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Abstract Temporal principal component analysis (t-PCA) has been widely
used to extract event-related potentials (ERPs) at the group level of multi-
ple subjects’ ERP data. The t-PCA is, however, poorly employed to isolate
ERPs from single-trial data of an individual subject. Additionally, the effects
of varied trial numbers on the yields of t-PCA have not been systematically
examined. To fill both gaps, in an emotional experiment (22 subjects), we
use t-PCA and Promax rotation to extract interesting P2/N2 from single-trial
data of each subject with consecutive increasingly trial numbers (from 10 to
42) and all trials, respectively. Besides, time-domain analysis and other two

Guanghui Zhang
School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engi-
neering, Dalian University of Technology, 116024, Dalian, China
Faculty of Information Technology, University of Jyväskylä, 40100, Jyväskylä, Finland
E-mail: zhang.guanghui@foxmail.com (Corresponding Author)

Xueyan Li
School of Foreign Languages, Dalian University of Technology, 116024, Dalian, China

Yingzhi Lu
School of Psychology, Shanghai University of Sport, 200438, Shanghai, China

Timo Tiihonen
Faculty of Information Technology, University of Jyväskylä, 40100, Jyväskylä, Finland

Zheng Chang
Faculty of Information Technology, University of Jyväskylä, 40100, Jyväskylä, Finland

Fengyu Cong
School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engi-
neering, Dalian University of Technology, 116024, Dalian, China
Faculty of Information Technology, University of Jyväskylä, 40100, Jyväskylä, Finland
E-mail: cong@dlut.edu.cn (Corresponding Author)

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.03.10.434892doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.10.434892
http://creativecommons.org/licenses/by-nc/4.0/


2 Guanghui Zhang et al.

group t-PCA strategies (trial-averaged and single-trial) are also employed to
isolate ERPs of interest from all subjects. The results indicate that the pro-
posed technique produces the internal consistent measure of N2 from few trials
(i.e., 19) as from all trials compared with the other three approaches (more
than 30 trials). As for P2, all approaches yield internal-subject consistent ef-
fect after approximately 33 trials are included in the average, but Cronbach’s
alpha values for the proposed technique are higher than the other two group
PCA strategies over varied trials. Combined, the yields provide evidence that
the proposed approach may efficiently temporally filter the data to extract
more reliable and stable ERPs for an individual subject.

Keywords Event-related potentials · Principal component analysis ·
Single-trial analysis · Individual subject analysis

1 Introduction

Event-related potentials (ERPs) have been widely used to investigate brain
cognitive processes in many fields, such as language, neuroscience, physiology,
psychology, and so forth (Luck, 2014). Traditionally, ERPs are obtained by
averaging tens or hundreds of single-trial EEG data under same experimental
condition, improving signal-to noise ratio (SNR) of ERPs (Luck, 2014; Handy,
2005). SNR of ERPs is proportiona to the square root of trial numbers N, i.e.,
SNR ∼

√
N (Luck, 2014). More trials not only insignificantly improve SNR,

but also making participants feel more fatigued that has a side effect on the
task execution and enhances other signals of non-interest (e.g., alpha band).
Therefore, it is critical and necessary to keep balance between data quality and
experimental time by optimizing the trial numbers involved in experiments.

Many previous studies have gave data-driven evidence and guideline on how
many trial numbers should be contained in some frequently used ERP experi-
mental paradigms. Several typical ERP components have been investigated in
these studies, for example, N2, P3, N1, P1, P2, error-related negativity (ERN),
Late positive potential (LPP), N170, and error positivity (Pe) (Clayson, 2020;
Larson et al., 2010; Huffmeijer et al., 2014; Pontifex et al., 2010; Olvet and Ha-
jcak, 2009; Fischer et al., 2017; Thigpen et al., 2017; Cohen and Polich, 1997;
Rietdijk et al., 2014; Kleene et al., 2021; Clayson and Larson, 2013). Most
of these studies have quantified how to use minimum trial numbers to obtain
the stable and reliable measures of ERPs of interest based on their original
waveforms, etc. By contrast, the examination of the trial numbers influence
on the decomposition of temporal principal component analysis (t-PCA) is
poorly reported in past studies.

Regarding t-PCA application, two strategies are frequently used to extract
ERPs of interest from all subjects’ datasets at the group level. In the first
strategy, the pre-processed single-trial EEG data are initially averaged under
the same condition and then the averaged datasets of all subjects are concate-
nated across channels, conditions, and subjects to form a matrix. The size of
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the matrix is time samples multiply by the combinations of electrodes, condi-
tions, and subjects. Afterward, t-PCA and rotation method are performed on
the matrix to extract factors 1 associated with ERPs of interest. In other words,
this strategy is group t-PCA analysis for the averaged ERP datasets (Fogarty
et al., 2020; Male and Gouldthorp, 2020; Bonmassar et al., 2020; Dien, 2012,
1998; Dien et al., 2007; Kayser and Tenke, 2003, 2006a,b). In the second strat-
egy, ERPs of interest are extrcted from the matrix formed by single-trial EEG
datasets of all subjects under all experimental conditions. Here, time samples
are variables, the combinations of channels, conditions, trials, and subjects are
observations. The related decomposition is named single-trial t-PCA analysis
at the group level (Rushby and Barry, 2009; MacDonald and Barry, 2017;
MacDonald et al., 2015; Rushby et al., 2005).

Noticeably, two things need to notice for both group t-PCA strategies.
On the one hand, the core ideas of the two strategies are high similar that
ERPs of interest are extracted from datasets of all subjects. If all the fac-
tors decomposed from the same ERP are projected to electrode fields (i.e.,
in microvolts) and single-trial EEG data are averaged before or after PCA
decomposition, we might obtain a significant similar result of both strategies
because PCA is a linear decomposition (Wold et al., 1987; Comon and Jut-
ten, 2010). In the above, a certain estimated number of sources should also
be used for both strategies. The further comparison and discussion between
the two group t-PCA strategies can be found in the results. On the other
hand, both group t-PCA strategies follow the same assumption (i.e., blind
source separation, BSS) (Cong et al., 2011a,b; Makeig et al., 1997, 1999): Z =
am,1 ·s1(t)+ · · ·+am,r ·sr(t)+ · · ·+am,R ·sR(t) = AS. Z is a spatially concate-
nated matrix from either trial-averaged or single-trial datasets of all subjects
under different conditions; the rows of Z are time samples and the multiplica-
tions of the others (e.g., subjects, channles, conditions, etc.) are in columns.
sr(t) represents stimulus-locked, spontaneous, or noise sources. am,r is coeffi-
cient between mth electrode and rth source. We consider that the sources are
invariant over all subejcts, that is, Sr = S(1)r = · · · = S(p)r = · · · = S(P )r (r
is the source sequence and P is the number of subjects). However, not all the
sources in brain cortex for different subjects are the same even they respond to
the same stimuli under the same environment because brain functions among
people are differ a bit. This gives us motivation to explore the intersting ERPs
from single subject’s EEG data.

In order to explore P2/N2 from single-trial EEG data of individual subject
and investigate the effect of the increasing trials on t-PCA yields in an amo-
tional ERP experiment, the following steps are involved (see Fig. 1). Firstly,
the datasets of consecutive increasingly trials (i.e., from 10 to 40) are stacked
along electrodes (i.e., spatial) of different conditions to form a matrix for single-
trial EEG of an individual subject. Secondly, t-PCA and Promax rotation are
employed to decompose the matrices separately. Next, the factors associated

1 factor is used here to represent PCA-extracted component by PCA + rotation method,
which is to avoid for confusion with ERP component.
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with ERPs of interest for each subject are chosen and projected to the elec-
trode fields (i.e., in microvolts). After that, the back projections of single trials
are averaged separately under each experimental condition for each subject.
Finally, the mean amplitudes of the desired ERPs are quantified within a pre-
defined time-window at some electrodes. Meanwhile, we also separately calcu-
late the similarities of topographies between different subjects for varied trial
numbers to evalute the internal consistent of P2/N2. The statistical results for
increased trials and related similarities are compared with these of all trials.
Besides, we also measure the correlation cofficients (CCs) of P2/N2 between
the averages of smaller trials (from 10 to 42) and the grand average (all trials),
and compute the Cronbach’s alpha for the increased trials.

Furthermore, conventional time-domain analysis and two group PCA strate-
gies as mentioned-above are considered as comparison techniques, and they are
also applied to the analysis of the same pre-processed EEG datasets for in-
creasing trials and all trials. The pre-processed EEG datasets and codes used
in this study are available from: http://zhangg.net/publications/.

2 Data description and method

In this section, we first briefly describe the ERP experiment, which are rean-
alyzed here and has been published (Lu et al., 2016). Afterward, the model
and procedures of PCA are introduced.

2.1 Paticipants

A total of 22 healthy undergraduate students come from Shanghai University of
Sport participate in the study as paid volunteers. This experiment is approved
by the local ethics committee and all participants sign their written informed
consent before the experiment. The age of paticipants is 22.05 ± 1.53 years
old (range: 20 to 24), including 10 males and 12 females.

2.2 Task

Participants are required to respond to different emotional pictures in a modi-
fied oddball distinction task. The task in each trial starts with a black fixation
(fixed time is 300 ms) in the center of the white computer screen. In the follow-
ing, a blank white screen is displayed with a random time-window between 500
ms and 1500ms. Afterward, the stimuli are displayed to participants. Stimuli
will be disappeared after 1000ms or terminated by participants who press a
key (’J’ for the deviant pictures and ’F’ for standard ones). Another blank
screen with 1000ms will follow the response before start next trial.

Six blocks are included in the experiment. 100 trials are contained in each
block that comprises of 70 standard stimuli and 30 deviant stimuli. A nat-
ural scene of a chair is used for standard stimulus. Deviant stimuli include
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10 moderately/extremely disgusting pictures, 10 moderately/extremely fear-
ful pictures, and 10 neutral pictures, separately.

2.3 EEG recording and preprocessing

Nineteen electrodes (F3, FC3, C3, CP3, P3, Fz, FCz, Cz, CPz, Pz, F4, FC4,
C4, CP4, P4, TP9, TP10, VEOG, and HEOG) are used to record EEG based
on the international 10-20 system with 1000 Hz sampling rate. EEG recordings
are referenced at FCz (Brain Products GmbH, Germany). All impedances are
less than 5 kΩ for each sensor of each subject.

The collected EEG data are pre-processed offline. Firstly, the left and right
mastoids are set to offline references, and the sampling rate is set to 500Hz.
Secondly, EEG data are filtered by an infinite impulse response (IIR) band-pass
filter: lower cut-off is 0.1 Hz, higher cut-off is 30 Hz, and slope: 48 dB/oct. Next,
the filtered EEG data are segmented from 200 ms before stimulus onset to 900
ms after stimulus onset. Those epochs’ datasets whose magnitudes exceeded
±80 µV are discarded and the remaining epochs are baseline corrected. Finally,
EEG data of all epochs are filtered by wavelet filter (Cong et al., 2015; Zhang
et al., 2020) to improve signal-to-noise ratio (SNR). The parameters are set
for wavelet filter as below: the number of decomposition level iss 10; the select
mother wavelet is ‘rbio6.8’; the detail coefficients at levels 5, 6, 7, 8, and 9 are
used for signal reconstruction. The preprocessed EEG data of 20 subjects are
involved in analyzing N2 and 17 subjects for P2. It should be noted that two
stimuli for the neutral condition (i.e., neural disgusting and neural fearful) are
merged to one in previous study (Lu et al., 2016).

The details for data collection and experiment can be found in (Lu et al.,
2016).

2.4 Mathematical model and procedures for principal component analysis

In this subsection, we introduce the model for PCA and procedures for the
application of PCA to ERP/EEG datasets.

2.4.1 Mathematical model for principal component analysis

The application of PCA to a spatial-stacked matrix Z (the rows are time points
and the channels from each condition/subject/trial (optional) are in columns)
obtained from EEG/ERP dataset of either single subject or multiple subjects
can be illustrated (Zhang et al., 2020; Cong et al., 2011a,b; Makeig et al., 1997,
1999):

Z = am,1 · s1(t) + · · ·+ am,r · sr(t) + · · ·+ am,R · sR(t) = AS. (1)

In Eq. 1, the number of observed signals is larger than that of sources, i.e.,
it is an over-determined model, and we usually change this over-determined
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model to determined model by some methods, for example, the accumulative
explained variance (Cong et al., 2011a,b; Zhang et al., 2020).

X = VTZ = VTAS = HS, (2)

where VT is the dimensionality reduction matrix obtained by applying some
PCA algorithms to matrix ZT and H is a mixing matrix.

In applications of PCA, we seek an un-mixing matrix W by using some ro-
tation algorithms, such as Promax, Varimax rotations, and so forth (Richman,
1986; Hendrickson and White, 1964; Kaiser, 1958). Once the un-mixing matrix
is generated, its inverse matrix B = W−1 is used to estimate H. And we can
also use the unmixing matrix W to convert X into an estimated component
matrix:

Y = WX = WHS, (3)

here, each row of the estimate matrix Y represents topography of each source
(i.e., rotated factor scores); C = WH is a global matrix.

Generally, we need to choose several factors derived from X for further
analysis (Comon and Jutten, 2010), and thus, the theory of back-projection is
used to analyze these factors simultaneously as applied in the previous studies
(Dien, 1998; Cong et al., 2011a,b; Makeig et al., 1997, 1999). In the matrix-
vector form, the back-projection is the outer product of kth column of B with
kth row of estimated factor matrix Y:

Qk = bk ◦ yk, (4)

where Qk represents the back-projected signals at all the electrodes for kth

selected factor; ‘◦’ denotes the outer product of two vectors.
Under global optimization, only one nonzero element exists in each row

and each column of matrix C so that the extracted kth factor can uniquely
represent jth unknown scaled source (Cong et al., 2011a,b):

Qk = bk ◦ yk = hj ◦ sj . (5)

Regarding the original over-determined model in Eq. 1, kth factor generated
from Z is selected to project back to electrode fields and this procedure can
be described as below:

Ẑk = uk ◦ yk, (6)

U = VB, (7)

where U is the estimation of A and its each column demotes time course for
kth factor (i.e., the kth rotated factor loading).

In the application of PCA, a desired ERP is often decomposed into sev-
eral factors because the latencies of the ERP vary among different subjects.
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Therefore, those factors need to be projected back to the electrode fields si-
multaneously based on the following rule (Cong et al., 2011a,b; Zhang et al.,
2020):

Ẑ =

[
uk1

, · · · ,ukr

][
yk1

, · · · ,ykr

]T
= uk1

◦ yk1
+ · · ·+ ukr

◦ ykr
,

(8)

where k1, · · · , and kr (1 ≤ kr < R) represent the orders of the identified
factors.

2.4.2 Principal component analysis procedures

To better extract ERPs of interest from preprocessed ERP/EEG datasets by
using PCA and Promax rotation for further analysis, the following steps are
involved: arrange pre-processed ERP/EEG datasets into a matrix, estimate
the number of sources, select an optimal rotation method, identify factors of
interest, and project the identified factors to electrode fields (i.e., in micro-
volts). Here, trial-averaged data are taken as an example to explain the PCA
procedure on the extractions of ERPs.

The first step is to arrange ERP datasets into a matrix. The recorded
EEG datasets are born with space and time dimensions, and thus, for multi-
condition and multi-subject trial-averaged datasets, two types of matrices can
be organized (Dien, 2012; Dien et al., 2007, 2005). For the first type of ma-
trix, it is formed by concatenating multi-condition and multi-subject datasets
over electrodes, that is, time points are variables and the combinations of elec-
trodes and subjects-conditions are observations. The related PCA procedure is
named as ‘t-PCA’. For the second type of matrix, electrodes are variables and
the other variances (i.e., time points and subjects-conditions) are merged as
observations. Likewise, we call the performance of PCA on this type of matrix
as ‘s-PCA’. In this study, the former type is formed based on the following rea-
sons. For one thing, regarding the performance of t-PCA and s-PCA, t-PCA
can yield overall better results than s-PCA (Dien, 1998, 2012). For another
thing, the desired ERP is easily mixed with others in the spatial domain to
some degree due to the volume conduction (Dien, 2012).

The second step is to estimate the number of sources. The purpose of this
step is to transform the over-determined model in Eq. 1 into the determined
model in Eq. 2. Several approaches have been developed to realize this goal,
such as Parallel Test (Horn, 1965; Dien, 2010a), gap measure (He et al., 2010;
Cong et al., 2013), and cumulative explained variance (Zhang et al., 2020;
Huster and Raud, 2018; Arbel et al., 2013). Here, we use the last approach to
estimate the number of sources and this approach is to calculate the percentage
between the sums of first R lambda values (one lambda corresponds to one
factor) over the sums of all lambda values:

L =

∑R
r=1 λr∑N
n=1 λn

× 100%, (9)
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where R is the estimated source number; N is the number of variables/time
points here (N ≥ R); The lambda values are in descending order: λ1 ≥ · · · ≥
λn = · · · = λN = σ2. Once L is given with a specific value, for example, 95%,
99%, and so on, the corresponded number of sources can be then obtained.

The third step is to select an optimal rotation method. The goal of rotation
is to rearrange the factors into simple and interpretable structures so that
one factor corresponds to one ERP (Dien, 2012). Some rotation methods,
such as Promax, Varimax, and Infomax, can be utilized. The results of actual
and stimulated ERP datasets indicated that Promax rotation showed more
accurate results than Varimax rotation (Dien et al., 2005; Dien, 1998; Dien
et al., 2003). And, simulation ERP studies revealed that Promax generated
overall better results for t-PCA, and Infomax yields better separation for s-
PCA (Dien et al., 2007; Dien, 2010b).

The fourth step is to identify factors of interest. Although some pre-processing
steps are utilized to improve SNR of ERP/EEG signals, that is, some artefacts
are removed, like DC offset, slow drift of sensors, eye movement, line noise, and
muscle contraction (Jung et al., 2000; Delorme et al., 2007; de Cheveigné and
Nelken, 2019; de Cheveigné, 2020; Sai et al., 2017), the preprocessed data still
contain spontaneous EEG brain activities, ERP components of non-interest,
ERP components of interest, and noise activities. Therefore, we need to iden-
tify those factors associated with ERPs of interest for further analysis. Gen-
erally, the identification of desired factors is based on the two aspects (Dien,
2012; Barry et al., 2020; Zhang et al., 2020): (1) the polarity and latency
of temporal factor; (2) the polarity and topographical distribution of spatial
factor.

The fifth step is to project the identified factors back to the electrode fields
(i.e., rescale them to microvolts). When performing PCA on an ERP dataset of
multiple subjects, an ERP of interest may be decomposed into several factors
because the differences are found in latencies or phases of this ERP across
different subjects to some degree. Therefore, all of the decomposed factors
related to this ERP of interest should be back-projected onto electrode fields
(Dien, 2012, 1998; Zhang et al., 2020).

3 Data analysis

In the current study, ERPs of interest, i.e., P2 and N2, are reanalyzed, which
have been reported in (Lu et al., 2016). For the proposed technique and other
three alternative approaches, the two ERPs are separately quantified from all
trials and consecutive increasing trials (i.e., 10, 11, · · · , 41, and 42 trials).
Notably, 10 is applied to ensure the number of observations is larger than that
of variables when using PCA. 42 is used to the upper number because it is the
minimum trial number for different subjects under all conditions.

In the following, we detail how to use the four techniques to extract P2/N2
from either all trials or increased trial numbers.
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3.1 Method 1 (’M1’): Proposed technique

In order to better identify the factor(s) extracted from pre-processed EEG
dataset of single subject by utilizing t-PCA and Promax rotation, a time-
window is set for P2 (130-190 ms) and N2 (190-310 ms) separately.

The following steps are taken when using proposed approach to extract
P2/N2 from the pre-processed EEG dataset for each subject.

(1) Single-trial EEG dataset of ith subject is arranged into a matrix Z(i)

with size of T × (C × (Ei,1 + · · · + Ei,J)), T is the number of time points, C
is the number of electrodes, and Ei,j is the number of trials for jth condition
(j = 1, · · · , J − 1, and J). Noticeably, for the analysis of all trials, Ei,1, · · · ,
Ei,J−1, and Ei,J may be variant. As for the analysis of adding trial numbers,
they are the same that are equal to 10, 11, · · · , 41, and 42, separately.

(2) T factors are extracted by performing PCA on the matrix (Z(i))
T

and
then R(i) factors are retained and rotated in Matlab environment (Version
2018b, the Mathworks, Inc., Natick, MA; functions: pca.m and rotatefactors.m;
R(i) ≤ T ); Here, aiming at successfully separating ERPs of interest with oth-
ers, the number of retained factors is set to 40, which account for more than
99%, in both all trials and increased trials.

(3) These factors associated with P2/N2 are identified for the next proce-
dure according to following aspects. The first thing, the latency of rth temporal
factor u(i)

r fell in the predefined time window. The other one, topographic dis-
tribution of rth spatial factor y

(i)
r is in accordance with that of P2/N2.

(4) The identified factors are projected onto electrode fields for correct-
ing their variance and polarity indeterminacies and reconstruct a new matrix
Z(i) = u

(i)
k1

◦y(i)
k1

+· · ·+u
(i)
kr

◦y(i)
kr

. Single-trial EEG data are separately averaged
for each experimental condition.

(5) Repeating steps (1) - (4) until the single-trial EEG datasets of all
subjects are decomposed.

3.2 Method 2 (’M2’): Conventional time-domain analysis

For the all trials analysis, single-trial EEG data for each condition are averaged
to obtain the waveform of ERPs. Likewise, for the increased trials analysis,
EEG data are also averaged for different conditions when the trial number is
10, 11, · · · , 41, and 42, separately.

3.3 Method 3 (’M3’): Group PCA for trial-averaged ERP data

We use the same procedure in ’M1’ to quantify P2/N2 in this method but
a bit changes in steps 1 and 4. Specifically, in the step 1, the trial-averaged
ERP data for different subjects under different experimental conditions are
organized into a big-size matrix. The rows of Z are time points, and columns
are the multiplications of electrodes, conditions, and subjects. In the fourth
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step, we only project the selected factors onto electrode fields to reconstruct
the waveforms of P2 or N2.

3.4 Method 4 (’M4’): Group PCA for single-trial EEG data

The key discrimination between this method and M1 is that single-trial EEG
data of all subjects under all conditions are contacinated to form a matrix
instead from an individual subject in the step 1.

3.5 Statistical analysis

For the yields of the four approaches, we measure the mean amplitudes of
two ERPs at five electrodes (FC3, FCz, FC4, C3, Cz, and C4 electrodes). The
time window for P2 and N2 is separately 130-190 ms and 190-310 ms. We
use two-ways repeated measurement analysis of variance (rm-ANOVA) with
valence (extreme, moderate, and neutral) × negative-category (disgusting and
fearful) as within-subject factors to compute the statistical results of the mea-
sured mean amplitudes for all trials and increased trial numbers, separately.
Greenhous-Geisser method is used for correcting the number of degrees of
freedom.

Furthermore, the correponded internal consistency of P2/N2 for the four
used techniques is also evaluted by measuring the CCs between the averages
of smaller trial numbers and the grand averaged N2/P3 (i.e., all trials are
included). The Cronbach’s alpha of increased trial numbers is also computed
(Unacceptable: < 0.05; Poor: 0.5-0.6; Questionable: 0.6-0.7; Acceotable: 0.7-
0.8; Good: 0.8-0.9; Excellet: > 0.9). In addition, we also compute CCs of
topographies between any two different subjects to assess the intrasubject con-
sistency of ERPs. And then, we perform paired t-test on the CCs between M1
and any one of the other approaches to evalute the performance the proposed
technique (i.e., M1).

4 Results

4.1 Internal consistency of P2/N2

We use CCs to examine the relationships between smaller trial averages and
the P2/N2 grand average (see Fig. 2, (a) and (b)). We observe the excellent
CCs (>0.9) after 25 trial are contained in the average of P2 for M1 and 10
trials for the other three approaches. As for N2, the three PCA approaches
have higher CCs than M2 and there are no difference among the three PCA
strategies. These reveal that relative narrow ERP (i.e., P2) has a significant
effect on M1 than others, but N2 has little influence. The evidences clarify
that the yields of P2 are highly similar to grand average (all trials) after 25
trials for M1, 10 trials for both M3 and M4, and 12 trial for M2. Similarly,
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the equivalent measures as the grand average can be obtained after few trials
used for N2 when using the four approaches (10, 10, 10, and 14 trials).

We also compute the Cronbach’s alpha of P2 and N2 for the four ap-
proaches, respectively, when trials are added to the averages (see Fig. 2 (c)
and (d)). All of them have a growth trend. In order to invistigate excellet Cron-
bach’s alpha (>0.9) for P2, not less than 10 trials should be averaged when
using ’M1’ and ’M2’. The results of N2 indicate that all used approaches show
excellent Cronbach’s alphas for the varied numbers of trials. M1 has highest
values than other approaches, especially better than M2.

Noted that both CCs and Cronbach’s alpha of P2/N2 for the two group
PCA strategies (i.e., M3 and M4) are completely coincident.

4.2 Effect of trial numbers on the PCA factor numbers of P2/N2

Fig. 3 reveals that selected factor numbers may be differ over trials when using
M1 to decompose single-trial EEG data of the same individual. Likewise, when
the same trial number is used for individuals, the numbes of the extracted
factors associated with P2/N2 are also different.

Additionally, the change of trial numbers does not have effect on the num-
ber of the selected factors decomposed from waveforms of P2/N2 when using
two group PCA strategies. The selected-factors number for P2/N2 is 2/4, and
both M3 and M4 extract the same number of factors from P2/N2. By manually
checking the decomposed factors for increasing trials and all trial when using
both M3 and M4, we observe that the orders of the selected factors related to
P2/N2 may be varied across trials.

4.3 Trial numbers influence the statistical results of P2/N2

To evaluate the influences of varied trials on statistically analyzed results, we
apply two-ways rm-ANOVA to calculate the statistical results based on the
mean amplitudes of P2/N2 that are obtained from increased trial numbers
and all trials, separately (see Figs. 4 and 5).

Fig. 4 reveals the P2’s statistical results of the four used approaches, we
find that the main effects of Valence/Negative-category and their interaction
show decreased trends when more trials are added to the average. The changes
of all curves become slow down. These trends suggest that adding trials have a
little effect on the statistical results after a certain trial number, for example,
35 trials. In other words, we can obtain the equal results to these of all trials
after this certain trial number. For the four used techniques, we apply 34
(M1)/32(M2)/32(M3)/32(M4) trials to yield a comparable results as obtained
from all trials (see Tab. 1), respectively.

Similarly, in terms of N2 (Fig. 5), we also observe the downward trends
for both main effect of Valence/Negative-category and their interaction when
the number of trials is increasing. However, few trials for M1 (19) are used
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to produce the stable and equative results as all trials (see Tab. 2) for M1
compared with other three techniques (all of them are 33).

4.4 Correlation coefficients of topographies depend on the analyzed ERPs

We also assess the internal subject consistency of P2/N2 by measuring the
CCs of topographies (’spatial CCs’) between any two different subjects (see
Figs. 6 (a) and 7 (a)). Meanwhile, paired t-test is implemented to obtain
discriminations between M1 and any one of the other three approaches (see
Figs. 6 (b) and 7 (b)).

For P2 (see Fig. 6), both of M1 and M2 show higher spatial CCs than
other two approaches across trials. A significant difference between M1 and
M3 or M4 is not observed until more than 26 trials are involved in averages.
By contrast, spatial CCs of M2 are significant higher than these of M1 when
less than 26 trials are averaged. After 26 trials, although there is no difference
between M1 and M2, M1 has excellent values than M2 from 26 trials to 42
trials (also for all trials).

With regard to N2 (see Fig. 7), the mean spatial CC of M1 is higher than
that of the other three approaches. The paired t-test results indicate that the
spatial CCs of M1 can be significantly improved when 11, 12, 13, 14, 41, 42,
and all trials are used compared with other approaches.

Furthermore, the spatial CC of P2 (about 0.25) is lower than N2 (roughly
0.75) for all approaches, suggesting that N2 is more stable than P2 among
subjects. In should be also noted that spatial CCs/t-test of P2/N2 for M3 and
M4 are no difference across trials.

5 Conclusion and discussion

The current study investigates two issues by using a modified oddball emo-
tional experiment with two factors. On the one hand, we examine the influence
of trial numbers on the PCA decomposition of P2/N2, which is to obtain stable
and reliable ERPs from minimum trial number (i.e., 10, 11, · · · 41, and 42).
On the other hand, we study the discriminations among three PCA strategies/
convenitonal time-domain analysis for the same EEG data. In other words, we
employ PCA to extract ERPs of interest from an invidual subject or from all
subjects.

In order to realize both purposes, we compute the CCs of P2/N2 between
averages with few number of trials and the grand average (i.e., all trials) as
used in previous studies (Olvet and Hajcak, 2009; Thigpen et al., 2017; Cohen
and Polich, 1997; Rietdijk et al., 2014; Clayson and Larson, 2013). For CC,
an excellent yield of P2 can be produced for M2/M3/M4 when minimum trial
number is 10, but we only observe similar result for M1 after trial number
exceeds 25 trials. By contrast, we obtain the excellent CC of N2 after 10 trials
are included in average for three PCA strategies, and 14 trials used for M2.
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Also, we calculate the Cronbach’s alpha for increased trials (Olvet and
Hajcak, 2009; Kleene et al., 2021; Fischer et al., 2017; Rietdijk et al., 2014;
Clayson and Larson, 2013), and obtain the statistical analysis results for dif-
ferent trial numbers and all trials. Regarding Cronbach’s alpha, we obtain
excellent alpha values of P2 over all trial numbers for M1/M2 but not for both
group PCA strategies (M3 and M4) (see Fig. 2 (c)). As shown in Fig. 2 (d),
all alpha values of N2 for the four techniques reach excellent level when more
than 10 trials are used. In terms of the statistical results, Fig. 4 reveals that
stable and reproductive results of P2 for four used techniques can be obtained
after about 35 trials are applied to the average procedure. However, only 19
trials can be obtained the considerable result of N2 as all trials when using
M1, and approximately 33 trials for the other three techniques (see Fig. 5).

Additionally, the CCs of topographies (we following call it spatial CCs)
among different subjects are also used to assess the internal-subject consistent
of P2/N2 of interest and those are also used to measure the performances
of different techniques. In terms of an ERP, it is characterized by both a
specific time course and a specific topography. For example, in a typical oddball
paradigm, P3a can be elicited about 250-280ms at frontal-central sites (Polich,
2007; Comerchero and Polich, 1999). Generally, in an ERP experiment, ERPs
are often quantified from tens or hundreds of subjects, and thus, we expect
that brain activities related to stimulus onset can be observed from all subjects
so that the related experiment is reproducible and reliable. A reliable ERP
response means that higher CCs of topographies between any two different
subjects can be obtained. As shown in Fig. 6 (a) and (b), regarding P2, the
spatial CCs for the proposed technique are significantly higher than those of
the other two group strategies (M3 and M4) after the number of trials exceeds
25 but not for M2. Likewise, for N2, although there is no difference among four
techniques in most of trials, the spatial CC values of the proposed technique
are higher than others (see Fig. 7).

The main difference between the proposed technique (M1) and the con-
ventional time-domain analysis (M2) is that M1 explores both temporal and
spatial characteristics of P2/N2, but M2 only uses the temporal (i.e., ampli-
tude) property of P2/N2 and the obtained results are still mixtures. Moreover,
compared with the other two group PCA strategies (M3 and M4) in which
ERPs of interest are extracted from all subjects, the proposed technique ex-
plores the desired ERPs from the single-trial EEG of each subject. Traditional
group PCA strategies (M3 and M4) assume that the numbers and the orders
of sources are the same for all subjects (Dien, 2012), but M1 allows both pa-
rameters to be varied among subjects (see Fig. 3). Noticeably, the core ideas
of M3 and M4 are the same and PCA is a linear decomposition, and thus,
we believe that both PCA strategies are no difference when using the same
estimated source number. This hypothesis is also confirmed by the results of
the CC, Cronbach’s alpha, statistical analysis, and spatial CC (see Figs. 2, 4,
5, 6, and 7).

In summary, the results in the current study lead to the following four sug-
gestions: (1) ERPs of interest can be efficiently extracted from single subject
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by PCA decomposition rather than from the datasets of all subjects simul-
taneously (which is often used in PCA Toolkit (Dien, 2010a)). (2) The ERP
component that have higher spatial CC use few trial number to yield the highly
similar results to all trials compared with other ERPs with lower spatial CC.
For instance, 19 trials can obtain an internally consistent measure for N2 and
35 trials for P2 when using the proposed apporach. (3) ERP components that
have a wider time window are easily to be decomposed into more factors by
PCA than other that have a narrow time range. For example, N2 is decom-
posed into four factors by M3/M4 and P2 is decomposed into two factors (see
Fig. 3). (4) The yields of M3 which extracts ERPs from averaged ERP data of
all subjects are the same to the M4 that explores ERPs from single-trial EEG
at the group level. (5) The similarities of topographies among different sub-
jects can be used as both a criterion to evaluate the performance of the used
techniques and a method to judge whether the analysed ERPs are repeatable
and reliable or not.

Furthermore, there are some potential limitations to the present study.
Firstly, we only perform PCA on the spatial-stacked matrix (i.e., temporal-
PCA) to extract P2/N2 of interest in the current study. Although the pro-
posed technique produces much better overall results than those of all the
other techniques, this conclusion is not further validated in the applications of
spatial PCA. Secondly, the comparison of yields between PCA and ICA is not
included in this study. Many applications of ICA indicated that ERPs of inter-
est can also be efficiently extracted from both single-trial EEG and averaged
ERP datasets (Lee et al., 2016; Wessel, 2018; Cong et al., 2013; Rissling et al.,
2014). It is worth investigating the information of the desired ERP using ICA
from either average traces or single-trial traces. Thirdly, the identification of
PCA-extracted factors associated with the desired ERP seems to be a subjec-
tive way in this study, which is only taken its temporal and spatial properties
into consideration. As described in application of ICA on the single-trial EEG
of single subject (Rissling et al., 2014), we can also identify the PCA-extracted
factors related to ERPs of interest by using characteristics of the factor topog-
raphy, factor waveform, factor spectra, and factor dipoles. Lastly, we merely
invistigate the effects of trial numbers on the internal consistency of ERPs and
statistical results, the interactive effects between subjects and trials are not
further studied as in past report (Boudewyn et al., 2018) because few subjects
(i.e., 22) are invovled in current study.
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Exploring ERP from individual subject EEG using temporal-PCA
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Fig. 1 The illustration of the proposed technique. (a) The single-trial EEG for individual
subject are arranged into a matrix over channels (trial numbers of conditions 1, · · · , and J
are E1, · · · , and EJ , respectively; C is number of electrodes). (b) The matrix are decomposed
into sums of R components by using temporal-PCA and Promax rotation. (c) Projecting the
selected components back to electrode fields for building a new matrix. (d) Reconstructed
waveforms of single-trial EEG are averaged under each condition. (e)-(f) Calculating the
amplitudes of the desired ERP for different conditions within a defined time-window at
some specific electrodes.
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Fig. 2 Internal consistency analysis for P2/N2. (a) and (b): Correlation coefficients (CCs)
between P2/N2 averages of consecutive increased trials (i.e., 10, 11, · · · , 41, and 42) and all
trials. (c) and (b) are Cronbach’s alpha for adding trials. Electrodes are used for both P2
and N2 at FC3, FCz, FC4, C3, Cz, and C4. M1: Extraction of P2/N2 from single-trial EEG
data of an individual subject using temporal-PCA (t-PCA). M2: Conventional time-domain
analysis. M3: Group t-PCA for trial-averaged ERP data of all subjects. M4: Group t-PCA
for single-trial EEG data of all subjects.
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Fig. 3 The corresponded numbers of selected factors associated with P2/N2 for the in-
creasing trials and all trials when using three different PCA strategies. M1: Extraction of
P2/N2 from single-trial EEG data of an individual subject using temporal-PCA (t-PCA).
M3: Group t-PCA for trial-averaged ERP data of all subjects. M4: Group t-PCA for single-
trial EEG data of all subjects.
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Fig. 4 The statistical analysis results for P2 averages of increased trials and grand average
(i.e., all trials) when using four different techniques. Valence (V) × Negative-category (NC)
are the within-subject factors. V∗NC is the interactive effect between valence and negative-
category factors.
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Fig. 5 The statistical analysis results for N2 averages of increased trials (from 10 to 42)
and grand average (i.e., all trials) when using four different techniques. Valence (V) and
Negative-category (NC) are the within-subject factors. V∗NC means the interactive effect
between valence and negative-category factos.
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Fig. 6 (a) The correlation coefficients (CCs) of P2’s topographies between any two different
subjects for adding trial numbers and all trials. (b) Paired t-test of CCs between M1 and
any one of the other three methods.
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Fig. 7 (a) The correlation coefficients (CCs) of N2’s topographies between any two different
subjects for increasingly trial numbers and all trials. (b) Paired t-test of CCs between M1
and any one of the other three alternative methods.
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Table 1 The statistical results of P2 (130-190ms) for four used techniques when all trials
are averaged.

Methods V NC V ∗ NC

F(2,15) η2
p p F(1,16) η2

p p F(2,15) η2
p p

M1 2.387 0.130 0.108 17.868 0.528 0.001 7.245 0.312 0.004
M2 3.079 0.161 0.060 19.392 0.548 < 0.001 10.355 0.393 < 0.001
M3 1.752 0.099 0.190 21.303 0.571 < 0.001 10.484 0.396 0.001
M4 1.752 0.099 0.190 21.303 0.571 < 0.001 10.484 0.396 0.001

Valence (V) and Negative-category (NC) are the within-subject factors. M1: Extraction of P2
from single-trial EEG data of an individual subject using temporal-PCA (t-PCA). M3: Group
t-PCA for trial-averaged ERP data of all subjects. M4: Group t-PCA for single-trial EEG data
of all subjects.

Table 2 The statistical results of N2 (190-310ms) for four used techniques when all trials
are averaged.

Methods V NC V ∗ NC

F(2,18) η2
p p F(1,19) η2

p p F(2,18) η2
p p

M1 24.397 0.562 < 0.001 0.746 0.038 0.399 5.553 0.226 0.010
M2 27.431 0.591 < 0.001 0.415 0.021 0.527 5.081 0.211 0.012
M3 27.455 0.591 < 0.001 0.452 0.023 0.510 5.198 0.215 0.011
M4 27.455 0.591 < 0.001 0.452 0.023 0.510 5.198 0.215 0.011

Valence (V) and Negative-category (NC) are the within-subject factors. M1: Extraction of N2
from single-trial EEG data of an individual subject using temporal-PCA (t-PCA). M3: Group
t-PCA for trial-averaged ERP data of all subjects. M4: Group t-PCA for single-trial EEG data
of all subjects.
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