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Abstract

Single-cell high-throughput chromatin conformation capture methodologies (scHi-C) enable
profiling long-range genomic interactions at the single-cell resolution; however, data from
these technologies are prone to technical noise and bias that, when unaccounted for, hinder
downstream analysis. Here we developed a fast band normalization approach, BandNorm, and
a deep generative modeling framework, 3DVI, to explicitly account for scHi-C specific tech-
nical biases. We present robust performances of BandNorm and 3DVI compared to existing
state-of-the-art methods. BandNorm is effective in separating cell types, identification of inter-
action features, and recovery of cell-cell relationship, whereas de-noising by 3DVI successfully
enables 3D compartments and domains recovery, especially for rare cell types.

Introduction

Maturation of chromosome conformation capture (3C) based technologies for profiling 3D
genome organization1–5 and technological advancements in single-cell sequencing6 led to the
development of single-cell Hi-C (scHi-C) assays7–11. Data from these assays enhance our abil-
ity to study the impact of spatial genome interactions on cell regulation at an unprecedented
resolution. While some of the characteristics of scHi-C data, such as systematic genomic dis-
tance bias (referred to as band bias, Fig. 1A), are similar to its bulk version, scHi-C data harbors
significantly distinct features. In general, data from single-cell technologies such as scRNA-
seq and scATAC-seq are noisy and sparse, leading to underestimated biological signals within
and across cells. However, these issues are compounded in 3C-based technologies because the
natural analysis unit is locus-pairs depicting potentially interacting genomic loci; as a result,
their sheer number exacerbates the sparsity. In contrast to bulk Hi-C data, which is avail-
able in small numbers of replicates owing to high sequencing cost, scHi-C is generated across
thousands of cells simultaneously, therefore significantly increasing the resolution to capture
biological variation. However, this resolution gain comes at the cost of increased technical
noise and decreased sequencing depth per cell, further contributing to the extreme sparseness
of scHi-C chromosomal contact matrices.

Initial approaches for unsupervised analysis of scHi-C data repurposed bulk data quantifi-
cation methods of similarity between contact matrices, such as HiCRep12, and applied multi-
dimensional scaling13. Vectorization of scHi-C contact matrices to form a cell by locus-pair
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matrix followed by dimension reduction approaches such as UMAP and t-SNE11, or topic
modeling14 have been utilized successfully. Most recent approaches for normalization and de-
noising of scHi-C data rely on linear smoothing and random walk imputation15 of cell-specific
contact matrices or hypergraph representation learning16. While these are highly innovative ap-
proaches, they lack a generative model that acknowledges the key properties of the scHi-C data.
Deep generative modeling and, more specifically, variational autoencoders have seen a signifi-
cant uptake in the analysis of single-cell transcriptomics17, 18, epigenomics19, and proteomics20

due to their ability to provide efficient and scalable solutions to normalize, de-noise, and impute
single-cell data. At the individual cell resolution, heterogeneity, driven by the stochastic nature
of chromatin fiber and a multitude of nuclear processes, and unwanted variation due to sequenc-
ing depths and batch effects pose major analytical challenges for inferring single cell-level 3D
genome organizations. Here we develop a deep generative model, named 3DVI, which system-
atically takes into account these structural properties and accounts for band bias, sequencing
depth effect, zero inflation, sparsity impact, and batch effects of scHi-C data (Fig. 1B). In ad-
dition, we also describe a scaling normalization approach named BandNorm (Fig. 1A), and its
variants as fast baseline alternatives (Methods).

Results

We consider band transformation of scHi-C contact matrices, i.e., loci by loci symmetric ma-
trices with entries representing the interaction frequency between the locus-pairs, as the foun-
dation for our normalization and modeling approaches (Fig. 1A). The genomic distance effect,
i.e., band effect, due to the random polymer looping behavior of DNA is one of the key fea-
tures in both the bulk1 and single-cell Hi-C data (Supplementary Fig. 1). As expected, such
a band effect leads to marked interaction frequency enrichment among loci close to the diag-
onal in the Hi-C contact matrix. Contact decay profiles that quantify interaction frequencies
among locus-pairs as a function of their genomic distance can successfully separate cells based
on their cell cycle stages21. To explicitly capture this effect, the upper triangular of the sym-
metric contact matrix for each cell is first stratified into diagonal bands, each representing
a specific genomic distance between the interacting loci. Then, bands at the same genomic
distance are combined into a band matrix across cells (Fig. 1A) for further BandNorm and
3DVI normalization (Methods). By dividing the interaction frequencies of each band within a
cell with the cell-specific band mean, BandNorm first removes genomic distance bias within
a cell and scales the sequencing depths between cells. Subsequently, BandNorm adds back a
common band-dependent contact decay estimate by multiplying each band within a cell with
the average band mean across cells (Fig. 1A and Methods). A similar strategy for impos-
ing band-specific decay rates was adopted for normalization across bulk Hi-C samples22. In
addition to this nonparametric normalization approach, we also devised 3DVI as a deep gen-
erative model built on the parametric count models of Poisson and Negative Binomial that
have been successfully used in bulk measurements of chromatin conformation capture data23, 24.
Following the recent deep learning modeling approaches for single-cell transcription17, 18 and
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chromatin accessibility19, 3DVI builds a generative modeling framework on the band matri-
ces for dimension reduction and de-noising of scHi-C data (Fig. 1B and Methods). It esti-
mates and corrects the batch effect and de-noises interaction frequencies among locus-pairs
that can then be leveraged for downstream analysis. BandNorm is implemented as an R pack-
age (https://github.com/keleslab/BandNorm) which also harbors all the curated
public scHi-C data used in this paper. 3DVI is implemented as a python pipeline using the
scvi-tools17 and is available at https://github.com/keleslab/3DVI.

We benchmarked BandNorm and 3DVI against two classes of methods, including base-
line methods for library size and genomic distance effect normalization and more structured
modeling approaches. In the former category, in addition to BandNorm, we evaluated CellScale
and BandScale11 (Methods). CellScale uses a single scaling factor across all the locus-pairs
within a cell, while BandScale employs a band-specific size factor, as opposed to a global
one, within each cell to eliminate library size bias at each genomic distance11. After each of
CellScale, BandScale, and BandNorm normalizations, single-cell contact matrices are vector-
ized into the cell by locus-pair matrices and used to generate low dimensional embeddings.
Since this strategy overlooks the matrix structure of the data, we also utilized a convolutional
neural network (CNN) approach, which has been previously leveraged for enhancing the res-
olution of the bulk-cell Hi-C matrix25, on contact matrices from BandScale to learn their low
dimensional representations. In the second category, we considered three more state-of-the-art
scHi-C methods: scHiCluster15, scHiC Topics14, and Higashi16.

We leveraged four scHi-C datasets with known cell-type labels and varying character-
istics to evaluate the performances of the scHi-C methods (Methods). These four datasets are
Ramani2017

9 and Kim202014 from various human cell lines, Lee201911 from human brain
prefrontal cortex cells, and Li201910 from mESC cells. Of these, Ramani2017, Lee2019
and Kim2020 are generated from multiple sequencing libraries, hence, are especially suitable
for investigating the impact of batch effects. All the data on chromosomes 1-22 and X are
binned at 1Mb resolution to generate a set of loci, and raw data are filtered according to the
specifications in the source publications to remove ultra sparse cells (Supplementary Table 1
and Supplementary Fig. 2).

We first assessed the cell-type separation performances of the scHi-C methods within
the context of unsupervised clustering. We considered six evaluation settings (Fig. 1C and
Methods): K-means clustering of the latent embeddings of each method, and with or without
low-dimensional projections with t-SNE and UMAP, and Louvain graph clustering26. We used
Adjusted Rand Index (ARI) to compare the resulting clusters with the known cell labels and
the average Silhouette score to quantify the separation between the clusters. Cell clustering
performances vary dramatically due to the numbers of cells, data quality as measured by se-
quencing depth, sparsity, and batch effects, as well as how distinguishable the cell types are.
For the Ramani2017 and Lee2019 studies, BandNorm and 3DVI perform as well as or out-
perform the rest based on all the six evaluation settings (Fig. 1C). Almost all the methods per-
form poorly on the Li2019 dataset (ARI 2 [0.005, 0.47] and Silhouette score 2 [�0.56, 0.2]),
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which has the smallest number of cells (Supplementary Table. 1 and Supplementary Fig. 2). All
the methods except CellScale achieve their best performances on the Kim2019 dataset (ARI
2 [0.35, 0.91] and Silhouette score 2 [0.3, 0.73]), with leading performances by BandNorm,
Higashi, scHiC Topics, and 3DVI (Fig. 1C). Overall summary of these evaluations yields Band-
Norm and 3DVI as robustly best performing, followed by scHiCluster and Higashi, with me-
dian rank scores of 2, 2.5, 4, and 4.5, respectively (Supplementary Fig. 3). In addition to these
quantitative measures, we also graphically assessed whether the resulting low-dimensional rep-
resentations achieve clear cell type separation (Fig. 1D), and carry left-over effects by technical
variation due to batch (Fig. 1E), library size or sparsity (Supplementary Fig. 4). We present
Ramani2017, Lee2019 and Kim2020 with UMAP visualizations for illustration (Fig. 1D)
and provide the t-SNE embeddings (Supplementary Figs. 5-7) as well as analysis for Li2019
(Supplementary Figs. 8 and 9) in supplementary materials. More specifically, across all four
datasets, CellScale, a commonly used global library size scaling strategy for high-throughput
sequencing data, produces the least favorable cell separation. Particularly, for Ramani2017
and Kim2020 (Fig. 1D) where most of the other methods can explicitly separate major cell
types, CellScale exhibits no separation power. For Ramani2017 (Fig. 1D), BandNorm and
scHiCluster stand out in successfully separating the small numbers of K562 cells from the rest.
Higashi, on the other hand, exhibits batch effects resulting in the further division of the Hela
cells into sub-clusters (Fig. 1D and Supplementary Figs. 5 and 10). The original analysis of
Lee2019 reported that scHi-C contact matrix data alone could barely separate the excitatory
neuronal subtypes, namely L2/3, L4, L5, and L6, from the inhibitory cells Ndnf, Pvalb, Sst, and
Vip. While this is the case for most methods, BandNorm and 3DVI show a notable exception.
Specifically, BandNorm unambiguously isolates the excitatory and inhibitory cells into two
clusters. Consistent with this, 3DVI also achieves a clear boundary between the excitatory and
inhibitory cells (Fig. 1D). Direct comparison of the results from BandScale to BandNorm high-
lights the marked improvement due to adding back the band-specific contact decay estimates
by BandNorm (Figs. 1A, D, and Methods). Allowing band-specific contact decays can be in-
terpreted as adding more weights to short-range bands and plays a significant role in separating
the cell types. Higashi analysis of the Lee2019 data, however, also shows nontrivial batch
and sequencing depths effect, leading to erroneous separation of the mixture of the neuron sub-
types (L2/3, L4, L5, and L6) and inhibitory cells (Ndnf, Pvalb, Sst and Vip) into two mixture
clusters (Figs. 1D, E, Supplementary Figs. 4 and 6). scHiCluster requires stringent cell filtering
(Table 1 and Methods) that may remove 88.4% of cells in the dataset14. Without such stringent
filtering, scHiCluster loses its cell type separation power unexpectedly. For example, in the
Kim2020 study where BandNorm and other more structured models achieve distinct separa-
tion with high ARI and Silhouette scores (Figs. 1C, D and Supplementary Fig. 7), scHiCluster,
performs poorly in distinguishing HAP1 and H1Esc. This is consistent with the observations
of others14, 16 on scHiCluster. While scHiC Topics performs impressively well on Kim2020,
it does not exhibit similarly high performance on the other datasets. This is in spite of the fact
that we used the suggested strategy14 of setting the number of topics based on the true cell
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labels in the Silhouette score calculations. The BandScale+CNN strategy explicitly acknowl-
edges the matrix structure of the data and can potentially learn the graph structure of each cell
matrix. However, it yields limited power, possibly owing to the sparsity and low resolution of
1Mb. 3DVI is generally performing as well as BandNorm in terms of separating cell types, and
its overall high performance is stable across datasets and robust to batch effects (Fig. 1E and
Supplementary Fig. 10).

Batch effects emerge as a key modulator of the cell type separation performances of
different methods. Specifically, visualization based on low-dimensional embeddings of the
methods indicates Higashi as affected most, followed by scHiC Topics, scHiCluster, and Band-
Scale+CNN (Fig. 1E and Supplementary Fig. 10). 3DVI explicitly models the batch factor
into the deep generative framework hence does not show severe batch biases. BandNorm nor-
malization step only considers the distance effect and library size without any adjustment for
the batch factor. Therefore we observed unexpected cell separation within excitatory neuronal
subtypes of Lee2019 (L2/3, L4, L5, L6, Fig. 1F-None panel). In order to address this, we
considered several methods that yielded promising results in removing batch effects for other
types of high-throughput sequencing data, including SVA27, removing the principal compo-
nent exhibiting the highest correlation with the batch variable, Seurat batch effect regression28,
and Harmony29. Of these, SVA27 and removing the principal component exhibiting the high-
est correlation with the batch variable do not remove the batch bias, while SVA even makes
the performance worse. Seurat batch effect regression28 alleviates the separation within the
excitatory neuronal subtypes cluster but introduces additional batch biases (depicted in orange
and yellow of Fig. 1F) for other clusters. Harmony29 stands out in successfully addressing
the batch effects and enhances the sub-cell type separation. Additionally, for Ramani2017
data, with five libraries where ml1 and ml2, and pl1 and pl2 are sequencing experiments with
same library preparations, all four batch removal methods work successfully in mixing pl1 li-
brary with its pair pl2 (Supplementary Fig. 11A). For Kim2020, however, the libraries are
confounded with the cell type; therefore, it is not suitable to apply any batch removal strategy,
and doing so worsens the cell type separation (Supplementary Fig. 11B). In addition to con-
founding cell-type separation, batch effects may also impact inference of cell type relationships
from the pairwise similarity measurements of the cells (Fig. 1G). We compared the robustness
of the methods regarding this effect by considering a cell-to-cell similarity metric based on the
edge weights of shared nearest neighbor graphs30. As revealed by the hierarchical clustering
of the cells based on this metric (Fig. 1G and Supplementary Fig. 12), CellScale, BandNorm,
scHiCluster, scHiC Topics, Higashi, and 3DVI latent embeddings successfully separate the ex-
citatory neuron subtypes (L2/3, L4, L5, and L6), CGE-derived inhibitory subtypes (Ndnf and
Vip), medial ganglionic eminence-derived inhibitory subtypes (Pvalb and Sst), oligodendrocyte
related cell types (Astro, OPC, ODC) and non-neuronal cell types (MG, MP, Endo). BandNorm
after Harmony batch removal yields the most invariant performance to the batch effects on the
similarity matrix (Supplementary Fig. 12).

Another notable observation from this benchmarking study is that UMAP and t-SNE
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visualizations of low-dimensional embeddings from BandScale, scHiCluster, scHiC Topics,
Higashi, BandScale + CNN, and 3DVI tend to display systematic effects of sequencing depth
and sparsity despite their implicit or explicit efforts to account for these factors (Supplemen-
tary Fig. 4). However, these lingering effects do not impact the overall cell type separation.
Instead, they tend to impact the local organization of the cells within their respective clusters.
We considered utilizing PCA on the low-dimensional embeddings (t-SNE or UMAP) to iden-
tify and remove the top principal component(s) highly correlated with sequencing depth and
sparsity. However, their removal did not result in any discernible improvement in the cell type
separation and, on the contrary, led to worse evaluation metrics for some datasets. This eludes
to the possibility that the sequencing depth and sparsity effects left in the model embeddings
are confounded with other latent biological or technical variation hence cannot be completely
removed from the data.

Next, we sought to evaluate the normalization and de-noising by BandNorm and 3DVI
along with other methods for their impact on downstream scHi-C data analysis, leveraging the
Kim2020 dataset as an illustration (Fig. 2). We compared aggregated scHi-C contact matri-
ces of individual cell types after normalization (BandNorm) or de-noising (3DVI, Higashi, and
scHiCluster) with their existing bulk Hi-C versions as the gold standard in terms of detection
of A/B compartments and topologically associating domains (TADs), contact matrix similar-
ity, detection of significantly interacting and differentially interacting locus-pairs. The results
presented are for scHi-C aggregation based on the true cell type labels; however, the overall
benchmarking conclusions remain the same for the aggregation using unsupervised clustering
labels (Methods). When the number of cells per cell type is large such as in GM12878 (Sup-
plementary Fig. 2), BandNorm normalized and aggregated scHi-C data exhibits good visual
agreement with the bulk version in terms of the broad features of the contact matrix, such as
the TADs and A/B compartments (Fig. 2A). However, for rare cell types, i.e., IMR90 in the
Kim2020 dataset, data from BandNorm reflects extreme sparsity and does not yield good con-
cordance with the bulk version (Fig. 2B). In contrast, contact matrices de-noised with 3DVI
appear more in agreement with their bulk version regardless of the numbers of cells (Figs. 2A,
B). Higashi borrows information from the neighboring cells in a hypergraph embedding for im-
putation. This may lead to over-imputation, as in the case of IMR90 cells (Fig. 2B). scHiCluster
de-noises the scHi-C contact matrix through neighborhood smoothing and random walk; hence
the matrices look smooth and blurry compared to their bulk versions. Systematic quantification
of these observations indicates their generality and consistency across the cell types. At the
domain structure level, despite the sparsity in the aggregated scHi-C matrices, BandNorm has
the most concordant insulation score (purple lines in the “Insulation Score” panel of Figs. 2A,
B, Supplementary Fig. 13) to that of bulk data (grey lines in the “Insulation Score” panel of
Figs. 2A, B, Supplementary Fig. 13). This results in the highest recovery rate for TAD bound-
aries across all the chromosomes and all the five cell types (Fig. 2C, e.g., the median recovery
rates for GM12878 are 85.71%, 66.67%, 63.64% and 57.14% for BandNorm, 3DVI, Higashi
and scHiCluster, respectively). Furthermore, HiCRep12 similarity analysis confirms that Band-
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Norm normalization has the overall highest reproducibility score with the bulk Hi-C data, fol-
lowed by 3DVI and Higashi (Fig. 2D). Surprisingly, pairwise cell line reproducibility analysis
reveals a strong correlation between HFF and IMR90 contact matrices after imputation by Hi-
gashi (Fig. 2E). Further investigation attributes this to Higashi’s imputation strategy whereby it
borrows information from neighboring cells and relies strongly on the accurate separation of the
cells based on their cell types to form informative neighborhoods. As revealed by the UMAP
and t-SNE visualization of cell type clustering (Fig. 1D and Supplementary Fig. 5), none of the
methods can isolate IMR90 cells, and most IMR90 cells are mixed with the HFF cell cluster.
As a result, neighbors of IMR90 cells inevitably consist of cells from a variety of cell types and
are especially enriched in HFF cells. This explains the high similarity between IMR90 and the
other four aggregated scHi-C cell types after Higashi imputation, particularly for the HFF cell
line (Fig. 2E). This observation again underlines the concerns of over-imputation for Higashi
as observed visually on the contact matrices (Figs. 2A, B, Supplementary Fig. 13).

A use case of scHi-C data is the inference of similarity between different cell types based
on their 3D chromatin interactions. We first evaluated the hierarchical relationship of the ag-
gregated scHi-C normalized or de-noised matrices across 14 cell types of Lee2019 dataset
constructed based on the HiCRep similarity scores (Fig. 2F and Supplementary Fig. 15A). Al-
ternatively, we also considered similarity at the individual cell level and quantified cell-to-cell
similarity based on the edge weights of the shared nearest neighbor graphs on the matrices
de-noised by individual methods (Supplementary Fig. 14). For all the methods, both the aggre-
gated and single cell-level similarity measurements demonstrated a clear separation of neural
sub-cell type clusters as suggested in the literature11. Notably, aggregated scHi-C data from
BandNorm, 3DVI, and Higashi yielded better segregation of the endothelial cells (Endo) com-
pared to scHiCluster.

We next investigated the performances of the de-noising methods at the locus-pair level
in terms of detection of significantly interacting locus-pairs within a cell type and differentially
interacting locus-pairs across cell types. We first set a gold standard using the cell line specific
bulk Hi-C data. Specifically, we identified the top 50,000 significant interacting locus-pairs
from bulk Hi-C with Fit-Hi-C31 as the “true” significant interaction list. Then, we quantified
the percentage of this list that can be recovered by the top interacting locus-pairs from the ag-
gregated scHi-C matrices of each method. BandNorm outperforms all the other methods by
achieving the highest accuracy rate (e.g., for the top 5000 interacting locus-pairs of GM12878,
the accuracy rates vary as 93.34%, 83.32%, 68.36% and 61.10% for BandNorm, 3DVI, Hi-
gashi, and ScHiCluster, respectively), across all cell lines except for the IMR90 scHi-C data
which has the smallest number of cells (Fig. 2G). 3DVI maintains a highly significant inter-
action detection accuracy rate for the IMR90 cells owing to its successful imputation strategy
(Fig. 2G). In order to evaluate performances for detection of differential TADs or locus-pairs,
we considered TADcompare32 for differential TAD boundaries detection, diffHic33 for differen-
tial interacting locus-pairs detection, and CHESS34 for differential interacting regions detection
(Supplementary Fig. 15). Overall, aggregated scHi-C matrices from all four methods resulted
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in similar differential interaction detection.

Finally, we quantified the run time of each method on the Lee2019 dataset which has
large numbers of cells with high sequencing depths. Higashi experiments using GPU version
and 3DVI were carried out on a machine with 18 cores 2 sockets Intel(R) Xeon(R) Gold 6254
CPU addressing 562GB RAM and one NVIDIA GeForce RTX 2080 Ti GPU addressing 11GB
RAM. The rest of the methods, including Higashi experiments only using CPU, were tested
on a machine with 14 cores 2 sockets Intel(R) Xeon(R) CPU (E5-2680 v4) addressing 256GB
RAM. The run times of the methods vary dramatically from less than 15 minutes to several
hours or even days using multiple cores for parallel running with one core per chromosome
(Table 1).

The profiling of single-cell 3D genome organization is poised to generate new types of
investigations at unprecedented and unique levels of resolution. A key analytical task of these
investigations is de-noising and normalization of scHi-C data to infer clusters of cells rep-
resenting cell types, stages, and conditions. We presented BandNorm and 3DVI at the two
opposite ends of the structured modeling of scHi-C data. Our evaluations on datasets with
known cell types and varying data characteristics indicate that BandNorm, which corrects for
genomic distance bias and library size, performs as well and even better than elaborate mod-
eling approaches on these datasets. When coupled with Harmony, BandNorm is also robust
to batch effects in cell type separation. In comparison, 3DVI can account for genomic dis-
tance, library size, sparsity, and batch effects and impute sparse contacts to provide advantages
for downstream analysis compared to Bandnorm. We note that the current version of 3DVI
does not consider spatial dependence among adjacent locus-pairs, i.e., (i, j) with (i� 1, j � 1)

and (i + 1, j + 1) in the band matrices. While high-resolution contact maps, e.g., locus size
 10Kb from bulk Hi-C data exhibit local spatial dependency between interacting loci35, the
spatial independence assumption is well justified for low resolution (200Kb-1Mb) scHi-C data
(Supplementary Fig. 16).
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Figure 1 Benchmarking of scHi-C normalization and de-noising methods for cell-

type clustering. A. Band transformation separates scHi-C contact matrices into band-
specific cell ⇥ locus-pair matrices before conducting BandNorm normalization on
each band matrix per chromosome per cell. B. Deep generative model, 3DVI, for a
single band matrix v with locus-pair index set A(v). q(zcv, dcv | Ycv, sc) denotes the vari-
ational distribution of the latent factors, parameters of which are learnt locally for each
band matrix. C. Evaluation of the eight scHi-C normalization and de-noising methods,
namely CellScale, BandScale, BandNorm, scHiCluster, scHiC Topics, Higashi, Band-
Scale+CNN, and 3DVI, for cell type separation across four benchmark datasets. The
performances are evaluated by Adjusted Rand Index (ARI) after K-means clustering
and Louvain graph clustering and by Silhouette coefficient on UMAP and t-SNE visu-
alizations with the true cell labels. D. Application of the scHi-C data normalization and
de-noising methods on Ramani2017 with 4 cell types, Lee2019 with 14 cells types,
and Kim2020 data sets with 5 cell types. The results are displayed using scatter plots
of the two UMAP coordinates. The colors of the plotting symbols correspond to the
cell types. E. Impact of batch effects on cell type separation using Lee2019 data set
with samples from two donors of ages 21 and 29 years old and in a total of 5 batches.
The results are displayed using scatter plots of the two UMAP coordinates. The colors
of the plotting symbols correspond to the batches. F. Results from the four batch ef-
fect removal methods, SVA27, removing the top correlated principal component, Seurat
batch effect regression28, and Harmony29, together with the BandNorm normalization
on the Lee2019 data set. G. Pairwise cell similarity scores for the Lee2019 data set.
The scores are obtained by edge weights of the shared nearest neighbors graphs con-
structed on 3DVI latent embeddings of the data. The inferred relationship between the
cell types is depicted by the dendrogram from the hierarchical clustering of the cells.
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Figure 2 Evaluation of scHi-C normalization and de-noising methods for their impact

on the downstream Hi-C data analysis. A. Comparison of detected topologically asso-
ciating domains (TADs) and A/B compartments between bulk GM12878 Hi-C data on
chromosome 1 (upper right triangles) and the aggregated single-cell Hi-C data (lower
left triangles) after normalization or de-noising using Kim2020 data set. True cell la-
bels for GM12878 were utilized to aggregate processed scHi-C data. First row: The
insulation scores36 that trace the TAD boundaries are depicted on the contact matri-
ces with grey lines corresponding to bulk Hi-C data and purple for BandNorm, blue for
3DVI, green for Higashi, and yellow for scHiCluster. The numbers after the red squares
at the left bottom of each contact matrix represent the minimum interaction frequency
for the reddest locus-pair. Second row: A/B compartments are detected using the
eigenvector of correlation map of bulk (upper right triangles) or aggregated (lower left
triangles) Hi-C matrices, values of which are displayed above each correlation ma-
trix. B. Comparison of detected TADs and A/B compartments between bulk IMR90
Hi-C data and the aggregated single-cell Hi-C data after normalization or de-noising
using Kim2020 data set with the known IMR90 cell type label. C. Percentage of TAD
boundaries that are within 1Mb distance of the corresponding bulk cell type Hi-C data
TAD boundaries. The numbers above each pairwise comparison with BandNorm are
the P values based on the two-sided t-test. D. HiCRep12 similarity scores between
aggregated scHi-C matrices and the corresponding bulk Hi-C matrices. The numbers
above each pairwise comparison with BandNorm are the P values based on the two-
sided t-test. E. HiCRep12 similarity scores between aggregated IMR90 matrices and
aggregated GM12878, H1Esc, HAP1, and HFF from Kim2020 data set. The numbers
above each pairwise comparison with bulk are the P values based on the two-sided
t-test. Sample sizes for C-E are n = 23 for each violin corresponding to chromosome
1-22 and chromosome X. F. Hierarchical clustering of the aggregated scHi-C matrices
of different cell types from BandNorm, 3DVI, and Higashi based on their HiCRep sim-
ilarity scores. G. Percentage of top N (N = 5,000, 10,000, ...) significant interacting
locus-pairs that are in the gold standard set for each method. The gold standard set
is defined as the top 50,000 significant locus-pairs detected by Fit-Hi-C31 from the cell
type specific bulk Hi-C data.
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Table 1: Overview of single-cell Hi-C data analysis methods.
Method Resolution Cell Filtering Locus-pairs Filtering Sequencing Depth Normalization⇤ Batch Effect Removal Time (Lee2019)

CellScale 1Mb NULL NULL
Each locus-pair is normalized by dividing
with the total IFs of each contact matrix
and multiplying by 10,000.

NULL <15min(23cores)

BandScale11 100kb NULL Keep <=2Mb
Each locus-pair is normalized by dividing
with the average IFs of locus-pairs
at the same distance.

NULL <15min(23cores)

BandNorm 1Mb NULL NULL

Each locus-pair is normalized by dividing
with the total IFs at the same genomic
distance (i.e., band) per cell and
multiplying by the average total interaction
frequency across cells at the same distance.

Top batch correlated
PCA components other
than the 1st and 2nd
are removed.

<15min(23cores)

scHiCluster15
1Mb
200kb

Keep cell with
off-diagonal
contacts >5000.

Keep cells with >=x
non-zero locus-pairs, x
is chromosome size (Mb).

After neighborhood smoothing and random
walk imputation, top 20% interacting
locus-pairs are set to 1 and rest to 0.

NULL 30min(23cores)

scHiC Topics14 500kb NULL Keep <=10Mb

Cell by locus-pair matrix is binarized;
(Optional) Bottom 50% cell based on total
IFs are removed and the rest
is downsampled to remove the sequencing
depth effect.

NULL 36h(1core)

Higashi16 1Mb

Keep cells with
>= 2,000 interactions
that have genomic
span greater than
500Kb.

NULL

Contact maps can be smoothed via linear
convolution to reach similar sparsity;
Quantile normalization can be applied to
the matrix.

NULL
49h(10coresCPU)
16h(23coresGPU)

BandScale+CNN 1Mb NULL
Keep cells with >=x/6
non-zero locus-pairs, x
is chromosome size (Mb).

Each locus-pair is normalized by dividing
with the average IFs of
locus-pairs at the same distance.

NULL 5h(23cores)

3DVI 1Mb NULL

(Optional) Diagonals of
contact matrix with
high contact count
variation are selected.

A variational autoencoder with Gamma-
Poisson mixture at each band with a
separate size factor is fitted.

The batch factor
is incorporated into
the autoencoder at
each distance.

4h(23coresGPU)

⇤: IF refers to interaction frequency.
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Methods

Band transformation of scHi-C data

Band transformation of scHi-C contact matrices forms the basis for our normalization and
modeling approaches. To explicitly capture the genomic distance effect, the upper trian-
gular of the symmetric contact matrix for each cell is first stratified into diagonal bands,
each representing the genomic distance between the interacting loci. Then, bands from the
same genomic distance are combined into a band matrix across cells (Fig. 1A). Specifi-
cally, we denote the set of bands by V = {0, 1, · · · , D � 1}, where D denotes the num-
ber of loci in the contact matrix (i.e., # of rows) and v = 0 represents the diagonal band,
A(v) = {(i, j), i, j = 1, · · · , D : j � i & j � i = v} indices of the locus-pairs in the
band v, and mv the total number of locus-pairs in the band v. For the modeling and down-
stream analysis, we only consider the off-diagonal interactions, hence v � 1.

BandNorm: A fast baseline band normalization approach for scHi-C data

Bandnorm provides fast normalization of scHi-C data by first removing genomic distance bias
within a cell and sequencing depth normalizing between cells followed by adding back a com-
mon band-dependent contact decay estimate for the contact matrices across cells. More specif-
ically, the BandNorm normalized interaction frequencies are obtained by

Ccv
r =

Y cv
r

Lcv/mv
(↵(v)/mv) =

Y cv
r

Lcv
↵(v), 8r 2 A(v), (1)

where Lcv denotes the total interaction frequency of cell c at the v-th band, Lcv =
Pmv

r Y cv
r , and

↵(v) is the average interaction frequency of band v across cells and is defined as
PN

c=1 L
cv/N .

3DVI: A deep generative model for scHi-C data

3DVI models the interaction frequencies of locus-pairs in each cell as a sample from a zero-
inflated negative binomial distribution while accounting for library size and batch effect for
each band matrix. Let Y cv

r denote the interaction frequencies, i.e., quantification of how
strongly two loci interact, between genomic loci i and j where r 2 A(v) in cell c = 1, · · · , N
at band v and Ycv vector of interaction frequencies of locus-pairs for cell c at band v. The two
key components of this model are a non-linear latent factor model to obtain low-dimensional
representations zcv of cell c across band matrices Ycv and a hierarchical generative model for
Pr(Ycv | zcv). Specifically, we model observed interaction frequencies Y cv

r for each locus-pair
in Ycv with a latent space model. Low dimensional latent variable zcv enables nonlinear di-
mension reduction for characterizing differences among cells in band v. Next, we present the
generative process where each interaction frequency Y cv

r is drawn independently conditional
on zcv through the following process, where we assume that zcv ⇠ Normal(0, IK). In order
to account for the sparsity of the scHi-C data, we define a zero inflation variable T cv

r and set
Y cv
r = 0 if T cv

r = 1 and Y cv
r = N cv

r otherwise. Here, N cv
r denotes the observed interaction

frequency in the absence of a dropout, and T cv
r ⇠ Bernoulli(⇡cv

r ), where ⇡cv
r = !v

r (zcv, sc). sc
is the batch information for cell c and !(.) is a neural network that encodes whether a partic-
ular locus-pair has dropped out due to the technical artifacts23 and maps the latent space zcv
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back to the full dimension of all locus-pairs in band v. Additionally, N cv
r ⇠ Poisson(lcbv�cv

r )

where �cv
r ⇠ Gamma(µcv

r , �v), lc denotes the latent library size factor for cell c, and the band
size factor bv modulates the impact of the size factor on the true interaction frequencies for
band v. The band size factor, bv, is motivated by the genomic distance effect in which inter-
action frequencies between locus-pairs vary systematically by the distance between the loci.
The band effect has been observed to vary markedly between two bulk Hi-C experiments24.
We inquired whether this effect varied depending on the observed library size of the individual
cells by leveraging one of our case study data sets (Lee2019) and formally tested for an in-
teraction between library size and band. Specifically, we considered a mixed linear model for
cell-specific mean band interaction frequencies as a function of cell type, observed library size,
and band indices as

Normalized mean band IFs ⇠ Cell Type+ Library Size+ Band+ Library Size⇥ Band+ (1|Cell Number),

(2)

where interaction frequencies are normalized to per million within each cell and log trans-
formed, and the model term (1|Cell Number) denotes the random effects of the cells to
accommodate potential correlations between measurements from the same cell. This analysis
revealed a significant interaction between library size and band (P value << 10e� 6), and the
model with the interaction term fitted better than the smaller submodels based on the Bayesian
Information Criterion (BIC37). This observation enables a more flexible parametrization of
scaling factor that merges library (lc) and band size (bv) factors into cell type specific band size
factors as dcv. Moreover, we let dcv ⇠ Log Normal(µv

d, (�
v
d)

2) parametrize the prior for this
scaling factor in the generative model.

Next, we modeled the mean parameter µcv
r as a nonlinear function of zcv as µcv

r = ⌘vr (zcv),
where ⌘(.) is a neural network that maps the latent space to the full dimension of the locus-pairs.
We leveraged existing variational inference tools, scvi-tools (single-cell variational inference
tools17), to fit this model for each chromosome separately. The estimated latent components
zcv of each cell were concatenated across bands and chromosomes for final low dimensional
projection by UMAP or t-SNE and downstream analysis.

scHi-C data analysis methods compared in the benchmarking experiments

In our evaluations of unsupervised clustering of the cells based on scHi-C data, we consid-
ered two classes of methods, including baseline methods for library size and genomic distance
effect normalization and more structured modeling approaches. In the former category, in ad-
dition to BandNorm, we evaluated CellScale, which uses a single scaling factor across all the
locus-pairs within a cell and scales library sizes of each cell to a common size (10,000 in
our applications). We also considered the first normalization step of BandNorm separately as
BandScale, where interaction frequencies of each band within a cell are divided by the cell’s
band mean. BandScale uses band-specific size factors rather than a global size factor within
a cell and has been used previously to eliminate library size bias at each genomic distance11.
After each of CellScale, BandScale, and BandNorm normalizations, single-cell contact matri-
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ces are vectorized into the cell by locus-pair matrices and used to generate low dimensional
embeddings. To incorporate the matrix structure of the data, we utilized a convolutional neural
network (CNN) approach, which has been previously leveraged for enhancing the resolution of
the bulk-cell Hi-C matrix25, on contact matrices from BandScale to learn the lower-dimensional
representation of the contact matrices.

Among the more structured modeling approaches, in addition to 3DVI, we also con-
sidered the state-of-the-art scHi-C data processing methods scHiCluster, scHiC Topics, and
Higashi. scHiCluster starts with neighborhood smoothing and random walk imputation to re-
duce the contact matrix sparsity. Then, it binarizes the imputed matrix by setting the top 20%
interacting locus-pairs to 1 and the rest to 0 in order to remove the library size bias across cells.
For dimension reduction, the contact matrix of each chromosome is vectorized into a cell by
locus-pair matrix, and the top 20 PCA components are concatenated across chromosomes for
a second PCA run. The final top principal components are used for clustering and visualiza-
tion. Notably, scHiCluster requires the most stringent cell filtering where only cells with total
off-diagonal interaction frequencies > 5,000 are kept. It further enforces less sparsity by dis-
carding cells with less than x non-zero locus-pairs, where x is the number of x Mb loci on each
chromosome, separately for the contact matrices of each chromosome. scHiC Topics focuses
more on the short to mid-range interactions by only considering the intra-chromosomal locus-
pairs within 10Mb genomics distance. This aims to balance the data sparsity and reduce model
complexity. Contact matrices of the cells are first vectorized to construct the cells by locus-
pairs matrix, which is further binarized and input into a topic modeling framework. Cell type
clustering is implemented on the cell by topics matrix where “topics” are proxies for cell types.
Higashi trains a hypergraph neural network and enables neighboring cells in the hypergraph to
share information for capturing interaction patterns. The resulting embeddings are then used
for learning cell types. Table 1 summarizes these eight methods in terms of their pre-processing
and treatment of various sources of biases.

Benchmark datasets

We considered four existing studies with varying data characteristics and known cell types
to benchmark the scHi-C low-dimensional embedding approaches. These four datasets are
scHi-C measurements from human cell lines (Ramani20179 and Kim202014), human brain
prefrontal cortex cells (Lee201911), and mESC cells (Li201910).

Ramani2017 has four human cell lines, HeLa S3, HAP1, K562, and GM12878. These cell
lines are distributed over five sequencing libraries labeled as ml1, ml2, ml3, pl1, pl2, where
pairs ml1 and ml2, and pl1 and pl2 are sequencing experiments with the same library prepa-
rations, respectively, and hence present different batches. We downloaded the Ramani2017
data from GEO38 with data accession GSE84920, and followed the instructions of literature9

to filter out low count reads. Data was transformed into the sparse matrix format at 1Mb by
scHiCTools39.

Lee2019 generated scHi-C data from 14 human brain prefrontal cortex cell types, As-
tro, Endo, L2/3, L4, L5, L6, MG, MP, Ndnf, ODC, OPC, Pvalb, Sst, Vip, originat-
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ing from two donors with ages of 21 and 29 years and in a total of five sequencing li-
braries. Data were downloaded from https://salkinstitute.app.box.com/s/

fp63a4j36m5k255dhje3zcj5kfuzkyj1/folder/82405563291. This dataset has
the largest numbers of sequencing reads and the highest average interaction frequency per cell.
Furthermore, since all the cells are prefrontal cortex cells, they are expected to exhibit less
heterogeneity compared to other datasets.

Li2019 datasets harbor mESC cells cultured in serum and leukemia inhibitory factor (LIF)
condition (serum mESCs: serum 1 and serum 2) and mESCs cultured in LIF with GSK3 and
MEK inhibitors (2i) condition. This data is valuable in benchmarking the performances of the
methods when the number of cells is small. We downloaded the Li2019 data from http:

//enhancer.sdsc.edu/ligq/share/mESC.MH/scMH/juice_files/ and con-
verted into sparse contact matrices by Juicer40.

Kim2020 dataset contains scHi-C data from five human cell lines, GM12878, H1Esc, HAP1,
HFF, and IMR90, with nine sequencing libraries. While this data has the largest num-
ber of cells, the average off-diagonal interaction frequency per cell is the smallest. No-
tably, the numbers of cells vary dramatically across cell types, with GM12878, H1Esc,
and HAP1 having more than 2k cells and IMR90 with less than 100 cells (Supplementary
Fig. 2). We downloaded the data from https://noble.gs.washington.edu/proj/

schic-topic-model/.

All the scHi-C data on chromosomes 1-22 and chromosome X were binned at 1Mb res-
olution to generate a set of loci, and extremely sparse cells were removed if the number of
non-zero locus-pairs was less than x/6 for the contact matrix of each chromosome where x

is the chromosome size in Mb (Supplementary Table 1). We discarded the scHiCluster cell
filtering requirement (Table 1) since it led to the removal of as high as 88.4% of the cells in the
Kim2020 dataset. The valid numbers of cells per cell type in all four data sets are summarized
(Supplementary Fig. 2). As part of pre-processing, all the locus-pairs along the diagonal of the
contact matrices were excluded from the analysis. We observed distinct distributions of inter-
action frequencies among the diagonal and off-diagonal locus pairs (Supplementary Fig. 17)
across the datasets. In the benchmarking experiments, locus-pairs at all genomic distances (ex-
cluding the diagonals) were utilized to avoid the exclusion of large percentages of interactions
(Supplementary Fig. 18), except for scHiC Topics, which only focuses on locus-pairs within
10Mb.

We used existing bulk Hi-C datasets of specific cell types as the gold standard for com-
paring different methods. Specifically, GM12878 combined in situ and IMR90 combined in
situ data were downloaded from GEO under accession GSE6352535. For differential inter-
action detection, two deeply sequenced biological replicates (replicates HIC019 and HIC020
for GM12878 and HIC051 and HIC056 for IMR90) were utilized. One combined replicate of
HAP1 was obtained from GEO with the accession number GSE7407241 and another replicate
utilized the wild-type condition data from GEO with accession number GSE9501542. H1ESC
(accession 4DNESRJ8KV4Q) and HFF (accession 4DNES2R6PUEK) data were obtained from
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the 4D Nucleome portal43.

Evaluation metrics

We considered both K-means clustering with and without low-dimensional projections with
t-SNE and UMAP, and Louvain graph clustering26, with known numbers of clusters, to identify
cell types. Application without t-SNE and UMAP involved applying K-means and Louvain
graph clustering on the vectorized cell by locus-pairs matrices (for CellScale, BandScale, and
BandNorm) or the method latent component embeddings. Applications with t-SNE and UMAP
low-dimensional projections first leveraged PCA to reduce the dimensions of the vectorized cell
by locus-pairs matrices or method latent component embeddings to the top 50 principal compo-
nents before applying t-SNE and UMAP to generate low-dimensional embeddings. We quanti-
fied the resulting clustering performances with adjusted rand index (ARI)44 which measures the
similarity between two data clusterings, i.e., true underlying cell types and the estimated clus-
tering, adjusted for chance similarity. We also evaluated average silhouette scores45 to measure
the separation between known cell types in the t-SNE and UMAP visualizations. Collectively,
these led to six evaluation settings (Fig. 1C).

Implementation details

scHiCluster. We customized the scHiCluster script from https://github.com/

zhoujt1994/scHiCluster to accelerate the data loading procedure before running scHi-
Cluster. The restart probability was set to 0.5 and the binarization percentile to 0.8. Following
the scHiCluster application15, we chose the top 50 principal components for each chromosome,
concatenated them, and applied another round of PCA to generate the top 50 principal compo-
nents as the resulting low-dimensional embedding.

scHiC Topic. Following the pre-filtering guidelines from scHiC Topics14 (https://
github.com/khj3017/schic-topic-model), only locus-pairs within 10Mb of each
other were utilized for cell type separation. To determine the optimal topic number based on
the silhouette score as suggested in the method paper14, we set the lowest topic number to be
10 and the highest to be 90 with increments of 5. The final optimal number of topics selected
for Ramani2017, Li2019 and Kim2020 are 35, and 60 for Lee2019, respectively.

Higashi. All the parameters were set to defaults suggested by the Higashi pipeline (https:
//github.com/ma-compbio/Higashi) with the exception of neighbor num

which we set to 3, using the release version in January 2021 with commit ID
4f2ce9db4967f264042f052c38577f36d9f53681. We compared the performance of Higashi us-
ing GPU to only using CPU, therefore the cpu num was set to 23 and gpu num was set to 1
or 0 accordingly.

BandScale+CNN. The CNN was implemented with some modifications to the CNN
Variational Autoencoder module of Pytorch (https://github.com/sksq96/
pytorch-vae). Both the encoder and decoder are symmetric and contain two layers.
The latent vector z was set to have 20 dimensions and kernel size parameter to 4.
Furthermore, bias was set to False and stride was set to 2 for all the layers. The minimal
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iteration parameter was set to 90 with a batch size of 10. The learning rate for the Adam
algorithm was set to 1e-3.

3DVI. The implementation of 3DVI on each band was based on the scVI-tools17 (https:
//github.com/YosefLab/scvi-tools), where we used the default parameters and set
the latent variable dimension to 100. We filtered cells that have no interaction for all the locus-
pairs in each band matrix. When concatenating the latent embeddings across band matrices,
the latent value for the missing cells was filled with zero.

SVA. We first divided the obtained matrix by its minimum value to get a non-negative matrix
and then use the ComBat seq function in R package sva to do batch removal.

Seurat. We constructed the ScaleData and utilized vars.to.regress function in R package Seurat

to regress out the batch effect.

Harmony. Use HarmonyMatrix function in R package harmony with do pca = FALSE to
remove the batch of the matrix.

diffHic. Differential chromatin interaction detection requires at least two replicate per condi-
tion. For differential detection between two aggregated scHi-C cell types, we randomly parti-
tion the cells with the same cell label into two groups, with each forming a pseudo-replicate.
Differential detection is implemented using R package diffHic.

Evaluation metrics. K-means replied on the kmeans function of stats R package using
the default Hartigan-Wong algorithm. nstart was set to 20 and iter.max to 1000.
Louvain graph clustering was carried out based on FindNeighbors and FindClusters
functions in Seurat R package. Silhouette coefficients were obtained using silhouette
function from cluster R package.

De-noising performances with aggregated scHi-C data using cell labels from unsuper-

vised clustering We repeated the assessment of the impact of the normalization and de-noising
methods on the downstream analysis using the cell type labels inferred from clustering in ag-
gregating the scHi-C contact matrices. This ensured a more unbiased assessment of the overall
effect of the analysis methods without relying on true cell type labels (Supplementary Fig. 19).
K-means clustering of the UMAP embeddings of the Kim2020 dataset resulted in four clusters
which we labeled as GM12878, H1ESC, HAP1, and HFF cell type (Supplementary Fig. 19A).
Concordant with the results that relied on true cell labels, detection of A/B compartments and
topologically associating domains (TADs), contact matrix similarity, detection of interacting
locus-pairs yield the advantages of BandNorm followed by 3DVI (Supplementary Fig. 19B-
E). Similarly, comparison with respect to the differentially interacting locus-pairs resulted in
similar performances across the methods (Supplementary Fig. 19F-G).

Code availability

R package, BandNorm, together with the curated scHi-C datasets are available at https:
//github.com/keleslab/BandNorm. 3DVI pipeline is implemented in Python in a
way that allows parallelization in high-performance computing environments with source codes
and instructions available at https://github.com/keleslab/3DVI.
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