and Barbosa, 2006), the maximum 372 
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(when n goes to infinite) Ne within a full sib family is 2. With n equal to 6 individuals the 373 

Ne is 1.71, which is 86% of the maximum 2. So, n = 6 appears adequate to represent 374 

genetically a full-sib family, corroborating our results. 375 

The effect of number of individuals within families on accuracy of GP models 376 

was also demonstrated in perennial ryegrass (Pemblenton et al., 2016; 2018). The authors 377 

stated that 48 to 60 individuals per population are necessary to accurately represent the 378 

genetic diversity within a ryegrass population. As an allogamous species, multiple 379 

parents are used to create synthetic populations in perennial ryegrass, hence multiple 380 

individuals with a high number of loci in heterozygosis are contributing to the variation 381 

in the synthetic population. Perennial ryegrass is commonly bred using families and 382 

GWPF has been exploited in the species for various traits (Fe et al., 2015, 2016; Guo et 383 

al., 2018; Cericola et al., 2018).  384 

Simulation studies with variable numbers of families and individuals per family 385 

would help identify the optimum training population sizes for GWFP. Generally, a larger 386 

training population (more families in the training population) yield higher accuracy 387 

(Voss-Fels et al., 2019; de Bem Oliveira et al., 2020), but this is associated with higher 388 

costs. Therefore, the definition of the optimum number of families, and number of 389 

individuals per family are a crucial point for the genomic prediction process. Fe et al. 390 

(2015) studied the effect of the number of families in the accuracy of genomic prediction 391 

for heading date in ryegrass; the authors found high accuracies with a low number of 392 

families (<100). The authors showed that increasing the number of families to 500 leads 393 

to higher accuracy, and more than 500 families did not yield to significant improvement. 394 

Statistical Methods and Cross-Validation Scheme 395 
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Models considering different Bayesian methods were similar in predicting GEBV 396 

in traits measured in the real breeding population and the simulated population in this 397 

study. Resende et al. (2012), reported a slightly greater predictive ability in the real 398 

population for rust incidence with Bayesian methods over RR-BLUP, because fewer 399 

genes with large effects control this trait. De Almeida Filho et al. (2016), using the 400 

simulated population, reported a slightly lower predictive ability in the oligogenic trait 401 

using Bayes RR than Bayes B. In the present study, Bayes B and Bayes RR were tested to 402 

compare their performance in GWFP because prior distributions and assumptions for 403 

both methods are contrasting (Perez and de los Campos, 2014). Our results showed that 404 

both Bayesian methodologies were very similar in predicting family-pools, even for rust 405 

incidence in the real population and for the oligogenic trait in the simulated population.  406 

Both cross-validation schemes, LOO and 10-fold, produced similar results in 407 

predicting GWFP with a slight advantage for the 10-fold scheme, due to the large 408 

variation in the LOO scheme.  Resende et al. (2012) reported similar results with the real 409 

data set for GEBV, wherein 10-fold and LOO resulted in no significant differences in 410 

their predictive ability. Also, similar predictive abilities between the 10-fold and LOO 411 

scheme have been reported in wheat (Triticum aestivum L.) (Edwards et al., 2019).  412 

Predictive Ability of GWFP Using Contrasting Phenotypes  413 

When the families in the VST had phenotypic values outside the range of 414 

phenotypes presented in the TST (bottom and top classes), lower and much more variable 415 

predictive abilities were obtained. Interestingly, higher predictive abilities were obtained 416 

when families in the VST had the same phenotypic range as the TST. The impact of the 417 

phenotypic variance on prediction was demonstrated by Edwards et al. (2019), which 418 
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reported that the accuracy of genomic prediction in wheat showed higher predictions for 419 

crosses (validation set) with higher phenotypic variance. Würschum et al. (2017) reported 420 

equivalent results in triticale (x Triticosecale Wittmack), in which higher accuracy was 421 

detected for the traits of plant height and biomass in cases in which families with a large 422 

phenotypic variation were included in the training/validation set population. 423 

The differences in predictive ability among the scenarios for phenotypic values in 424 

the VST could also be related to the composition of the TST’s. For the extreme scenarios 425 

(Low and High), the TST’s did not have the extreme phenotypic values and alleles 426 

frequencies, which could have resulted in poor estimations of markers effects. Studying 427 

the optimization process for genomic prediction in wheat, Norman et al. (2018) showed 428 

that the genomic prediction accuracy could be improved, in cases when TST and VST are 429 

not related, by increasing the genetic diversity in the TST. 430 

Predictive Ability of GEBV and GWFP  431 

Predictive ability was always greater for GWFP methods than GEBV in both the 432 

real and simulated populations and for all traits, except when the model was built with 433 

family pools, and individual performance was predicted (GWFP_Fam_Ind) (Figure 4). 434 

Although the full sib families average explores only half of additive genetic variance, the 435 

error variance is mitigated with larger number of observations due progeny replication, 436 

when compared with single observations (Hallauer et al. 2010). Then, this higher 437 

precision of phenotypic value in family bulks could explain the higher accuracy in 438 

genomic prediction of families. 439 

The higher accuracy in the GWFP method was expected since the additive genetic 440 

variance explored in this method is just 50% of the additive genetic variance compared to 441 
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the GEBV, which leads to a higher accuracy and heritability (Casler et al. 2008; Ashraf et 442 

al. 2014). Besides, relatedness between the TST and the VST also influence the 443 

predictive ability. The relationship between the TST and VST has a crucial role in the 444 

model predictive ability (Lorenz & Smith 2015; de Bem Oliveira et al., 2020), it can help 445 

explain the higher predictive ability found in the GWFP_Fam_Fam and GWFP, 446 

compared to the GEBV and GWFP_Fam_Ind.   447 

Nevertheless, the predictive ability for most traits obtained with GWFP_Fam_Ind 448 

scheme was of the same order of magnitude compared to GEBV, except for the traits 449 

stiffness and rust. Therefore, using the numbers from this study as example, considering 450 

the significant reduction in costs incurred in DNA extraction and genotyping 56 families 451 

(TST for GWFP), instead of 844 individuals (TST for GEBV), the approach 452 

GWFP_Fam_Ind could still be an affordable option for implementing GP in breeding 453 

programs that select individual plants, but have limited budgets to phenotype and 454 

genotype all individuals in the training set.  455 

Reduced investments to implementation of genomic prediction with higher 456 

predictive ability accuracies can be obtained with the GWFP approach compared with 457 

GEBV. A larger number of families can be included in the models, which, for the present 458 

population, would likely result in higher predictive abilities as reported in perennial 459 

ryegrass for heading date (Fe et al., 2015). Additionally, including more than 10 460 

individuals per family will reduce the sampling variability of the allele frequency and 461 

phenotypic mean, resulting in higher genomic accuracies (de Bem Oliveira et al. 2020). 462 

Application of GWFP in a breeding program  463 
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Breeding cycles can take several years in perennial crops, and phenotyping costs 464 

could be high for critical production and quality traits. Genomic prediction has the power 465 

to shorten the time of a breeding process, which leads to a higher genetic gain per unit 466 

time, and can allow a reduction in phenotyping process and costs (Grattaglia and 467 

Resende, 2011; Crossa et al., 2017; Voss-Fels et al., 2019). Genotyping cost has been 468 

decreasing, allowing the extensive use of molecular markers in breeding programs. 469 

However, in some cases, breeders need to genotype a large number of individuals 470 

(>10,000) to implement GP in their programs, increasing costs significantly (Voss-Fels et 471 

al., 2019). The high genotyping costs due to large population sizes can make it 472 

impracticable to implement GP in minor crops, particularly in public breeding programs. 473 

For breeding programs with limited budgets, the GWFP can be an alternative to 474 

GEBV due to the reduction in phenotypic and genotypic costs to develop prediction 475 

models. GWFP has been used in several forage species that are bred in family bulks and 476 

whose phenotyping for critical traits is conducted at the sward/plot level  (Fe et al., 2015, 477 

2016; Guo et al., 2018; Cericola et al., 2018, Annichiarico et al., 2015; Biazzi et al. 2017; 478 

Jia et al., 2018). In a GEBV approach, the data (phenotypic and genotypic) is collected at 479 

the individual level and models are built to estimate the performance of individuals 480 

(Figure 6-A) (Resende et al., 2012; de Almeida Filho et al., 2016, 2019). The GEBV 481 

requires significant more resources (labor, economic, computational) to collect and 482 

analyze data. Under a GWFP approach, the number of genotypic samples (bulked DNA 483 

and a single sequencing effort per family) will be the exact number of families, 484 

representing a significant reduction in the number of samples compared to the traditional 485 

GEBV process (Fig. 6-B). The phenotyping process will also be performed at the 486 
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family/plot level, which is the ideal scenario for critical traits in some crops such as 487 

forage and turfgrass species.  488 

Breeders may also be interested in employing the GWFP_Fam_Ind approach, 489 

where family bulks are used as training set, but individuals are the selection unit (Figure 490 

6-C). In this study, the GWFP_Fam_Ind approach showed similar accuracy to GEBV for 491 

most traits, with the addition of lower needs for phenotypic and genotypic data for the 492 

model development. Finally, GWFP models could be exploited in scenarios when 493 

remnant seeds might be available for the same family, and the goal would be to predict 494 

the performance of the family or individuals within the family. The remaining seeds from 495 

the selected families can be used later to test their merits in further replicated field trials. 496 

For perennial allogamous crops, families used in the TST set can be used as a new 497 

crossing block to start a new selection cycle.    498 
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Conclusion 499 

Despite the limitation in number of families and number of individuals per family 500 

tested in this study, less than six individuals per family produced inaccurate estimates of 501 

family phenotypic performance and allele frequency. Validation sets with similar 502 

phenotypic mean and variance as the TST set showed greater predictive ability and more 503 

accurate predictions consistently across traits. These results revealed great potential for 504 

using GWFP in breeding programs that select family bulks as the selection unit, GWFP is 505 

well suited for crops that are routinely genotyped and phenotyped at the plot-level. The 506 

GWFP approach can also be extended to breeding schemes where family bulks can serve 507 

as training sets, while individuals are the selection target.  508 
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Table 1. Scenarios implemented to design training and validation sets to test predictive 509 
ability of genomic prediction models. 510 

Scenario 
Set 

Training  Validation 

GEBV 830 individuals 93 individuals 

GWFP 56 families 7 families 

GWFP_Fam_Ind 59 families 422 individuals 

GWFP_Fam_Fam 59 families 59 families 

GWFP_Low 56 families 7 families with lowest phenotypic values 

GWFP_High 56 families 7 families with highest phenotypic values 

GWFP_Low_High 56 families 7 families, 4 lowest and 3 highest phenotypic 

values 

GWFP_Middle 56 families 7 families with values similar to the overall 

mean 

GWFP_Combined 56 families 7 families (2 Low, 2 High and 3 from Middle 

scenarios) 

GEBV: genomic estimated breeding value. 511 
GWFP: genome-wide family prediction. 512 
CV: cross validation.  513 
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 514 
Figure 1. Average allele frequency deviation (A-D) and family mean phenotypic 515 
deviation (E-F) in CCLONES_real (A, C and E) and CCLONES_sim (B, D and F) 516 
calculated by increasing the number of individuals from 1 to 15. Five families exhibiting 517 
genotypic segregation ratios 1:1 (A and B) and 1:2:1 (C and D) for single nucleotide 518 
polymorphisms were included in the analysis. The CCLONES-real phenotypic deviation 519 
is for the trait stem diameter (E).  520 
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Figure 2. Average predictive ability using family pools (GWFP) in four traits in the 521 
loblolly pine breeding population CCLONES obtained with 10-fold and leave-one-out 522 
(LOO) cross validation schemes using Bayes B (A) and Bayes RR (B). 523 
 524 
 525 
 526 
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 527 
   528 

Figure 3. Phenotypic distribution for testing (orange) and validation (white) sets for fours 529 
traits measured the CCLONES_real population and two traits simulated using 530 
CCLONES_sim (A). Average predictive ability obtained with Bayes B using genome 531 
wide family prediction (GWFP) for four traits in the CCLONES_real (lignin, stiffness, 532 
rust and diameter), and two traits with different genetic architecture (Oligogenic and 533 
Polygenic) in the CCLONES_sim populations (B). Five scenarios were tested by creating 534 
training (56 families) and validation (7 families) populations using phenotypic data: i) 535 
Low: validation set is composed of 7 families with lowest phenotypic records; ii) High: 536 
validation set is composed of 7 families with highest phenotypic records; iii) Middle: 537 
validation set is composed of 7 families with phenotypic records similar to the family 538 
mean; iv) Combined: 2 families from Low, 2 families from High and 3 families from 539 
Middle; and v) Low + High: 4 families from Low and 3 families from High.   540 
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 541 
Figure 4. Average predictive ability obtained with Bayes B for four traits in CCLONES-542 
real (lignin, tree stiffness, rust and stem diameter), and two traits with different genetic 543 
architecture (Oligogenic and Polygenic) in the CCLONES_sim populations using 544 
different genomic prediction methods. GEBV: genomic estimated breeding values 545 
individual trees; GWFP_Fam_Ind: genome-wide family prediction using 59 family pools 546 
as training set, while different individuals from the same families were used as validation 547 
set; GWFP_Fam_Fam: genome-wide family prediction using 59 family pools as the 548 
training and validation population, but different full-sib individuals were pooled in both 549 
sets; GWFP: genome-wide family prediction using 63 family pools in a 10-fold cross 550 
validation scheme. Narrow-sense heritability (h

2
) estimated at the individual level 551 

(Resende et al., 2012). 552 
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 553 

Figure 5. Average predictive ability and accuracy obtained with Bayes B for two traits 554 
with different genetic architecture (Oligogenic and Polygenic) in the 555 
CCLONES_sim_progeny population, obtained with individual (GEVB) and family-556 
pooled (GWFP) genomic prediction methods. Predictive ability calculated as the 557 
correlation between estimated breeding and phenotypic values are denoted as _Pheno, 558 
and accuracy as the correlation between estimated and true breeding values as _BV. 559 
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 560 
Figure 6. Scheme for the different genomic prediction scenarios: A - GEBV: genomic 561 
estimated breeding values for individual trees; B – GWFP_Fam_Fam: genome-wide 562 
family prediction for families prediction; C – GWFP_Fam_Ind: genome-wide family 563 
prediction applied in the selection of individuals. 564 
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