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Abstract Neuronal activity correlations are key to understanding how populations of neurons12

collectively encode information. While two-photon calcium imaging has created a unique13

opportunity to record the activity of large populations of neurons, existing methods for inferring14

correlations from these data face several challenges. First, the observations of spiking activity15

produced by two-photon imaging are temporally blurred and noisy. Secondly, even if the spiking16

data were perfectly recovered via deconvolution, inferring network-level features from binary17

spiking data is a challenging task due to the non-linear relation of neuronal spiking to endogenous18

and exogenous inputs. In this work, we propose a methodology to explicitly model and directly19

estimate signal and noise correlations from two-photon fluorescence observations, without20

requiring intermediate spike deconvolution. We provide theoretical guarantees on the21

performance of the proposed estimator and demonstrate its utility through applications to22

simulated and experimentally recorded data from the mouse auditory cortex.23

24

Introduction25

Neuronal activity correlations are essential in understanding how populations of neurons encode26

information. Correlations provide insights into the functional architecture and computations carried27

out by neuronal networks (Abbott and Dayan, 1999; Averbeck et al., 2006; Cohen and Kohn, 2011;28

Hansen et al., 2012; Kohn et al., 2016; Kohn and Smith, 2005; Lyamzin et al., 2015; Montijn et al.,29

2014; Smith and Sommer, 2013; Sompolinsky et al., 2001; Yatsenko et al., 2015). Neuronal activity30

correlations are often categorized in two groups: signal correlations and noise correlations (Cohen31

and Kohn, 2011; Cohen andMaunsell, 2009;Gawne and Richmond, 1993; Josić et al., 2009; Lyamzin32

et al., 2015; Vinci et al., 2016). Given two neurons, signal correlation quantifies the similarity of33

neural responses that are time-locked to a repeated stimulus across trials, whereas noise correlation34

quantifies the stimulus-independent trial-to-trial variability shared by neural responses that are35

believed to arise from common latent inputs.36

Two-photon calcium imaging has become increasingly popular in recent years to record in vivo37

neural activity simultaneously from hundreds of neurons (Ahrens et al., 2013; Romano et al., 2017;38

Stosiek et al., 2003; Svoboda and Yasuda, 2006). This technology takes advantage of intracellular39
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calcium flux mostly arising from spiking activity and captures calcium signaling in neurons in living40

animals using fluorescence microscopy. The observed fluorescence traces of calcium concentra-41

tions, however, are indirectly related to neuronal spiking activity. Extracting spiking activity from42

fluorescence traces is a challenging signal deconvolution problem, and has been the focus of active43

research (Deneux et al., 2016; Friedrich et al., 2017; Grewe et al., 2010; Jewell et al., 2020; Jew-44

ell and Witten, 2018; Kazemipour et al., 2018; Pachitariu et al., 2018; Pnevmatikakis et al., 2016;45

Stringer and Pachitariu, 2019; Theis et al., 2016; Vogelstein et al., 2010, 2009).46

The most commonly used approach to infer signal and noise correlations from two-photon47

data is to directly apply the classical definitions of correlations for firing rates (Lyamzin et al.,48

2015), to fluorescence traces (De Vico Fallani et al., 2015; Francis et al., 2018; Rothschild et al.,49

2010;Winkowski and Kanold, 2013). However, it is well known that fluorescence observations are50

noisy and blurred surrogates of spiking activity, because of dependence on observation noise,51

calcium dynamics and the temporal properties of calcium indicators. Due to temporal blurring,52

the resulting signal and noise correlation estimates are highly biased. An alternative approach53

is to carry out the inference in a two-stage fashion: first, infer spikes using a deconvolution54

technique, and then compute firing rates and evaluate the correlations (Kerlin et al., 2019; Najafi55

et al., 2020; Ramesh et al., 2018; Soudry et al., 2015; Yatsenko et al., 2015). These two-stage56

estimates are highly sensitive to the accuracy of spike deconvolution, and require high temporal57

resolution and signal-to-noise ratios (Lütcke et al., 2013; Pachitariu et al., 2018). Furthermore,58

these deconvolution techniques are biased towards obtaining accurate first-order statistics (i.e.,59

spike timings) via spatiotemporal priors, which may be detrimental to recovering second-order60

statistics (i.e., correlations). Finally, both approaches also undermine the non-linear dynamics of61

spiking activity as governed by stimuli, past activity and other latent processes (Truccolo et al.,62

2005). There are a few existing studies that aim at improving estimation of neuronal correlations,63

but they either do not consider signal correlations (Rupasinghe and Babadi, 2020; Yatsenko et al.,64

2015), or aim at estimating surrogates of correlations from spikes such as the connectivity/coupling65

matrix (Aitchison et al., 2017;Mishchenko et al., 2011; Soudry et al., 2015; Keeley et al., 2020).66

Here, we propose a methodology to directly estimate both signal and noise correlations from67

two-photon imaging observations, without requiring an intermediate step of spike deconvolution.68

We pose the problem under the commonly used experimental paradigm in which neuronal activity69

is recorded during trials of a repeated stimulus. We avoid the need to perform spike deconvolution70

by integrating techniques from point processes and state-space modeling that explicitly relate the71

signal and noise correlations to the observed fluorescence traces in a multi-tier model. Thus, we72

cast signal and noise correlations within a parameter estimation setting. To solve the resulting73

estimation problem in an efficient fashion, we develop a solution method based on variational74

inference (Jordan et al., 1999; Blei et al., 2017), by combining techniques from Pólya-Gamma75

augmentation (Polson et al., 2013) and compressible state-space estimation (Rauch et al., 1965;76

Kazemipour et al., 2018; Ba et al., 2014). We also provide theoretical guarantees on the bias and77

variance performance of the resulting estimator.78

We demonstrate the utility of our proposed estimation framework through application to79

simulated and real data from the mouse auditory cortex during presentations of tones and acoustic80

noise. Our results corroborate existing hypotheses regarding the invariance of the noise correlation81

structure under spontaneous activity and stimulus-driven conditions, and its distinction from82

the signal correlation structure in the stimulus-driven condition (Keeley et al., 2020; Rumyantsev83

et al., 2020; Bartolo et al., 2020). Furthermore, while application of our proposed method to spatial84

analysis of signal and noise correlations in themouse auditory cortex is consistent with existing work85

(Winkowski and Kanold, 2013), it reveals novel and distinct spatial trends in the correlation structure86

of layers 2/3 and 4. In summary, our method improves on existing work by: 1) joint estimation of87

signal and noise correlations directly from two-photon fluorescence observations without requiring88

intermediate spike deconvolution, 2) providing theoretical guarantees on the performance of the89

proposed estimator, and 3) gaining access to closed-form posterior approximations, with low-90
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complexity and iterative update rules and minimal dependence on training data. Our proposed91

method can thus be used as a robust and scalable alternative to existing approaches for extracting92

signal and noise correlations from two-photon imaging data.93

Results94

In this section we first demonstrate the utility of our proposed estimation framework through95

simulation studies as well as applications on experimentally-recorded data from the mouse auditory96

cortex. Then, we present theoretical performance bounds on the proposed estimator. Before97

presenting the results, we will give an overview of the proposed signal and noise correlation98

inference framework, and outline our contributions and their relationship to existing work. For the99

ease of reproducibility, we have archived a MATLAB implementation of our proposed method in100

GitHub (Rupasinghe, 2020), and have deposited the data used in this work in the Digital Repository101

at the University of Maryland (Rupasinghe et al., 2021).102

Signal and Noise correlations103

We consider a canonical experimental setting in which the same external stimulus, denoted by st,104

is repeatedly presented across L independent trials and the spiking activity of a population of N105

neurons are indirectly measured using two-photon calcium fluorescence imaging. Figure 1 (forward106

arrow) shows the generative model that is used to quantify this procedure. The fluorescence107

observation in the lth trial from the j th neuron at time frame t, denoted by y(j)t,l , is a noisy surrogate of108

the intracellular calcium concentrations. The calcium concentrations in turn are temporally blurred109

surrogates of the underlying spiking activity n(j)t,l , as shown in Figure 1.110

In modeling the spiking activity, we consider two main contributions: 1) the common known111

stimulus st affects the activity of the j th neuron via an unknown kernel dj , akin to the receptive field;112

2) the trial-to-trial variability and other intrinsic/extrinsic neural covariates that are not time-locked113

to the stimulus st are captured by a trial-dependent latent process x
(j)
t,l . Then, we use a Generalized114

Linear Model to link these underlying neural covariates to spiking activity (Truccolo et al., 2005).115

neuron 

latent Signal and Noise Correlations
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×

...
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+

latent
observation noise
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latent noise
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latent
kernel
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observed fluorescence
activity

k

n

m
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Generative model

Inverse problem
(our contribution)

Figure 1. The proposed generative model and inverse problem. Observed (green) and latent (orange) variables
pertinent to the jth neuron are indicated, according to the proposed model for estimating the signal (blue) and
noise (red) correlations from two-photon calcium fluorescence observations. Calcium fluorescence traces

(

y(j)t, l
)

of L trials are observed, in which the repeated external stimulus
(

st
)

is known. The underlying spiking activity
(

n(j)t, l
)

, trial-to-trial variability and other intrinsic/extrinsic neural covariates that are not time-locked with the

external stimulus

(

x(j)t, l
)

, and the stimulus kernel
(

dj
)

are latent. Our main contribution is to solve the inverse

problem: recovering the underlying latent signal (S) and noise (N) correlations directly from the fluorescence
observations, without requiring intermediate spike deconvolution.
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More specifically, we model spiking activity as a Bernoulli process:116

n(j)t,l ∼ Bernoulli
(

�
(

x(j)t,l ,dj
⊤st

))

,

where �(⋅) is a mapping function, which could in general be non-linear.117

The signal correlations aim to measure the correlations in the temporal response that is time-118

locked to the repeated stimulus, st. On the other hand, noise correlations in our setting quantify119

connectivity arising from covariates that are unrelated to the stimulus, including the trial-to-trial120

variability (Keeley et al., 2020). Based on the foregoing model, we propose to formulate the signal121

(

(�s)i,j
)

and noise
(

(�x)i,j
)

covariance between the ith neuron and j th neuron as:122

(�s)i,j ∶=d⊤i cov
(

st, st
)

dj , (�x)i,j ∶=cov
(

x(i)t,l , x
(j)
t,l

)

, (1)

where cov(⋅) is the empirical covariance function defined as cov
(

ut, vt
)

∶= 1
T

∑T
t=1

(

ut −
1
T

∑T
t=1 ut

)

123

(

vt −
1
T

∑T
t=1 vt

)⊤
, for a total observation duration of T time frames.124

Our main contribution is to provide an efficient solution for the so-called inverse problem: direct125

estimation of �s and �x from the fluorescence observations, without requiring intermediate spike126

deconvolution (Figure 1, backward arrow). The signal and noise correlation matrices, denoted by S127

and N, can then be obtained by standard normalization of �s and �x:128

(S)i,j ∶=
(�s)i,j

√

(�s)i,i.(�s)j,j
, (N)i,j ∶=

(�x)i,j
√

(�x)i,i.(�x)j,j
, ∀i, j = 1, 2,⋯ , N. (2)

We note that when spiking activity is directly observed using electrophysiology recordings, the129

conventional signal
(

(�con
s )i,j

)

and noise
(

(�con
x )i,j

)

covariances of spiking activity between the ith and130

j th neuron are defined as (Lyamzin et al., 2015):131

(�con
s )i,j ∶=cov

(

1
L

L
∑

l=1
n(i)t,l ,

1
L

L
∑

l=1
n(j)t,l

)

, (�con
x )i,j ∶=

1
L

L
∑

l=1
cov

(

n(i)t,l−
1
L

L
∑

l=1
n(i)t,l , n

(j)
t,l −

1
L

L
∑

l=1
n(j)t,l

)

, (3)

which after standard normalization in Equation 2 give the conventional signal ((Scon)i,j
)

and noise132

(

(Ncon)i,j
)

correlations. While at first glance our definitions of signal and noise covariances in133

Equation 1 seem to be a far departure from the conventional ones in Equation 3, we show that the134

conventional notions of correlation indeed approximate the same quantities as in our definitions:135

Scon ≈ S and Ncon ≈ N,

under asymptotic conditions (i.e., T and L sufficiently large). We prove this assertion of asymptotic136

equivalence in Appendix 1, which highlights another facet of our contributions: our proposed137

estimators are designed to robustly operate in the regime of finite (and typically small) T and L,138

aiming for the very same quantities that the conventional estimators could only recover accurately139

under ideal asymptotic conditions.140

Existing methods used for performance comparison141

In order to compare the performance of our proposed method with existing work, we consider142

three widely available methods for extracting neuronal correlations. In simulation studies, we143

additionally benchmark these estimates with respect to the known ground truth. The existing144

methods considered are the following:145

Pearson Correlations from the Two-Photon Data146

In this method, fluorescence observations are assumed to be the direct measurements of spiking147

activity, and thus empirical Pearson correlations of the two-photon data are used to compute148

the signal and noise correlations (Rothschild et al., 2010; Winkowski and Kanold, 2013; Francis149

et al., 2018; Bowen et al., 2020). Explicitly, these estimates are obtained by simply replacing n(j)t,l in150

Equation 3 by y(j)t,l , without performing spike deconvolution.151
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Two-stage Pearson Estimation152

Unlike the previous method, in this case spikes are first inferred using a deconvolution technique.153

Then, following temporal smoothing via a narrow Gaussian kernel the Pearson correlations are154

computed using the conventional definitions of Equation 3. For spike deconvolution, we primarily155

used the FCSS algorithm (Kazemipour et al., 2018). In order to also demonstrate the sensitivity of156

these estimates to the deconvolution technique that is used, we provide a comparison with the157

f-oopsi deconvolution algorithm (Pnevmatikakis et al., 2016) in Figure 2–Figure Supplement 1.158

Two-stage GPFA Estimation159

Similar to the previous method, spikes are first inferred using a deconvolution technique. Then, a160

latent variable model called Gaussian Process Factor Analysis (GPFA) (Yu et al., 2009) is applied to161

the inferred spikes in order to estimate the latent covariates and receptive fields. Based on those162

estimates, the signal and residual noise correlations are derived through a formulation similar to163

Equation 1 and Equation 2 (Ecker et al., 2014).164

Simulation study 1: Neuronal ensemble driven by external stimulus165

We simulated calcium fluorescence observations according to the proposed generative model given166

in Methods and Materials, from an ensemble of N = 8 neurons for a duration of T = 5000 time167

frames. We considered L = 20 repeated trials driven by the same external stimulus, which we168

modeled by an autoregressive process (see Methods and Materials for details). Figure 2 shows the169

corresponding estimation results.170

The first column of Figure 2-A shows the ground truth noise (top) and signal (bottom) correlations171

(diagonal elements are all equal to 1 and omitted for visual convenience). The second column172

shows estimates of the noise and signal correlations using our proposed method, which closely173

match the ground truth. The third, fourth and fifth columns, respectively, show the results of the174

Pearson correlations from the two-photon data, two-stage Pearson, and two-stage GPFA estimation175

methods. Through a qualitative visual inspection, it is evident that these methods incur high false176

alarms and mis-detections of the ground truth correlations.177
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Figure 2. Results of simulation study 1. A) Estimated noise and signal correlation matrices from different
methods. Rows from left to right: ground truth, proposed method, Pearson correlations from two-photon

recordings, two-stage Pearson estimates and two-stage GPFA estimates. The normalized mean squared error

(NMSE) of each estimate with respect to the ground truth and the leakage effect quantified by the ratio between

out-of-network and in-network power (leakage) are indicated below each panel. B) Simulated fluorescence

observations (black), estimated calcium concentrations (purple), putative spikes (green) and estimated mean of

the latent state (blue) by the proposed method, for the first trial of neuron 1.

Figure 2–Figure supplement 1. Sensitivity of two-stage estimates to the choice of the underlying spike
deconvolution technique.

Figure 2–Figure supplement 2. Performance of two-stage estimates based on ground truth spikes.
Figure 2–Figure supplement 3. Proposed estimates based on simulated data with model mismatch and at
lower SNR.
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To quantify these comparisons, the normalized mean square error (NMSE) of different estimates178

with respect to the ground truth are shown below each of the subplots (Figure 2-A). Our proposed179

method achieves the lowest NMSE compared to the others. Furthermore, we observed a significant180

mixing between signal and noise correlations in these other estimates. To quantify this leakage181

effect, we first classified each of the correlation entries as in-network or out-of-network, based182

on being non-zero or zero in the ground truth, respectively (see Methods and Materials). We then183

computed the ratio between the power of out-of-network components and the power of in-network184

components as ameasure of leakage. The leakage ratios are also reported in Figure 2-A. The leakage185

of our proposed estimates is the lowest of all four techniques, in estimating both the signal and noise186

correlations. In order to further probe the performance of our proposed method, the simulated187

observations y(1)t,1 , estimated calcium concentration ẑ
(1)
t,1 , the putative spikes n̂

(1)
t,1 ∶= ẑ

(1)
t,1 − �ẑ

(1)
t−1,1,188

and the estimated mean of the latent state m(1)xt,1 , for the first trial of the first neuron are shown189

in Figure 2-B. These results demonstrate the ability of the proposed estimation framework in190

accurately identifying the latent processes, which in turn leads to an accurate estimation of the191

signal and noise correlations as shown in Figure 2-B.192

The main sources of the observed performance gap between our proposed method and the193

existing ones are the bias incurred by treating the fluorescence traces as spikes, low spiking rates,194

non-linearity of spike generation with respect to intrinsic and external covariates, and sensitivity to195

spike deconvolution. For the latter, we demonstrated the sensitivity of the two-stage Pearson esti-196

mates to the choice of the deconvolution technique in Figure 2–Figure Supplement 1. Furthermore,197

in order to isolate the effect of said non-linearities on the estimation performance, we applied the198

two-stage methods to ground truth spikes in Figure 2–Figure Supplement 2. Our analysis showed199

that both two-stage estimates incur significant estimation errors even if the spikes were recovered200

perfectly, mainly due to the limited number of trials (L = 20 here). In accordance with our theoretical201

analysis of the asymptotic behavior of the conventional signal and noise correlation estimates202

given in Appendix 1, we also showed in Figure 2–Figure Supplement 2 that the performance of the203

two-stage Pearson estimates based on ground truth spikes, but using L = 1000 trials, dramatically204

improves. Our proposed method, however, was capable of producing reliable estimates with the205

number of trials as low as L = 20, which is typical in two-photon imaging experiments.206

Finally, since real data does not necessarily follow the proposed generative model, to test the207

robustness of the proposed algorithm and modeling framework (with first-order autoregressive208

calcium dynamics assumption as outlined in Methods and Materials), we applied our method on209

simulated data generated based on a mismatched model (second-order autoregressive calcium210

dynamics), and at a lower signal-to-noise ratio (SNR) compared to the setting of Figure 2. Figure 2–211

Figure Supplement 3 shows the corresponding noise and signal correlations estimated by the212

proposed method under these conditions. Even though the performance slightly degrades (in213

terms of NMSE and leakage), our method is able to recover the underlying correlations faithfully214

under model mismatch and low SNR.215

Simulation study 2: Spontaneous activity216

Next, we present the results of a simulation study in the absence of external stimuli (i.e. st = 0),217

pertaining to the spontaneous activity condition. It is noteworthy that the proposed method can218

readily be applied to estimate noise correlations during spontaneous activity, by simply setting219

the external stimulus st and the receptive field dj to zero in the update rules (see Methods and220

Materials for details). We simulated the ensemble spiking activity based on a Poisson process221

(Smith and Brown, 2003) using a discrete time-rescaling procedure (Brown et al., 2002; Smith and222

Brown, 2003), so that the data are generated using a different model than that used in our inference223

framework (i.e., Bernoulli process with a logistic link as outlined in Methods and Materials). As such,224

we eliminated potential performance biases in favor of our proposed method by introducing the225

aforementioned model mismatch. We simulated L = 20 independent trials of spontaneous activity226

of N = 30 neurons, observed for a time duration of T = 5000 time frames. The number of neurons227

6 of 45

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.11.434932doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434932
http://creativecommons.org/licenses/by/4.0/


0

0.3

-0.3

Pearson Two-Stage PearsonProposed Ground Truth

5

10

15

20

 NMSE = 0.61  NMSE = 1.07  NMSE = 1.12

Two-Stage GPFA

 NMSE = 1.08
leakage = 0.55 leakage = 3.10 leakage = 2.17 leakage = 6.76

25

30
10 20 30

Figure 3. Results of simulation study 2. Estimated noise correlation matrices using different methods based
from spontaneous activity data. Rows from left to right: ground truth, proposed method, Pearson correlations

from two-photon recordings, two-stage Pearson and two-stage GPFA estimates. The normalized mean squared

error (NMSE) of each estimate with respect to the ground truth and the ratio between out-of-network power

and in-network power (leakage) are shown below each panel.

in this study is notably larger than that used in the previous one, to examine the scalability of our228

proposed approach with respect to the ensemble size.229

Figure 3 shows the comparison of the noise correlation matrices estimated by our proposed230

method, Pearson correlations from two-photon recordings, two-stage Pearson, and two-stage GPFA231

estimates, with respect to the ground truth. The Pearson and the two-stage estimates are highly232

variable and result in excessive false detections. Our proposed estimate, however, closely follows233

the ground truth, which is also reflected by the comparatively lower NMSE and leakage ratios, in234

spite of the mismatch between the models used for data generation and inference. It is noteworthy235

that the proposed method exhibits favorable scaling with respect to the ensemble size, thanks to236

the underlying low-complexity variational updates (see Methods and Materials).237

Real data study 1: Mouse auditory cortex under random tone presentation238

We next applied our proposed method to experimentally recorded two-photon observations from239

the mouse primary auditory cortex (A1). The dataset consisted of recordings from 371 excitatory240

neurons in layer 2/3 A1, from which we selected J = 16 neurons which exhibited the highest level of241

activity. A random sequence of four tones was presented to the mouse, with the same sequence242

being repeated for L = 10 trials. Each trial consisted of T = 3600 time frames, and each tone243

was two seconds long followed by a four-second silent period (see Methods and Materials for244

details). The comparison of the noise and signal correlation estimates obtained by our proposed245

method, Pearson correlations from two-photon recordings, two-stage Pearson and two-stage GPFA246

methods is shown in Figure 4-A. The spatial map of the 16 neurons considered in the analysis in the247

field of view is shown in Figure 4-B. Figure 4-C shows the stimulus tone sequence st, two-photon248

observations y(1)t,1 , estimated calcium concentration ẑ
(1)
t,1 , putative spikes n̂

(1)
t,1 ∶= ẑ

(1)
t,1 − �ẑ

(1)
t−1,1 and the249

estimated mean of the latent state m(1)xt,1 , for the first trial of the first neuron.250

We estimated the Best Frequency (BF) of each neuron as the tone that resulted in the highest251

level of fluorescence activity. The results in Figure 4-A are organized such that the neurons with252

the same BF are neighboring, with the BF increasing along the diagonal. Thus, expectedly (Bowen253

et al., 2020) our proposed method as well as the Pearson and two-stage Pearson estimates show254

high signal correlations along the diagonal. However, the two-stage GPFA estimates do not reveal255

such a structure. By visual inspection, as also observed in the simulation studies, the Pearson256

correlations from two-photon recordings, two-stage Pearson and two-stage GPFA estimates have257

significant leakage between the signal and noise correlations, whereas our proposed signal and258

noise correlation estimates in Figure 4-A suggest distinct spatial structures.259

To quantify this visual comparison, we used a statistic based on the Tanimoto similarity metric260

(Lipkus, 1999), denoted by Ts(X,Y) for two matrices X and Y. As a measure of dissimilarity, we261

used Td(X,Y) ∶= 1 − Ts(X,Y) (see Methods and Materials). The comparison of Td(Ŝ, N̂) for the four262

estimates is presented in the second column of Table 1. To assess statistical significance, for each263
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Figure 4. Application to experimentally-recorded data from the mouse A1. A) Estimated noise (top) and signal
(bottom) correlation matrices using different methods. Rows from left to right: proposed method, Pearson

correlations from two-photon data, two-stage Pearson and two-stage GPFA estimates. B) Location of the

selected neurons with the highest activity in the field of view. C) Presented tone sequence (orange),

observations (black), estimated calcium concentrations (purple), putative spikes (green) and estimated mean

latent state (blue) in the first trial of the first neuron. D) Null distributions of chance occurrence of dissimilarities

between signal and noise correlation estimates using different methods. The observed test statistic in each

case is indicated by a dashed vertical line. E) Scatter plots of signal vs. noise correlations for individual cell pairs

(blue dots) corresponding to each method. Data were normalized for comparison by computing z-scores. For

each case, the linear regression model fit is shown in red, and the slope and p-value of the t-test are indicated

as insets.

Table 1. Dissimilarity metric statistics for the estimates in Figure 4-A (also illustrated in Figure 4-D), linear
regression statistics of the comparison between signal and noise correlations in Figure 4-E, and the average
NMSE across 50 trials used in the shuffling procedure illustrated in Figure 5-A.

Dissimilarity Td (Ŝ, N̂) Regression statistics (Figure 4-E) Shuffling test (Figure 5)
Estimate (Figure 4-D) slope (p-value) R2 value NMSE in N̂ NMSE in Ŝ

Proposed 0.8725 (p < 10−4) 0.02 (p = 0.84) 4 × 10−4 1.07 ± 0.16 1.32 ± 0.19
Pearson 0.6675 (p = 0.71) 0.33 (p = 2 × 10−4) 0.11 0 0

Two-Stage Pearson 0.7325 (p = 0.09) 0.15 (p = 0.10) 0.02 1.84 ± 0.34 0.55 ± 0.12
Two-Stage GPFA 0.7625 (p < 10−4) 0.02 (p = 0.86) 3 × 10−4 2.32 ± 0.52 2.26 ± 0.51

comparison we obtained null distributions corresponding to chance occurrence of dissimilarities264

using a shuffling procedure as shown in Figure 4-D, and then computed one-tailed p-values from265

those distributions (see Methods and Materials for details). Table 1 and Figure 4-D includes these266

p-values, which show that the proposed estimates (boldface numbers in Table 1, second column)267

indeed have the highest dissimilarity between signal and noise correlations. The higher leakage268

effect in the other three estimates is also reflected in their smaller Td(Ŝ, N̂) values. To further269
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investigate this effect, we have depicted the scatter plots of signal vs. noise correlations estimated270

by each method in Figure 4-E. To examine the possibility of the leakage effect on a pairwise basis,271

we performed linear regression in each case. The slope of the model fit, the p-value for the272

corresponding t-test, and the R2 values are reported in the third and fourth columns of Table 1 (the273

slope and p-values are also shown as insets in Figure 4-E). Consistent with the results ofWinkowski274

and Kanold (2013), the Pearson estimates suggest a significant correlation between the signal and275

noise correlation pairs (as indicated by the higher slope in Figure 4-E). However, it is noteworthy that276

none of the other estimates (including the proposed estimates) in Figure 4-E register a significant277

trend between signal and noise correlations. This further corroborates our assessment of the278

high leakage between signal and noise correlations in Pearson estimates, since such a leakage279

effect could result in overestimation of the trend between the signal and noise correlation pairs.280

It is noteworthy that the signal and noise correlations estimated by our proposed method show281

no pairwise trend, suggesting distinct patterns of stimulus-dependent and stimulus-independent282

functional connectivity.283

Given that the ground truth correlations are not available for a direct comparison, we instead284

performed a test of specificity that reveals another key limitation of existing methods. Fluorescence285

observations exhibit structured dynamics due to the exponential intracellular calcium concentration286

decay (as shown in Figure 4-C, for example), which are in turn related to the underlying spikes that287

are driven non-linearly by intrinsic/extrinsic stimuli as well as the properties of the indicator used.288

As such, an accurate inference method is expected to be specific to this temporal structure. To289

test this, we randomly shuffled the T time frames consistently in the same order in all trials, in290

order to fully break the temporal structure governing calcium decay dynamics, and then estimated291

correlations from these shuffled data using the different methods. The resulting estimates of noise292

correlations are shown in Figure 5-A for one instance of such shuffled data. The average NMSE293

for a total of 50 shuffled samples with respect to the original un-shuffled estimates (in Figure 4-A)294

are tabulated in the fifth and sixth columns of Table 1, and are also indicated below each panel in295

Figure 5-A.296

A visual inspection of Figure 5-A shows that the Pearson correlations from two-photon recordings297

expectedly remain unchanged. Since this method treats each time frame to be independent,298

temporal shuffling does not impact the correlations in anyway. On the other extreme, both of the299
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Figure 5. Assessing the specificity of different estimation results shown in Figure 4. Rows from left to right:
proposed method, Pearson correlations from two-photon data, two-stage Pearson and two-stage GPFA

estimates. A) The estimated noise correlations using different methods after random temporal shuffling of the

observations. The mean and standard deviation of the NMSE across 50 trials are indicated below each panel. B)
Histograms of the noise correlation estimates between the first and third neurons over the 50 temporal
shuffling trials. The estimate based on the original (un-shuffled) data in each case is indicated by a dashed

vertical line.
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two-stage estimates seem to detect highly variable and large correlation values, despite operating300

on data that lacks any relevant temporal structure. Our proposed method, however, remarkably301

produces negligible correlation estimates. Although both the two-stage and proposed estimates302

show variability with respect to the shuffled data (Table 1), the standard deviation of the NMSE303

values of our proposed method are considerably smaller than those of the two-stage methods304

(Table 1, fifth column). For further inspection, the histograms of a single element ((N̂)1,3) of the305

estimated correlation matrices across the 50 shuffling trials are shown in Figure 5-B. The original306

un-shuffled estimates are marked by the dashed vertical lines in each case. The proposed estimate307

in Figure 5-B is highly concentrated around zero, even though the un-shuffled estimate is non-308

zero. However, the two-stage estimates produce correlations that are widely variable across the309

shuffling trials. This analysis demonstrates that our proposed method is highly specific to the310

temporal structure of fluorescence observations, whereas the Pearson correlations from two-311

photon recordings, two-stage Pearson and two-stage GPFA methods fail to be specific.312

Real data study 2: Spontaneous vs. stimulus-driven activity in the mouse A1313

To further validate the utility of our proposed methodology, we applied it to another experimentally-314

recorded dataset from the mouse layer 2/3 A1. This experiment pertained to trials of presenting a315

sequence of short white noise stimuli, randomly interleaved with silent trials of the same duration.316

The two-photon recordings thus contained episodes of stimulus-driven and spontaneous activity317

(see Methods and Materials for details). Under these experimental conditions, it is expected that318

the noise correlations are invariant across the spontaneous and stimulus-driven conditions, and319

that the signal and noise correlation patterns are distinct (Kohn et al., 2016; Montijn et al., 2014;320

Rothschild et al., 2010; Keeley et al., 2020). Each trial consisted of T = 765 frames. We selected321

N = 10 neurons with the highest level of activity for the analysis, each with L = 10 trials.322
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Figure 6. Comparison of spontaneous and stimulus-driven activity in the mouse A1. A) Estimated noise and
signal correlation matrices under spontaneous (top) and stimulus-driven (bottom) conditions. Rows from left to

right: proposed method, Pearson correlations from two-photon data, two-stage Pearson and two-stage GPFA

estimates. B) Location of the selected neurons with highest activity in the field of view. C) Stimulus onsets

(orange), observations (black), estimated calcium concentrations (purple) and putative spikes (green) for the

first trial from two pairs of neurons with high signal correlation (top) and high noise correlation (bottom), as

identified by the proposed estimates.

Figure 6–Figure supplement 1. Histograms of the similarity/dissimilarity metrics under the shuffling procedure.
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Table 2. Similarity/dissimilarity metric statistics for the estimates in Figure 6.
Estimation Method Ts(N̂spon, N̂stim) Td(Ŝstim, N̂stim)

Proposed 0.5518 (p = 0.01) 0.7625 (p = 0.01)
Pearson 0.3031 (p = 0.61) 0.5025 (p = 0.92)

Two-Stage Pearson 0.2790 (p = 0.05) 0.7925 (p = 0.39)
Two-Stage GPFA 0.2008 (p = 0.50) 0.7825 (p = 0.22)

Figure 6-A shows the resulting noise and signal correlation estimates under the spontaneous323

(N̂spon, top) and stimulus-driven (N̂stim and Ŝstim, bottom) conditions. Figure 6-B shows the spatial map324

of the 10 neurons considered in the analysis in the field of view. A visual inspection of the first325

column of Figure 6-A indeed suggests that N̂spon and N̂stim are saliently similar, and distinct from326

Ŝstim. The Pearson correlations obtained from two-photon data (second column) and the two-stage327

Pearson and GPFA estimates (third and fourth columns, respectively), however, evidently lack this328

structure. As in the previous study, we quantified this visual comparison using the similarity metric329

Ts(X,Y) and the dissimilarity metric Td(X,Y) (see Methods and Materials for details). These statistics330

are reported in Table 2 along with the p-values (null distributions are shown in Figure 6–Figure331

Supplement 1), which show that the only significant outcomes (boldface numbers) are those of our332

proposed method.333

Furthermore, Figure 6-C shows the time course of the stimulus, observations, estimated calcium334

concentrations and putative spikes for the first trial from two pairs of neurons with high signal335

correlation (j = 2, 8, top) and high noise correlation (j = 3, 5, bottom). As expected, the putative336

spiking activity of the neurons with high signal correlation (top) are closely time-locked to the337

stimulus onsets. The activity of the two neurons with high noise correlation (bottom), however,338

is not time-locked to the stimulus onsets, even though the two neurons exhibit highly correlated339

activity. The correlations estimated via the proposed method thus encode substantial information340

about the inter-dependencies of the spiking activity of the neuronal ensemble.341

Real data study 3: Spatial analysis of signal and noise correlations in themouse A1342

Lastly, we applied our proposed method to examine the spatial distribution of signal and noise343

correlations in the mouse A1 layers 2/3 and 4 (data from Bowen et al. (2020)). The dataset included344

fluorescence activity recorded during multiple experiments of presenting sinusoidal amplitude-345

modulated tones, with each stimulus being repeated across several trials (see Methods and Ma-346

terials and Bowen et al. (2020) for experimental details). In each experiment, we selected around347

20 neurons with highest spiking rates for the subsequent analysis. For brevity, we compare the348

estimates of signal and noise correlations using our proposed method only with those obtained349

by Pearson correlations from the two-photon data. The latter method was also used in previous350

analyses of data from this experimental paradigm (Winkowski and Kanold, 2013).351

In parallel to the results reported in Winkowski and Kanold (2013), Figure 7-A and Figure 7-B352

illustrate the correlation between the signal and noise correlations in layers 2/3 and 4, respectively.353

Consistent with the results of Winkowski and Kanold (2013), the signal and noise correlations354

exhibit positive correlation in both layers, regardless of the method used. However, the correlation355

coefficients (i.e., slopes in the insets) identified by our proposed method are notably smaller than356

those obtained from Pearson correlations, in both layer 2/3 (Figure 7-A) and layer 4 (Figure 7-B).357

Comparing this result with our simulation studies suggests that the stronger linear trend between358

the signal and noise correlations observed using the Pearson correlation estimates is likely due to359

the mixing between the estimates of signal and noise correlations. As such, our method suggests360

that the signal and noise correlations may not be as highly correlated with one another as indicated361

in previous studies of layer 2/3 and 4 in mouse A1.362

Next, to evaluate the spatial distribution of signal and noise correlations, we plotted the cor-363
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Figure 7. Comparison of signal and noise correlations across layers 2/3 and 4. A) Scatter-plot of noise vs. signal
correlations (blue) for individual cell-pairs in layer 2/3, based on the proposed (left) and Pearson estimates

(right). Data were normalized for comparison by computing z-scores. The linear model fits are shown in red,

and the slope and p-value of the t-tests are indicated as insets. Panel B corresponds to layer 4 in the same

organization as panel A. C) Signal (top) and noise (bottom) correlations vs. cell-pair distance in layer 2/3, based

on the proposed (left) and Pearson estimates (right). Distances were binned to 10 �m intervals. The median of
the distributions (black) and the linear model fit (red) are shown in each panel. The slope of the linear model fit,

and the p-value of the t-test are also indicated as insets. Dashed horizontal lines indicate the zero-slope line for

ease of visual comparison. Panel D corresponds to layer 4 in the same organization as panel C. E) Spatial spread

of signal (top) and noise (bottom) correlations in layer 2/3, based on the proposed (left) and Pearson estimates

(right). The horizontal and vertical axes in each panel respectively represent the relative dorsoventral and

rostrocaudal distances between each cell-pair, and the heat-map indicates the magnitude of correlations.

Marginal distributions of the signal (blue) and noise (red) correlations along the dorsoventral and rostrocaudal

axes for the proposed method (darker colors) and Pearson method (lighter colors) are shown at the top and

right side of the sub-panels. Panel F corresponds to layer 4 in the same organization as panel E.

Figure 7–Figure supplement 1. Comparing the marginal distributions of signal and noise correlations along
the dorsoventral and rostrocaudal axes.

Figure 7–Figure supplement 2. Marginal angular distributions of signal and noise correlations.
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Table 3. Linear regression statistics for the analysis of correlations vs. cell-pair distance
Statistics of layer 2/3 correlations Statistics of layer 4 correlations

Correlations slope (p-value) R2 value slope (p-value) R2 value

Proposed Signal Corr. −9 × 10−5 (p = 0.002) 0.012 −1 × 10−4 (p = 3 × 10−6) 0.023

Pearson Signal Corr. −5 × 10−5 (p = 0.02) 0.007 −3 × 10−5 (p = 0.02) 0.005

Proposed Noise Corr. −1 × 10−4 (p = 0.005) 0.010 −5 × 10−5 (p = 0.06) 0.004

Pearson Noise Corr. −4 × 10−5 (p = 0.1) 0.003 −5 × 10−5 (p = 0.02) 0.005

relation values for pairs of neurons as a function of their distance for layer 2/3 (Figure 7-C) and364

layer 4 (Figure 7-D). The distances were discretized using bins of length 10 �m. The scatter of the365

correlations along with their median at each bin are shown in all panels. Then, to examine the366

spatial trend of the correlations, we performed linear regression in each case. The slope of the367

model fit, the p-value for the corresponding t-test, and the R2 values are reported in Table 3 (the368

slope and p-values are also shown as insets in Figure 7-C & D).369

From Table 3 and Figure 7-C & D (upper panels), it is evident that the signal correlations show a370

significant negative trend with respect to distance, using both methods and in both layers. However,371

the slope of these negative trends identified by our method (boldface numbers in Table 3) is notably372

steeper than those identified by Pearson correlations. On the other hand, the trends of the noise373

correlations with distance (bottom panels) are different between our proposedmethod and Pearson374

correlations: our proposed method shows a significant negative trend in layer 2/3, but not in layer375

4, whereas the Pearson correlations of the two-photon data suggest a significant negative trend376

in layer 4, but not in layer 2/3. In addition, the slopes of these negative trends identified by our377

method (boldface numbers in Table 3) are steeper than or equal to those identified by Pearson378

correlations.379

Our proposed estimates indicate that noise correlations are sparser and less widespread in layer380

4 (Figure 7-D) than in layer 2/3 (Figure 7-C). To further investigate this observation, we depicted the381

two-dimensional spatial spread of signal and noise correlations in both layers and for both methods382

in Figure 7-E & F, by centering each neuron at the origin and overlaying the individual spatial spreads.383

The horizontal and vertical axes in each panel respectively represent the relative dorsoventral and384

rostrocaudal distances, and the heat-maps represent the magnitude of correlations. Comparing385

the proposed noise correlation spread in Figure 7-E with the corresponding spread in Figure 7-F,386

we observe that the noise correlations in layer 2/3 are indeed more widespread and abundant than387

in layer 4.388

It is notable that the spatial spreads of signal and noise correlations based on the Pearson389

estimates are remarkably similar in both layers (Figure 7-E & F, right panels), whereas they are390

saliently different for our proposed estimates (Figure 7-E & F, left panels). This further corroborates391

our hypothesis on the possibility of high mixing between the signal and noise correlation estimates392

obtained by the Pearson correlation of two-photon data. To further examine the differences393

between the signal and noise correlations, the marginal distributions along the dorsoventral and394

rostrocaudal axes are shown in Figure 7-E & F, selectively overlaid for ease of visual comparison.395

To quantify the differences between the spatial distributions of signal and noise correlations396

estimated by each method, we performed Kolmogorov–Smirnov (KS) tests on each pair of marginal397

distributions, which are summarized in Figure 7–Figure Supplement 1. Although the marginal398

distributions of signal and noise correlations are significantly different in all cases from both399

methods, the effect sizes of their difference (KS statistics) are notably higher for our proposed400

estimates compared to those of the Pearson estimates.401

Finally, it is noteworthy that the spatial spreads of correlations for either method and in each402

layer suggest non-uniform angular distributions with possibly directional bias. To test this effect, we403

computed the angular marginal distributions and performed KS tests for non-uniformity, which are404
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reported in Figure 7–Figure Supplement 2. These tests indicate that all distributions are significantly405

non-uniform. In addition, the angular distributions of both signal and noise correlations in layer 4406

exhibit salient modes in the rostrocaudal direction, whereas they are less directionally selective in407

layer 2/3 (Figure 7–Figure Supplement 2).408

In summary, the spatial trends identified by our proposed method are consistent with empirical409

observations of spatially heterogeneous pure-tone frequency tuning by individual neurons in410

auditory cortex (Winkowski and Kanold, 2013). The improved correspondence of our proposed411

method compared to results obtained using Pearson correlations could be the result of the demixing412

of signal and noise correlations in our method. As a result of the demixing, our proposed method413

also suggests that noise correlations have a negative trend with distance in layer 2/3, but are much414

sparser and spatially flat in layer 4. In addition, the spatial spread patterns of signal and noise415

correlations are more structured and remarkably more distinct for our proposed method than416

those obtained by the Pearson estimates.417

Theoretical analysis of the bias and variance of the proposed estimators418

Finally, we present a theoretical analysis of the bias and variance of the proposed estimator.419

Note that our proposed estimation method has been developed as a scalable alternative to the420

intractable maximum likelihood (ML) estimation of the signal and noise covariances (see Methods421

and Materials). In order to benchmark our estimates, we thus need to evaluate the quality of said422

ML estimates. To this end, we derived bounds on the bias and variance of the ML estimators of the423

kernel dj for j = 1,⋯ , N and the noise covariance �x. In order to simplify the treatment, we posit424

the following mild assumptions:425

Assumption (1). We assume a scalar time-varying external stimulus (i.e. st = st, and hence426

dj = dj ,d = [d1, d2,⋯ , dN ]⊤ ). Furthermore, we set the observation noise covariance to be �w = �2wI,427

for notational convenience.428

Assumption (2). We derive the performance bounds in the regime where T and L are large,429

and thus do not impose any prior distribution on the correlations, which are otherwise needed to430

mitigate overfitting (see Methods and Materials).431

Assumption (3). We assume the latent noise process and stimulus to be slowly varying signals, and432

thus adopt a piece-wise constant model in which these processes are constant within consecutive433

windows of length W (i.e., xt,l = xWk ,l and st = sWk
, for (k − 1)W + 1 ≤ t < kW and k = 1,⋯ , K with434

Wk = (k − 1)W + 1 and KW = T ) for our theoretical analysis, as is usually done in spike count435

calculations for conventional noise correlation estimates.436

Our main theoretical result is as follows:437

Theorem 1 (Performance Bounds). Let q > 1
64
, 0 < � < 1∕2, and 0 < � ≤ 1∕2 be fixed constants,

�2m ∶= maxi(�x)i,i and �2s ∶= 1
K

∑K
k=1 s

2
Wk
. Then, under Assumptions (1) - (3), the bias and variance of the

maximum likelihood estimators d̂ and �̂x, conditioned on an event AW with ℙ
(

AW
)

≥ 1 − � satisfy:
|

|

|

|

biasAW

(

d̂j
)

|

|

|

|

≤ 1
√

W 1−2�
C1

(

2�w
√

1 + �2 + 1
)

+ �j ,

√

VarAW

(

d̂j
)

≤

√

(�x)j,j
KL�2s (1 − �)

+ 1
√

W 1−2�
C2

(

2�w
√

1 + �2 + 1
)

+ �̃j ,

|

|

|

|

biasAW

(

(�̂x)i,j
)

|

|

|

|

≤
|

|

|

(

�x
)

i,j
|

|

|

KL(1 − �)
+
√

logW
W 1−2�

C3
(

14�w
√

1 + �2 + 3
)

+ �i,j ,

√

VarAW

(

(�̂x)i,j
)

≤

√

(KL−1)
(

(�x)2i,j+(�x)i,i(�x)j,j
)

K2L2(1−�)
+
√

logW
W 1−2�

C4
(

2�w
√

1 + �2 + 1
)

+ �̃i,j ,

for all i, j = 1, 2,⋯ , N , if logW ≥ max
⎧

⎪

⎨

⎪

⎩

log(8KLN∕�)
q

,
32�2mq
�2

,
2 log(64q)
1 − 2�

,
max{6.25, 4

(

‖�x‖∞ + maxk,j
{

|sWk
dj|

})2}
8q�2m

, log 2

⎫

⎪

⎬

⎪

⎭

,438
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where �j and �̃j denote bounded terms that are (�2w) or 
(

1
W

)

, �i,j and �̃i,j denote bounded terms that439

are (�2w) or 
(

1
W 1−2�

)

and C1, C2, C3 and C4 are bounded constants given in Appendix 2.440

Proof. The proof of Theorem 1 is provided in Appendix 2.441

In order to discuss the implications of this theoretical result, several remarks are in order:442

Remark 1: Achieving near oracle performance443

A common benchmark in estimation theory is the performance of the idealistic oracle estimator, in444

which an oracle directly observes the true latent process xt,l and the true kernel dj and forms the445

correlation estimates. In this case, the oracle would incur zero bias and variance of order  (1∕KL)446

in estimating dj , and outputs an estimate of �x with bias and variance in the order of  (1∕KL).447

Theorem 1 indeed states that for sufficiently largeW and small �w, the bias and variance of the ML448

estimators are arbitrarily close to those of the oracle estimator. Recall that our variational inference449

framework is in fact a solution technique for the regularized ML problem. Hence, the bounds in450

Theorem 1 provide a benchmark for the expected performance of the proposed estimators, by451

quantifying the excess bias and variance over the performance of the oracle estimator.452

Remark 2: Effect of the observation noise and observation duration453

As the assumed window of stationarity W → ∞ (and hence the observation duration T → ∞),454

the loss of performance of the proposed estimators only depends on �2w, the variance of the455

observation noise. As a result, at a given observation noise variace �2w, these bounds provide a456

sufficient upper bound on the time duration of the observations required for attaining a desired457

level of estimation accuracy. It is noteworthy that �2w is typically small in practice, as it pertains to458

the effective observation noise and is significantly diminished by pixel averaging of the fluorescence459

traces following cell segmentation.460

Remark 3: Effect of the number of trials461

Finally, note that the bounds in Theorem 1 have terms that also drop as the number of trials L462

grows. These terms in fact pertain to the performance of the oracle estimator. As the number of463

trials grows (L → ∞), the oracle estimates become arbitrarily close to the true parameters �x and464

dj . Thus, our theoretical performance bounds also provide a sufficient upper bound on the number465

of trials L required for the oracle estimator to attain a desired level of estimation accuracy.466

Discussion467

We developed a novel approach for the joint estimation of signal and noise correlations of neuronal468

activities directly from two-photon calcium imaging observations and tested our method with469

experimental data. Existing widely used methods either take the fluorescence traces as surrogates470

of spiking activity, or first recover the unobserved spikes using deconvolution techniques, both471

followed by computing Pearson correlations or connectivity matrices. As such, they typically result in472

estimates that are highly biased and are heavily dependent on the choice of the spike deconvolution473

technique. We addressed these issues by using data with multiple repeated trials and explicitly474

relating the signal and noise covariances to the observed two-photon data via a multi-tier Bayesian475

model that accounts for the observation process and non-linearities involved in spiking activity. We476

developed an efficient estimation framework by integrating techniques from variational inference477

and state-space estimation. We established performance bounds on the bias and variance of the478

proposed estimators, which revealed favorable scaling with respect to the observation noise and479

trial length.480

We demonstrated the utility of our proposed estimation framework on both simulated and481

experimentally-recorded data from the mouse auditory cortex. Our analysis showed that, unlike482

the aforementioned methods, our estimates provide noise correlation structures that are highly483
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invariant across spontaneous and stimulus-driven conditions, while producing signal correlation484

structures that are largely distinct from those given by the noise correlation. These results provide485

evidence for the involvement of distinct functional neuronal network structures in encoding the486

stimulus-dependent and stimulus-independent information.487

Our analysis of the relationship between the signal and noise correlations in layers 2/3 and 4 in488

mouse A1 indicates a smaller correlation between signal and noise correlations than previously489

reported (Winkowski and Kanold, 2013). Thus, our proposed method suggests that the signal and490

noise correlations reflect distinct circuit mechanisms of sound processing in layers 2/3 vs 4. The491

spatial distribution of signal correlations obtained by our method was consistent with previous492

work showing significant negative trends with distance (Winkowski and Kanold, 2013). However,493

in addition, our proposed method revealed a significant negative trend of noise correlations with494

distance in layer 2/3, but not in layer 4, in contrast to the outcome of Pearson correlation analysis.495

The lack of a negative trend in layer 4 could be attributed to the sparse nature of the noise496

correlation spread in layer 4, as revealed by our analysis of two-dimensional spatial spreads. The497

latter analysis indeed revealed that the noise correlations in layer 2/3 are more widespread than498

those in layer 4, consistent with existing work based on whole-cell patch recordings (Meng et al.,499

2017a,b). In addition, the two-dimensional spatial spreads of signal and noise correlations obtained500

by our method are more distinct than those obtained by Pearson correlations. The spatial spreads501

also allude to directionality of the functional connectivity patterns, with a notable rostrocaudal502

preference in layer 4.503

It is noteworthy that the proposed method can scale up favorably to larger populations of504

neurons, thanks to the underlying low-complexity variational updates in the inference procedure.505

Due to its minimal dependence on training data, our estimation framework is also applicable to506

single-session analysis of two-photon data with limited number of trials and duration. Another507

useful byproduct of the proposed framework is gaining access to approximate posterior densities508

in closed-form, which allows further statistical analyses such as construction of confidence intervals.509

Our proposed methodology can thus be used as a robust and scalable alternative to existing510

approaches for extracting neuronal correlations from two-photon calcium imaging data.511

A potential limitation of our proposed model is the assumption that there is at most one spiking512

event per time frame for each neuron, in light of the fact that typical two-photon imaging frame513

durations are in the range of 30–100 ms. Average spike rates of excitatory neurons in mouse A1514

layers 2/3 and 4 are of the order of < 10 Hz (Forli et al., 2018) and thus our assumption is reasonable515

for the current study, although it might not be optimal during bursting activity. Even though this516

assumption can be made more precise by adopting a Poisson model, that would render closed-517

form variational density updates intractable. Furthermore, in the regime of extremely low spiking518

rate and high observation noise, the proposed forward model may fail to capture the underlying519

correlations faithfully, and the performance is expected to degrade to those of existing methods520

based on Pearson correlations. Nevertheless, our method addresses key limitations of conventional521

signal and noise correlation estimators that persist in high spiking rate and high SNR conditions.522

Our proposed estimation framework can be used as groundwork for incorporating other notions523

of correlation such as the connected correlation function (Martin et al., 2020), and to account for524

non-Gaussian and higher-order structures arising from spatiotemporal interactions (Kadirvelu525

et al., 2017; Yu et al., 2011). Other possible extensions of this work include leveraging variational in-526

ference beyond the mean-field regimeWang and Blei (2013), extension to time-varying correlations527

that underlie rapid task-dependent dynamics, and extension to non-linear models such as those528

parameterized by neural networks (Aitchison et al., 2017). In the spirit of easing reproducibility, a529

MATLAB implementation of our proposed method as well as the data used in this work are made530

publicly available (Rupasinghe, 2020; Rupasinghe et al., 2021).531

16 of 45

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.11.434932doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434932
http://creativecommons.org/licenses/by/4.0/


Methods and Materials532

Proposed forward model533

Suppose we observe fluorescence traces ofN neurons, for a total duration of T discrete-time frames,534

corresponding to L independent trials of repeated stimulus. Let yt,l ∶= [y(1)t,l , y
(2)
t,l ,⋯ , y(N)t,l ]

⊤, zt,l ∶=535

[z(1)t,l , z
(2)
t,l ,⋯ , z(N)t,l ]

⊤, and nt,l ∶= [n(1)t,l , n
(2)
t,l ,⋯ , n(N)t,l ]

⊤ be the vectors of noisy observations, intracellular536

calcium concentrations, and ensemble spiking activities, respectively, at trial l and frame t. We537

capture the dynamics of yt,l by the following state-space model:538

yt,l = Azt,l + wt,l, zt,l = � zt−1,l + nt,l,

where A ∈ ℝN×N represents the scaling of the observations, wt,l is zero-mean i.i.d. Gaussian noise539

with covariance �w, and 0 ≤ � < 1 is the state transition parameter capturing the calcium dynamics540

through a first order model. Note that this state-space is non-Gaussian due to the binary nature of541

the spiking activity, i.e., n(j)t,l ∈ {0, 1}. We model the spiking data as a point process or Generalized542

Linear Model with Bernoulli statistics (Eden et al., 2004; Paninski, 2004; Smith and Brown, 2003;543

Truccolo et al., 2005):544

n(j)t,l ∼ Bernoulli
(

�(j)t,l
)

, �(j)t,l = �
(

x(j)t,l ,dj
⊤st

)

where �(j)t,l is the conditional intensity function (Truccolo et al., 2005), which wemodel as a non-linear545

function of the known external stimulus st and the other latent intrinsic and extrinsic trial-dependent546

covariates, xt,l ∶= [x(1)t,l , x
(2)
t,l ,⋯ , x(N)t,l ]

⊤
. While we assume the stimulus st ∈ ℝM to be common to all547

neurons, we model the distinct effect of this stimulus on the j th neuron via an unknown kernel548

dj ∈ ℝM , akin to the receptive field.549

The non-linear mapping of our choice is the logistic link, which is also the canonical link for a550

Bernoulli process in the point process and Generalized Linear Model frameworks (Truccolo et al.,551

2005). Thus, we assume:552

�
(

x(j)t,l ,dj
⊤st

)

=
exp

(

x(j)t,l + dj
⊤st

)

1 + exp
(

x(j)t,l + dj
⊤st

) .

Finally, we assume the latent trial dependent covariates to be a Gaussian process xt,l ∼ (�x,�x),553

with mean �x ∶= [�(1)x , �
(2)
x ,⋯ , �(N)x ]⊤ and covariance �x.554

The probabilistic graphical model in Figure 8 summarizes the main components of the aforemen-555

tioned forward model. According to this forward model, the underlying noise covariance matrix that556

captures trial-to-trial variability can be identified as �x. The signal covariance matrix, representing557

the covariance of the neural activity arising from the repeated application of the stimulus st, is558

given by �s ∶= D⊤ cov
(

st, st
)

D, where D ∶= [d1,d2,⋯ ,dN ] ∈ ℝM×N . The signal and noise correlation559

matrices, denoted by S and N, can then be obtained by standard normalization of �s and �x:560

(S)i,j ∶=
(�s)i,j

√

(�s)i,i.(�s)j,j
, (N)i,j ∶=

(�x)i,j
√

(�x)i,i.(�x)j,j
, ∀i, j = 1, 2,⋯ , N.

The main problem is thus to estimate {�x,D} from the noisy and temporally blurred data
{

yt,l
}T ,L
t=1,l=1.561

Overview of the proposed estimation method562

First, given a limited number of trials L from an ensemble with typically low spiking rates, we need
to incorporate suitable prior assumptions to avoid overfitting. Thus, we impose a prior ppr(�x) on
the noise covariance, to compensate sparsity of data. A natural estimation method to estimate

{�x,D} in a Bayesian framework is to maximize the observed data likelihood p({yt,l}T ,Lt,l=1|�x,D), i.e.,
maximum likelihood (ML). Thus, we consider the joint likelihood of the observed data and latent
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Figure 8. Probabilistic graphical model of the proposed forward model. The fluorescence observations at the tth
time frame and lth trial: yt,l , are noisy surrogates of the intracellular calcium concentrations: zt,l. The calcium
concentration at time t is a function of the spiking activity nt,l , and the calcium activity at the previous time point
zt−1,l. The spiking activity is driven by two independent mechanisms: latent trial-dependent covariates xt,l , and
contributions from the known external stimulus st, which we model by D⊤st (in which the receptive field D is
unknown). Then, we model xt,l as a Gaussian process with constant mean �x, and unknown covariance �x.
Finally, we assume the covariance �x to have an inverse Wishart prior distribution with hyper-parameters  x
and �x. Based on this forward model, the inverse problem amounts to recovering the signal and noise
correlations by directly estimating �x and D (top layer) from the fluorescence observations

{

yt,l
}T ,L
t=1,l=1 (bottom

layer).

processes to perform Maximum a Posteriori (MAP) estimation:

p(y, z, x,�x|D)

= ppr(�x)
T ,L
∏

t,l=1

1
√

(2�)N |�w|
exp

(

−1
2
(yt,l − Azt,l)⊤�−1w (yt,l − Azt,l)

)

T ,L,N
∏

t,l,j=1

(

exp
(

x(j)t,l + dj
⊤st

))z(j)t,l −�z
(j)
t−1,l

1 + exp
(

x(j)t,l + dj
⊤st

)

T ,L
∏

t,l=1

1
√

(2�)N |�x|
exp

(

(

xt,l − �x
)⊤�−1x

(

xt,l − �x
)

)

(4)

Inspecting this MAP problem soon reveals that estimating �x and D is a challenging task: 1)563

standard approaches such as Expectation-Maximization (EM) (Shumway and Stoffer, 1982) are564

intractable due to the complexity of the model, arising from the hierarchy of latent processes and565

the non-linearities involved in their mappings, and 2) the temporal coupling of the likelihood in the566

calcium concentrations makes any potential direct solver scale poorly with T .567

Thus, we propose an alternative solution based on Variational Inference (VI) (Beal, 2003; Blei568

et al., 2017; Jordan et al., 1999). VI is a method widely used in Bayesian statistics to approximate569

unwieldy posterior densities using optimization techniques, as a low-complexity alternative strategy570

to Markov Chain Monte Carlo sampling (Hastings, 1970) or empirical Bayes techniques such as EM.571

To this end, we treat {xt,l}
T ,L
t,l=1 and �x as latent variables and {zt,l}

T ,L
t,l=1 andD as unknown parameters to572

be estimated. We introduce a framework to update the latent variables and parameters sequentially,573

with straightforward update rules. We will describe the main ingredients of the proposed framework574

in the following subsections. Hereafter, we use the shorthand notations y ∶= {yt,l}
T ,L
t,l=1, z ∶= {zt,l}

T ,L
t,l=1,575

and x ∶= {xt,l}
T ,L
t,l=1.576

Preliminary assumptions577

For the sake of simplicity, we assume that the constants �, A, �w and �x are either known or can be578

consistently estimated from pilot trials. For example, we assume A to be diagonal and estimate579

the diagonal elements based on the magnitudes of spiking events. Further, we estimate �x from580

the average firing rate and �w using the background fluorescence in the absence of spiking events.581

Next, we take ppr(�x) to be an Inverse Wishart density:582

�x ∼ InvWishN ( x, �x),
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which turns out to be the conjugate prior in our model. Thus,  x and �x will be the hyper-parameters583

of our model. It is noteworthy that although we fix �, it can be updated similar to the other two584

hyper-parameters for better accuracy. The details of the procedure followed for hyper-parameter585

tuning are given in the subsection Hyper-parameter tuning.586

Decoupling via Pólya-Gamma augmentation587

Direct application of VI to problems containing both discrete and continuous random variables588

results in intractable densities. Specifically, finding a variational distribution for xt,l in our model589

with a standard distribution is not straightforward, due to the complicated posterior arising from590

co-dependent Bernoulli and Gaussian random variables. In order to overcome this difficulty, we591

employ Pólya-Gamma (PG) latent variables (Pillow and Scott, 2012; Polson et al., 2013; Linderman592

et al., 2016). We observe from Equation 4 that the posterior density, p(x|z,D,�x) is conditionally593

independent in t, l with:594

p(xt,l|z,D,�x) ∝ p(xt,l|�x)
N
∏

j=1

(

exp
(

x(j)t,l + dj
⊤st

))z(j)t,l −�z
(j)
t−1,l

1 + exp
(

x(j)t,l + dj
⊤st

) .

Thus, upon careful inspection we see that this density has the desired form for the PG augmentation

scheme (Polson et al., 2013). Accordingly, we introduce a set of auxiliary PG-distributed i.i.d. latent
random variables !t,l ∶= [!

(1)
t,l , !

(2)
t,l ,⋯ , !(N)t,l ]

⊤, !(j)t,l ∼ PG(1, 0) for 1 ≤ j ≤ N , 1 ≤ t ≤ T and 1 ≤ l ≤ L, to
derive the complete data log-likelihood:

log p(y, z, x,!,�x|D)

= −TL
2
log |�x| + log ppr

(

�x
)

+
T ,L
∑

t,l=1

{

− 1
2
(

yt,l − Azt,l
)⊤ �−1w

(

yt,l − Azt,l
)

− 1
2
(

xt,l − �x
)⊤�−1x

(

xt,l − �x
)

+
N
∑

j=1

{(

z(j)t,l − �z
(j)
t−1,l −

1
2

)(

x(j)t,l + dj
⊤st

)

− 1
2
!(j)t,l

(

x(j)t,l + dj
⊤st

)2
+ log p

PG(1,0)

(

!(j)t,l
)}

}

+ C, (5)

where ! ∶=
{

!t,l
}T ,L
t,l=1 and C accounts for terms not depending on y, z, x,!, �x and D. The complete595

data log-likelihood is notably quadratic in zt,l, which as we show later admits efficient estimation596

procedures with favorable scaling in T .597

Deriving the optimal variational densities598

In this section, we will outline the procedure of applying VI to the latent variables x =
{

xt,l
}T ,L
t,l=1 ,! =599

{

!t,l
}T ,L
t,l=1 and �x, assuming that the parameter estimates ẑ and D̂ of the previous iteration are600

available. The methods that we propose to update the parameters ẑ and D̂ subsequently, will be601

discussed in the next section.602

The objective of variational inference is to posit a family of approximate densities  over the603

latent variables, and to find the member of that family that minimizes the Kullback-Leibler (KL)604

divergence to the exact posterior:605

q∗(x,!,�x|ẑ, D̂) = argmin
q∈

KL
(

q(x,!,�x|ẑ, D̂)
‖

‖

‖

p(x,!,�x|y, ẑ, D̂)
)

.

However, evaluating the KL divergence is intractable, and it has been shown (Blei et al., 2017) that606

an equivalent result to this minimization can be obtained by maximizing the alternative objective607

function, called the evidence lower bound (ELBO):608

ELBO (q) = E[log p(x,!,�x, y|ẑ, D̂)] − E[log q(x,!,�x|ẑ, D̂)].

Further, we assume  to be a mean-field variational family (Blei et al., 2017), resulting in the609

overall variational density of the form:610

q
(

x,!,�x
)

= q
(

�x
)

T ,L
∏

t,l=1

(

q
(

xt,l
)

N
∏

j=1
q
(

!(j)t,l
)

)

. (6)
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Under the mean field assumptions, the maximization of the ELBO can be derived using the opti-611

mization algorithm ‘Coordinate Ascent Variational Inference’ (CAVI) (Bishop, 2006; Blei et al., 2017).612

Accordingly, we see that the optimal variational densities in Equation 6 take the forms:613

log q∗
(

xt,l
)

∝ Eq∗(�x)q∗(!t,l)
[

log p
(

xt,l|!t,l,�x, y, ẑ, D̂
)]

log q∗
(

!(j)t,l
)

∝ Eq∗(xt,l)
[

log p
(

!(j)t,l |xt,l,�x, y, ẑ, D̂
)]

log q∗
(

�x
)

∝ Eq∗(x)
[

log p
(

�x|x, y, ẑ, D̂
)]

Upon evaluation of these expectations, we derive the optimal variational distributions as:

q∗(xt,l) ∼ (mxt,l ,Qxt,l ), q∗
(

!(j)t,l
)

∼ PG
(

1, c(j)t,l
)

, q∗(�x) ∼ InvWishN (Px, 
x).

whose parametersmxt,l ∶= [m
(1)
xt,l
, m(2)xt,l ,⋯ , m(N)xt,l

]⊤, Qxt,l , c
(j)
t,l , Px, and 
x can be updated given parameter

estimates D̂ and ẑ:

Qxt,l = (
̃t,l + 
xP−1x )
−1, mxt,l = Qxt,l

(

ẑt,l − �ẑt−1,l −
1
2
1 − 
̃t,l D̂⊤st + 
xP−1x �x

)

,

Px ∶=  x +
T ,L
∑

t,l=1

{

Qxt,l +mxt,lm
⊤
xt,l
− �xm⊤

xt,l
−mxt,l�

⊤
x + �x�

⊤
x

}

, c(j)t,l =

√

(

Qxt,l
)

j,j
+
(

m(j)xt,l + d̂
⊤
j st

)2
,

and 
x ∶= �x + TL, with 
̃t,l ∈ ℝN×N denoting a diagonal matrix with entries (
̃t,l)j,j ∶=
1

2c(j)t,l
tanh

( c(j)t,l
2

)

614

and 1 ∈ ℝN denoting the vector of all ones.615

Low-complexity parameter updates616

Note that even though z is composed of the latent processes zt,l, we do not use VI for its inference,617

and instead consider it as an unknown parameter. This choice is due to the temporal dependencies618

arising from the underlying state-space model in Equation 4, which hinders a proper assignment619

of variational densities under the mean field assumption. We thus seek to estimate both z and D620

using the updated variational density q∗(x,!,�x).621

First, note that the log-likelihood in Equation 5 is decoupled in l, which admits independent
updates to {zt,l}Tt=1, for l = 1,⋯ , L. As such, given an estimate D̂, we propose to estimate {zt,l}Tt=1 as:

{ẑt,l}Tt=1 = argmax
{zt,l}Tt=1

Eq∗(x,!,�x)
[

log p
(

y, z, x,!,�x|D̂
)]

= argmin
{zt,l}Tt=1

T
∑

t=1

{

1
2
(

yt,l − Azt,l
)⊤ �−1w

(

yt,l − Azt,l
)

−
N
∑

j=1

(

m(j)xt,l + d̂
⊤
j st

)(

z(j)t,l − �z
(j)
t−1,l

)

}

,

under the constraints 0 ≤ z(j)t,l − �z
(j)
t−1,l ≤ 1, for t = 1,⋯ , T and j = 1,⋯ , N . These constraints are622

a direct consequence of n(j)t,l = z
(j)
t,l − �z

(j)
t−1,l being a Bernoulli random variable with E

[

n(j)t,l
]

∈ [0, 1].623

While this problem is a quadratic program and can be solved using standard techniques, it is not624

readily decoupled in t, and thus standard solvers would not scale favorably in T .625

Instead, we consider an alternative solution that admits a low-complexity recursive solution626

by relaxing the constraints. To this end, we relax the constraint zt,l − �zt−1,l ⪯ 1 and replace the627

constraint zt,l − �zt−1,l ⪰ 0 by penalty terms proportional to |

|

|

z(j)t,l − �z
(j)
t−1,l

|

|

|

. The resulting relaxed628

problem is thus given by:629

min
{zt,l}Tt=1

T
∑

t=1

{

1
2
(

yt,l − Azt,l
)⊤ �−1w

(

yt,l − Azt,l
)

+
N
∑

j=1
�(j)t,l

|

|

|

z(j)t,l − �z
(j)
t−1,l

|

|

|

}

, (7)

where �(j)t,l ∶= � |m
(j)
xt,l + d̂

⊤
j st| with � ≥ 1 being a hyper-parameter. Given that the typical spiking rates630

are quite low in practice, m(j)xt,l + d̂
⊤
j st is expected to be a negative number. Thus, we have assumed631

that −m(j)xt,l − d̂
⊤
j st = |m(j)xt,l + d̂

⊤
j st|.632
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The problem of Equation 7 pertains to compressible state-space estimation, for which fast
recursive solvers are available (Kazemipour et al., 2018). The solver utilizes the Iteratively Re-
weighted Least Squares (IRLS) (Ba et al., 2014) framework to transform the absolute value in the
second term of the cost function into a quadratic form in zt,l, followed by Fixed Interval Smoothing
(FIS) (Rauch et al., 1965) to find the minimizer. At iteration k, given a current estimate z[k−1], the
problem reduces to a Gaussian state-space estimation of the form:

yt,l = Azt,l + wt,l, zt,l = �zt−1,l + vt,l, (8)

with wt,l ∼  (0,�w) and vt,l ∼  (0,�[k]vt,l ), where �
[k]
vt,l
∈ ℝN×N is a diagonal matrix with

(

�[k]vt,l
)

j,j ∶=633

√

(

ẑ(j)[k−1]t,l −�ẑ(j)[k−1]t−1,l

)2
+"2

/

�(j)t,l , for some small constant " > 0. This problem can be efficiently solved using634

FIS, and the iterations proceed for a total of K times or until a standard convergence criterion is met635

(Kazemipour et al., 2018). It is noteworthy that our proposed estimator of the calcium concentration636

zt,l can be thought of as soft spike deconvolution, which naturally arises from our variational637

framework, as opposed to the hard spike deconvolution step used in two-stage estimators.638

Finally, given q∗(x,!,�x) and the updated ẑ, the estimate of dj for j = 1, 2,⋯ , N can be updated
in closed-form by maximizing the expected complete log-likelihood Eq∗(x,!,�x)

[

log p(y, ẑ, x,!,�x|D)
]

:

d̂j =
( T ,L
∑

t,l=1

(

(
̃t,l)j,jstst⊤
)

)−1( T ,L
∑

t,l=1

{

(

ẑ(j)t,l − �ẑ
(j)
t−1,l −

1
2

)

st − (
̃t,l)j,jm(j)xt,l st
})

.

The VI procedure iterates between updating the variational densities and parameters until conver-639

gence, upon which we estimate the noise and signal covariances as:640

�̂x ∶= mode{q∗(�x)} =
Px


x +N + 1
, �̂s ∶= D̂⊤ E[stst⊤] D̂.

The overall combined iterative procedure is outlined in Algorithm 1. Furthermore, a MATLAB641

implementation of this algorithm is publicly available in Rupasinghe (2020).642

Model parameter settings643

Simulation study 1644

In the first simulation study, we set � = 0.98, � = 8, A = 0.1I, �x = −4.51 and �w = 2 × 10−4I (I ∈ ℝ8×8
645

represents the identity matrix and 1 ∈ ℝ8 represents the vector of all ones), so that the SNR of646

simulated data was in the same range as that of experimentally-recorded data. We used a 6th order647

autoregressive process with a mean of −1 as the stimulus (st), and consideredM = 2 lags of the648

stimulus (i.e., st = [st, st−1]⊤) in the subsequent analysis.649

Simulation study 2650

In the second simulation study, we set � = 0.98, A = 0.1I, �x = −4.51 and �w = 10−4I (I ∈ ℝ30×30
651

represents the identity matrix and 1 ∈ ℝ30 represents the vector of all ones) when generating the652

fluorescence traces
{

yt,l
}T ,L
t,l=1, so that the SNR of the simulated data was in the same range as of653

real calcium imaging observations. Furthermore, we simulated the spike trains based on a Poisson654

process (Smith and Brown, 2003) using the discrete time re-scaling procedure (Brown et al., 2002;655

Smith and Brown, 2003). Following the assumptions in Brown et al. (2002), we used an exponential656

link to simulate the observations:657

n(j)t,l ∼ Poisson
(

�(j)t,l
)

, �(j)t,l = exp
(

x(j)t,l
)

.

as opposed to the Bernoulli-logistic assumption in our recognition model. Then, we estimated the658

noise covariance �̂x using the Algorithm 1, with a slight modification. Since there are no external659

stimuli, we set st = 0 and D = 0. Accordingly, in Algorithm 1, we initialized D̂ = 0 and did not perform660

the update on D̂ in the subsequent iterations.661
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Algorithm 1 Estimation of �x and D through the proposed iterative procedure
Inputs: Ensemble of fluorescence measurements {yt,l}T ,Lt,l=1, constants �,A,�w and �x, hyper-parameters  x, �x,
� and �, tolerance at convergence � and the external stimulus stOutputs: �̂x and D̂Initialization: Initial choice of �vt,l , 
̃t, �̂x and D̂, residual = 10 �, 
x = �x + LT
1: while residual ≥ � do
Estimate calcium concentrations using Fixed Interval Smoothing

2: for l = 1,⋯ , L do
Forward filter:

3: for t = 1,⋯ , T do
4: z(t|t−1), l = � z(t−1|t−1), l
5: P(t|t−1), l = �2 P(t−1|t−1), l + �vt,l
6: Bt, l = P(t|t−1), lA⊤(A P(t|t−1), l A⊤ + �w)−1
7: z(t|t), l = z(t|t−1), l + Bt, l(yt,l − A z(t|t−1), l)
8: P(t|t), l = (I − Bt,l A)P(t|t−1), l
9: end for
Backward smoother:

10: for t = T − 1,⋯ , 1 do
11: ẑt,l = z(t|t),l + �P(t|t),lP−1(t+1|t),l(ẑt+1,l − z(t+1|t),l)
12: end for
13: end for
Update variational parameters

14: for t = 1,⋯ , T and l = 1,⋯ , L do
15: Qxt,l = (
̃t,l + 
xP

−1
x )

−1

16: mxt,l = Qxt,l
(

ẑt,l − �ẑt−1,l −
1
2 1 − 
̃t,l D̂

⊤st + 
xP−1x �x
)

17: �(j)t,l ∶= � |m
(j)
xt,l + d̂

⊤
j st|

18: for j = 1,⋯ , N do
19: c(j)t,l =

√

(

Qxt,l
)

j,j
+
(

m(j)xt,l + d̂
⊤
j st

)2

20: (
̃t,l)j,j ∶=
1

2c(j)t,l
tanh

( c(j)t,l
2

)

21: end for
22: end for
23: Px ∶=  x +

T ,L
∑

t,l=1
{Qxt,l +mxt,lm

⊤
xt,l
− �xm⊤

xt,l
−mxt,l�

⊤
x + �x�

⊤
x }

Update IRLS covariance approximation
24: for l = 1,⋯ , L, t = 1,⋯ , T and j = 1,⋯ , N do
25:

(

�vt,l
)

j,j ∶=
√

(

ẑ(j)t,l −�ẑ
(j)
t−1,l

)2
+"2

/

�(j)t,l
26: end for
Update outputs and the convergence criterion

27: for j = 1,⋯ , N do
28: d̂j =

(

T ,L
∑

t,l=1

(

(
̃t,l)j,jstst⊤
)

)−1( T ,L
∑

t,l=1

{

(

ẑ(j)t,l − �ẑ
(j)
t−1,l −

1
2

)

st − (
̃t,l)j,jm
(j)
xt,l st

}

)

29: end for
30: (D̂)prev = D̂, D̂ =

[

d̂1, d̂2,⋯ , d̂N
]

31: (�̂x)prev = �̂x, �̂x =
Px


x+N+1

32: residual = ‖(�̂x)prev − �̂x‖2∕‖(�̂x)prev‖2 + ‖(D̂)prev − D̂‖2∕‖(D̂)prev‖2

33: end while
34: Return �̂x and D̂
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Real data study 1662

The dataset consisted of recordings from 371 excitatory neurons, from which we selected N = 16663

neurons with high level of activity for the analysis. Each trial consisted of T = 3600 time frames (the664

sampling frequency was 30 Hz, and each trial had a duration of 120 seconds), with the presentation665

of a random sequence of four tones. The spiking events were very sparse and infrequent, and666

hence this dataset fits our model with at most one spiking event in a time frame.667

We encoded the stimulus in this experiment based on the tone onsets of the four tones. Suppose668

that the tone onset of the pth tone (p = 1,⋯ , P , where P = 4) is given by the binary sequence f (p)t ∈ ℝT .669

We assumed that the response at each time t depends only on the R most recent time lags of670

the stimulus. For each time t, we formulated the effective stimulus corresponding to the tone671

p: s(p)t ∈ ℝR, using the R recent lags of the tone onset sequence f (p)t starting at t. Likewise, we672

encoded all P tones, and then formulated the overall effective stimulus at the ttℎ time frame,673

st ∶= [s
(1)
t
⊤
,⋯ , s(P )t

⊤
]⊤RP×1. Note that the weight vector dj would beM = R × P dimensional under this674

setting. Further, based on the duration of the tones and silent periods, we considered R = 25 time675

lags in this analysis.676

We set � = 0.95 and A = I (I ∈ ℝ16×16 represents the identity matrix), after considering the677

magnitude of the spiking events in observations. Further, we estimated �x by a linear function678

of average fluorescence activity. Finally, we assumed that the observation noise covariance �w is679

diagonal, and estimated the diagonal elements using the background fluorescence in the absence680

of spiking events.681

Real data study 2682

Each trial consisted of T = 765 frames (25.5 seconds) at a sampling frequency of 30 Hz. The layer683

2/3 auditory neurons, are known to exhibit spiking rates < 5 Hz (e.g., Fig. 2-F in Petrus et al. (2014)),684

which makes the Bernoulli spiking assumption plausible for the dataset considered. Further, the685

auditory neurons studied here had notably low response rates (in both time and space), with only686

∼ 10 neurons exhibiting meaningful response. Thus, we selected N = 10 neurons with the highest687

level of activity and L = 10 trials for the analysis, and choseM = 40 lags of the stimulus in the model688

for the stimulus-driven condition.689

We set � = 0.95 and A = 0.75I (I ∈ ℝ10×10 represents the identity matrix), considering the690

magnitude of the spiking events in fluorescence observations. We used the same methods as in691

the first real data study to determine the optimal settings of �x and �w.692

Real data study 3693

Each experiment consisted of L = 5 trials of P = 9 different tone frequencies repeated at 4 different694

amplitude levels, resulting in each concatenated trial being ∼ 180 second long (see Bowen et al.695

(2020) for more details). We used the same procedure as in the first real data study to encode this696

stimulus, setting the number of time lags to be R = 25. For each layer, we analyzed fluorescence697

observations from six experiments. In each experiment, we selected the most responsive N ∼ 20698

neurons for the subsequent analysis.699

We set � = 0.95, A = I and used the same methods as in the previous two studies to determine700

the optimal settings of �x and �w in each experiment.701

Performance evaluation702

Simulation studies703

Since the ground truth is known in simulations, we directly compared the performance of each signal704

and noise correlation estimate with the ground truth signal and noise correlations, respectively.705

Suppose the ground truth correlations are given by the matrix X and the estimated correlations are706

given by the matrix X̂. To quantify the similarity between X and X̂, we defined the following two707

metrics:708
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Normalized Mean Squared Error (NMSE): The NMSE computes the mean squared error of X̂ with709

respect to X using the Frobenius Norm:710

NMSE ∶=
‖X − X̂‖2F
‖X‖2F

.

Ratio between out-of-network power and in-network power (leakage): First, we identified the in-711

network and out-of-network components from the ground truth correlation matrix X. Suppose712

that if the true correlation between the ith neuron and the j th neuron is non-zero, then ||
|

(X)i,j
|

|

|

> �x,713

for some �x > 0. Thus, we formed a matrix Xin that masks the in-network components, by setting714

(

Xin
)

i,j = 1 if
|

|

|

(X)i,j
|

|

|

> �x and
(

Xin
)

i,j = 0 if
|

|

|

(X)i,j
|

|

|

≤ �x. Likewise, we also formed a matrix Xout that715

masks the out-of-network components, by setting
(

Xout
)

i,j = 1 if ||
|

(X)i,j
|

|

|

≤ �x and
(

Xout
)

i,j = 0 if716

|

|

|

(X)i,j
|

|

|

> �x. Then, using these two matrices we quantified the leakage effect of X̂ comparative to X717

by:718

leakage ∶=
‖X̂ ⋅ Xout

‖

2
F

‖X̂ ⋅ Xin
‖

2
F

,

where (⋅) denotes element-wise multiplication.719

Real data studies720

To quantify the similarity and dissimilarity between signal and noise correlation estimates, we721

used a statistic based on the Tanimoto similarity metric (Lipkus, 1999), denoted by Ts(X,Y) for722

two matrices X and Y. For two vectors a and b with non-negative entries, the Tanimoto coefficient723

(Lipkus, 1999) is defined as:724

T (a,b) ∶= a⊤b
a⊤a + b⊤b − a⊤b

.

The Tanimoto similarly metric between two matrices can be defined in a similar manner, by725

vectorizing the matrices. Thus, we formulated a similarity metric between two correlation matrices726

X and Y as follows. Let X+ ∶= max{X, 0I} and X− ∶= max{−X, 0I}, with the max{⋅, ⋅} operator727

interpreted element-wise. Note that X = X+ − X−, and X+,X− have non-negative entries. We then728

defined the similarity matrix by combining those of the positive and negative parts as follows:729

Ts(X,Y) ∶= " T (X+,Y+) + (1 − ") T (X−,Y−)

where " ∈ [0, 1] denotes the percentage of positive entries in X and Y. As a measure of dissimilarity,730

we used Td(X,Y) ∶= 1 − Ts(X,Y). The values of Td(Ŝ, N̂) in Table 1 and Ts(N̂spon, N̂stim) and Td(Ŝstim, N̂stim)731

reported in Table 2 were obtained based on the foregoing definitions.732

To further assess the statistical significance of these results, we performed following randomized733

tests. To test the significance of Ts(N̂spon, N̂stim), for each comparison and each algorithm, we fixed the734

first matrix (i.e. N̂spon) and randomly shuffled the entries of the second one (N̂stim in both cases) while735

respecting symmetry. We repeated this procedure for 10000 trials, to derive the null distributions736

that represented the probabilities of chance occurrence of similarities between two random groups737

of neurons.738

To test the significance of Td(Ŝ, N̂) and Td(Ŝstim, N̂stim), for each comparison and each algorithm,739

again we fixed the first matrix (i.e. signal correlations). Then, we formed the elements of the740

second matrix (akin to noise correlations) as follows. For each element of the second matrix, we741

assigned either the same element as the signal correlations (in order to model the leakage effect)742

or a random noise (with same variance as the elements in the noise correlation matrix) with equal743

probability. As before, we repeated this procedure for 10000 trials, to derive the null distributions744

that represent the probabilities of chance occurrence of dissimilarities between two matrices that745

have some leakage between them.746

24 of 45

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.11.434932doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434932
http://creativecommons.org/licenses/by/4.0/


Hyper-parameter tuning747

The hyper-parameters that directly affect the proposed estimation are the inverse Wishart prior748

hyper-parameters:  x and �x. Given that �x appears in the form of 
x ∶= TL+�x, we will consider  x749

and 
x as the main hyper-parameters for simplicity. Here, we propose a criterion for choosing these750

two hyper-parameters in a data-driven fashion, which will then be used to construct the estimates751

of the noise covariance matrix �̂x and weight matrix D̂. Due to the hierarchy of hidden layers in752

our model, an empirical Bayes approach for hyper-parameter selection using a likelihood-based753

performance metric is not straightforward. Hence, we propose an alternative empirical method for754

hyper-parameter selection as follows.755

For a given choice of  x and 
x, we estimate �̂x and D̂ following the proposed method. Then,756

based on the generative model in Proposed forward model, and using the estimated values of �̂x757

and D̂, we sample an ensemble of simulated fluorescence traces ŷ =
{

ŷ(l)t
}T ,L
t,l=1, and compute the758

metric d
(

 x, 
x
)

:759

d
(

 x, 
x
)

∶= Dfrob

(

cov(ŷ, ŷ), cov(y, y)
)

,

where cov(⋅) denotes the empirical covariance and Dfrob(X,Y) ∶= ‖X − Y‖2F . Note that Dfrob(X,Y)760

is strictly convex in X. Thus, minimizing Dfrob (X,Y) over X for a given Y has a unique solution.761

Accordingly, we observe that d
(

 x, 
x
)

is minimized when cov(ŷ, ŷ) is nearest to cov(y, y). Therefore,762

the corresponding estimates �̂x and D̂ that generated ŷ, best match the second-order statistics of y763

that was generated by the true parameters �x and D.764

The typically low spiking rate of sensory neurons observed in practice may render the estimation765

problem ill-posed. It is thus important to have an accurate choice of the scale matrix  x in the766

prior distribution. However, an exhaustive search for optimal tuning of  x is not computationally767

feasible, given that it has N(N + 1)∕2 free variables. Thus, the main challenge here is finding the768

optimal choice of the scale matrix  x,opt.769

To address this challenge, we propose the following method. First, we fix  x,init = �I, where � is a770

scalar and I ∈ ℝN×N is the identity matrix. Next, given  x,init we find the optimal choice of 
x as:771


x,init = argmin

x∈


d( x,init, 
x) ,

where 
 is a finite set of candidate solutions for 
x > N − 1. Let �̂x,init denote the noise covariance772

estimate corresponding to hyper-parameters
(

 x,init, 
x,init
)

. We will next use �̂x,init to find a suitable773

choice of  x. To this end, we first fix 
x,opt ∶= TL + �̃x, for some N − 1 < �̃x ≪ TL. Note that by774

choosing �̃x to be much smaller than TL, the final estimates become less sensitive to the choice of775


x. Then, we construct a candidate set  for  x,opt by scaling �̂x,init with a finite set of scalars � ∈ ℝ+:776

 =
{

��̂x,init, � ∈ ℝ+
}

. To select  x,opt, we match it with the choice of 
x,opt by solving:777

 x,opt = argmin
 x∈ 

d
(

 x, 
x,opt
)

.

Finally, we use these hyper-parameters
(

 x,opt, 
x,opt
)

to obtain the estimators �̂x and D̂ as the output778

of the algorithm.779

Experimental procedures780

All procedures were approved by the University of Maryland Institutional Animal Care and Use781

Committee. Imaging experiments were performed on a P60 (for real data study 1) and P83 (for real782

data study 2) female F1 offspring of the CBA/CaJ strain (The Jackson Laboratory; stock #000654)783

crossed with transgenic C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J mice (The Jackson Laboratory;784

stock #024275) (CBAxThy1), and F1 (CBAxC57). The third real data study was performed on data785

from P66-P93 and P166-P178 mice (see Bowen et al. (2020) for more details). We used the F1786

generation of the crossed mice because they have good hearing into adulthood (Frisina et al.,787

2011).788

25 of 45

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.11.434932doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434932
http://creativecommons.org/licenses/by/4.0/


We performed cranial window implantation and 2-photon imaging as previously described in789

Francis et al. (2018); Liu et al. (2019); Bowen et al. (2019). Briefly, we implanted a cranial window790

of 3 mm in diameter over the left auditory cortex. We used a scanning microscope (Bergamo II791

series, B248, Thorlabs) coupled to Insight X3 laser (Spectra-physics) (study 1) or pulsed femtosecond792

Ti:Sapphire 2-photon laser with dispersion compensation (Vision S, Coherent) (studies 2 and 3) to793

image GCaMP6s fluorescence from individual neurons in awake head-fixed mice with an excitation794

wavelengths of � = 920 nm and � = 940 nm, respectively. The microscope was controlled by795

ThorImageLS software. The size of the field of view was 370 × 370 �m. Imaging frames of 512 × 512796

pixels (pixel size 0.72 �m) were acquired at 30 Hz by bidirectional scanning of an 8 kHz resonant797

scanner. The imaging depth was around 200 �m below pia. A circular ROI was manually drawn over798

the cell body to extract fluorescence traces from individual cells.799

Stimuli for real data study 1800

During imaging experiments, we presented 4 tones (4, 8, 16 and 32 kHz) at 70 dB SPL. The tones801

were 2 s in duration with an inter-trial silence of 4 s. For the sequence of tones, we first generated802

a randomized sequence that consisted of 5 repeats for each tone (20 tones in total) and then the803

same sequence was repeated for 10 trials.804

Stimuli for real data study 2805

During imaging experiments, we presented 97 repetitions of a 75 dB SPL 100ms broadband noise806

(4–48 kHz; 8 s inter-stimulus intervals). Spontaneous neuronal activity was collected from activity807

during 113 randomly interleaved periods of silence (8.1 s) between 1 s long noise presentations.808

Stimuli for real data study 3809

During imaging experiments, sounds were played at four sound levels (20, 40, 60, and 80 dB SPL).810

Auditory stimuli consisted of sinusoidal amplitude-modulated (SAM) tones (20 Hz modulation,811

cosine phase), ranging from 3–48 kHz. The frequency resolution was 2 tones/octave (0.5 octave812

spacing) and each of these tonal stimuli was 1 s long, repeated five times with a 4—6 s inter-stimulus813

interval (see Bowen et al. (2020) for details).814
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Appendix 11038

Relationship to existing definitions of Signal and Noise correlations1039

Recall that the conventional definitions of signal and noise covariance of spiking activity

between the ith and j th neuron are (Lyamzin et al., 2015):

(�con
s )i,j =cov

(

1
L
∑

l
n(i)t,l ,

1
L
∑

l
n(j)t,l

)

,

(�con
x )i,j =

1
L
∑

l
cov

(

n(i)t,l−
1
L
∑

l
n(i)t,l , n

(j)
t,l −

1
L
∑

l
n(j)t,l

)

,

where cov
(

ut, vt
)

∶= 1
T

∑T
t=1

(

ut −
1
T

∑T
t=1 ut

)(

vt −
1
T

∑T
t=1 vt

)⊤
, is the empirical covariance. The

correlations, are then derived by the standard normalization:

(Scon)i,j ∶=
(�con

s )i,j
√

(�con
s )i,i.(�con

s )j,j
, (Ncon)i,j ∶=

(�con
x )i,j

√

(�con
x )i,i.(�con

x )j,j
, ∀i, j = 1, 2,⋯ , N. (9)

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

Suppose that the spiking events follow the forward model:

n(j)t,l ∼ Bernoulli
(

�(j)t,l
)

,

�(j)t,l = �
(

x(j)t,l ,dj
⊤st

)

,

where � ∶ ℝ2 → [0, 1] is a differentiable non-linear mapping. We assume xt,l and st to be
independent. Without loss of generality, let E

[

st
]

= 0 and E
[

xt,l
]

= �x . Further, we define

the notation Xt ≈ Yt to denote almost sure equivalence, i.e., Xt
a.s.

←←←←←←←←←←←←→ Z and Yt
a.s.

←←←←←←←←←←←←→ Z for some
random variable Z.

1050

1051

1052

1053

1054

1055

1056

1057

First, let us consider (Scon)i,j . Noting that E
[

n(j)t,l
]

= E
[

�(j)t,l
]

and E
[

n(i)t,ln
(j)
t,l

]

= E
[

�(i)t,l�
(j)
t,l

]

, we

conclude as T →∞:

(�con
s )i,j ≈ cov

(

1
L
∑

l
�(i)t,l ,

1
L
∑

l
�(j)t,l

)

,

from the law of large numbers. Then, if we consider the Taylor series expansion of

�
(

x(j)t,l ,dj
⊤st

)

around the mean (�(j)x , 0), we get:

(�con
s )i,j ≈ cov

(

�
(

�(i)x , 0
)

+ 1
L
∑

l

(

x(i)t,l − �
(i)
x

)

�(

x(i)t,l
)

(

�(i)x , 0
)

+
(

di
⊤st

)

�(di⊤st)
(

�(i)x , 0
)

+ �(i)t,l ,

�
(

�(j)x , 0
)

+ 1
L
∑

l

(

x(j)t,l − �
(j)
x

)

�(

x(j)t,l
)

(

�(j)x , 0
)

+
(

dj
⊤st

)

�(dj⊤st)
(

�(j)x , 0
)

+ �(j)t,l

)

,

where �(i)t,l and �
(j)
t,l represent the higher order terms. Then, as L→ ∞, we get:

(�con
s )i,j ≈cov

(

(

di
⊤st

)

�(di⊤st)
(

�(i)x , 0
)

,
(

dj
⊤st

)

�(dj⊤st)
(

�(j)x , 0
)

)

+ �t,l,

since lim
L→∞

1
L

L
∑

l=1

(

x(j)t,l
)

= �(j)x by the Law of Large numbers. Thus, we see that:

(�con
s )i,j ≈ CSdi

⊤ cov
(

st, st
)

dj
⊤ + �t,l

= CS (�s)i,j + �t,l,

where CS is a constant and �t,l is typically small if the latent process xt,l and the stimulus
st are concentrated around their means. Then, the signal correlations are obtained by
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normalization of the signal covariance as in Equation 9, through which the scaling factor CS
cancels and we get:

(Scon)i,j ≈ (S)i,j .

Thus, as T , L→ ∞, we see that S is indeed the signal correlation matrix that is aimed to be
approximated by the conventional definitions.

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

Next, let us consider (Ncon)i,j . Similar to foregoing analysis of the signal covariance, as
T →∞ we get:

(�con
x )i,j ≈

1
L
∑

l
cov

(

�(i)t,l−
1
L
∑

l
�(i)t,l , �

(j)
t,l −

1
L
∑

l
�(j)t,l

)

.

Then, from a Taylor series expansion, we get:

(�con
x )i,j ≈

1
L
∑

l
cov

(

x(i)t,l�
(

x(i)t,l
)

(

�(i)x , 0
)

− 1
L
∑

l
x(i)t,l�

(

x(i)t,l
)

(

�(i)x , 0
)

+ �(i)t,l ,

x(j)t,l �
(

x(j)t,l
)

(

�(j)x , 0
)

− 1
L
∑

l
x(j)t,l �

(

x(j)t,l
)

(

�(j)x , 0
)

+ �(j)t,l

)

,

where �(i)t,l and �
(j)
t,l represent the higher order terms. Then, as L→ ∞:

(�con
x )i,j ≈

1
L
∑

l
cov

(

(

x(i)t,l − �
(i)
x

)

�(

x(i)t,l
)

(

�(i)x , 0
)

,
(

x(j)t,l − �
(j)
x

)

�(

x(j)t,l
)

(

�(j)x , 0
)

)

+ �t,l,

from the law of large numbers. Accordingly, we see that:

(�con
x )i,j ≈ CN

1
L
∑

l
cov

(

x(i)t,l − �
(i)
x , x

(j)
t,l − �

(j)
x

)

+ �t,l

= CN (�x)i,j + �t,l,

where CN is a constant and �t,l is typically small if the latent process xt,l and the stimulus st are
concentrated around their means. Then, the noise correlations are derived by normalization

of the noise covariance given in Equation 9. This cancels out the scaling factor CN , and we
get:

(Ncon)i,j ≈ (N)i,j .

Thus, we similarly conclude that as T , L→ ∞, the conventional definition of noise correlation
Ncon indeed aims to approximate N.

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

As a numerical illustration, we demonstrated in Figure 2–Figure Supplement 2 that the
conventional definitions of the correlations indeed approximate our proposed definitions,

but require much larger number of trials to be accurate. More specifically, in order to achieve

comparable performance to our method using L = 20 trials, the conventional correlation
estimates require L = 1000 trials.
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Appendix 21116

Proof of Theorem 11117

In what follows, we present a comprehensive proof of Theorem 1. Recall the following key

assumptions:

1118

1119

Assumption (1). We assume a scalar time-varying external stimulus (i.e. st = st, and hence
dj = dj ,d = [d1, d2,⋯ , dN ]⊤ ). Furthermore, we set the observation noise covariance to be
�w = �2wI, for notational convenience.

1120

1121

1122

Assumption (2). We derive the performance bounds in the regime where T and L are
large, and thus do not impose any prior distribution on the correlations (i.e., ppr(�x) ∝ 1),
which are otherwise needed to mitigate overfitting (see Methods and Materials).

1123

1124

1125

Assumption (3). We assume the latent noise process and stimulus to be slowly varying
signals, and thus adopt a piece-wise constant model in which these processes are constant

within consecutive windows of lengthW (i.e., xt,l = xWk ,l and st = sWk
, for (k−1)W +1 ≤ t < kW

and k = 1,⋯ , K withWk = (k−1)W +1 and KW = T ) for our theoretical analysis, as is usually
done in spike count calculations for conventional noise correlation estimates.

1126

1127

1128

1129

1130

Proof of Theorem 1. First, recall the proposed forward model (see Methods and Materials)
under Assumption (1)–(3):

yt,l = Azt,l + wt,l,

zt,l = � zt−1,l + nt,l,

n(j)t,l ∼ Bernoulli
(

�
(

x(j)Wk ,l

))

,

xWk ,l ∼
(

�x + sWk
d, �x

)

,

where � (⋅) ∶= exp(⋅)
1+exp(⋅)

, is the logistic function. Note that we have re-defined the latent process

xt,l by absorbing the stimulus activity std to the mean of xt,l for notational convenience,
without loss of generality. Hereafter, we also assume that A = I without loss of gener-
ality. For a truncation level B (to be specified later), consider the event AW =

{

|

|

|

x(j)Wk ,l
|

|

|

≤

B and 1
2(1+exp (B))

≤ n(j)Wk ,l
≤ 1 − 1

2(1+exp (B))
for j = 1,⋯ , N, k = 1,⋯ , K and l = 1,⋯ , L

}

, such that

nWk ,l =
[

n(1)Wk ,l
, n(2)Wk ,l

,⋯ , n(N)Wk ,l

]⊤
∶= 1

W

∑W
w=1 n(k−1)W +w,l. First, we derive convenient forms of the

maximum likelihood estimators via the Laplace’s approximations and asymptotic expansions

(Wong, 2001) through the following lemma:

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

Lemma 1. Conditioned on event AW , the maximum likelihood estimators of the stimulus kernel
of the jth neuron and the noise covariance between the ith and jth neurons take the forms:

d̂j = d̃j
(

1 + 
(

�2w
))

(

1 + 
( 1
W

))

and
(�̂x)i,j = (�̃x)i,j

(

1 + 
(

�2w
))

(

1 + 
( 1
W

))

,

where

d̃j =
1

L
∑K

k=1 s
2
Wk

K,L
∑

k,l=1
sWk

(

�−1
(

ñ(j)Wk ,l

)

− �(j)x
)

and

(�̃x)i,j =
1
KL

K,L
∑

k,l=1

(

�−1
(

ñ(i)Wk ,l

)

− �(i)x − sWk
d̃i

)(

�−1
(

ñ(j)Wk ,l

)

− �(j)x − sWk
d̃j

)

,

with ñWk ,l =
[

ñ(1)Wk ,l
, ñ(2)Wk ,l

,⋯ , ñ(N)Wk ,l

]⊤
∶= 1

W

∑W
w=1

(

y(k−1)W +w,l − �y(k−1)W +w−1,l
) and �−1(z) ∶= ln(z∕(1−

z)).
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1152

1153

1154

34 of 45

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.11.434932doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434932
http://creativecommons.org/licenses/by/4.0/


Proof of Lemma 1. First, maximizing the data likelihood, we derive the estimators:

d̂j = argmax
dj

p(y|�x,d) =
∫
(

1
L
∑K
k=1 s

2
Wk

∑K,L
k,l=1 sWk

(

x(j)Wk ,l
− �(j)x

)

)

p(y|n)p(n|x)p(x|�x,d) dndx

∫ p(y|n)p(n|x)p(x|�x,d) dndx
,

(10)

and

(�̂x)i,j = argmax
(�x)i,j

p(y|�x,d) =
∫
(

1
KL

∑K,L
k,l=1

(

x(i)Wk,l
−�(i)x −sWk d̂i

)(

x(j)Wk,l
−�(j)x −sWk d̂j

))

p(y|n)p(n|x)p(x|�x ,d) dndx

∫ p(y|n)p(n|x)p(x|�x ,d) dndx
.

(11)

where Wk = (k − 1)W + 1. Then, we simplify these integrals based on the saddle point
method of asymptotic expansions (Wong, 2001). To that end, first consider the numerator of
Equation 10 denoted by I (1)

num
. First, we evaluate the integration in I (1)

num
with respect to the

variable n. To that end, note:

I (1)
num

= ∫ ℎ(1)
num

(n) exp
(

A1f1(n)
)

dn,

where ℎ(1)
num

(n) = 1
√

(2�)TNL�2TNLw

∫
(

1
L
∑K
k=1 s

2
Wk

∑K,L
k,l=1 sWk

(

x(j)Wk ,l
− �(j)x

)

)

p(n|x)p(x|�x,d) dx, A1 =

1
�2w
, f1(n) = −

1
2

∑

t,l,j

(

y(j)t,l −
∑t

k=1 �
t−kn(j)t,l

)2
and dn is shorthand notation for the product mea-

sure of the discrete random vector n. Observing that∇f1(n̂) = 0 for n̂ ∶=
{

n̂t,l = yt,l − �yt−1,l
}T ,L
t,l=1,

using the method of asymptotic expansions, I (1)
num
can be evaluated as:

I (1)
num

= ℎ(1)
num

(n̂) × exp (A1f1(n̂))

√

(2�)TLN

−A1 ||H(f1)||

(

1 + 
(

1
A1

))

, (12)

where the determinant of the Hessian matrix |
|

H(f1)||, is a negative function of �. Note that
the covariance of this Gaussian integral

(

−(H(f1))−1
)

is a function of � ∈ (0, 1), and hence
is bounded. Thus, all higher order error terms in Equation 12 are also bounded, as higher
order moments of Gaussian distributions are functions of the covariance.

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

Next, we simplify the integral ℎ(1)
num

(n̂) in Equation 12 using a similar procedure. We have:

ℎ(1)
num

(n̂) = ∫ r(1)
num

(x) exp
(

A2f2(x)
)

dx, (13)

where f2(x) =
∑

k,l,j

(

ñ(j)Wk ,l
x(j)Wk ,l

− log
(

1 + exp
(

x(j)Wk ,l

)))

with ñWk ,l =
[

ñ(1)Wk ,l
, ñ(2)Wk ,l

,⋯ , ñ(N)Wk ,l

]⊤
∶=

1
W

∑W
w=1 n̂(k−1)W +w,l, r

(1)
num

(x) = 1
√

(2�)(W +1)KLN�2TNLw |Σx|KL
exp

(

− 1
2

∑

t

(

xWk ,l − �x − sWk
d
)⊤ Σ−1x

(

xWk ,l − �x − sWk
d
)

)

×
(

1
L
∑K
k=1 s

2
Wk

∑K
k=1 sWk ,l

(

x(j)Wk ,l
− �(j)x

)

)

and A2 = W . Then, we note that the gradient of f2,

∇f2(x̂) = 0 for x̂ ∶=
{

x̂(j)Wk ,l
= �−1

(

ñ(j)Wk ,l

)}K,L,N

k,l,j=1
, where �−1(z) ∶= logit(z) = ln(z∕(1 − z)). Accord-

ingly, by re-applying the saddle point method of asymptotic expansions, we evaluate the

integral in Equation 13 as:

ℎ(1)
num

(n̂) = r(1)
num

(x̂) × exp (A2f2(x̂))

√

(2�)KLN

−A2|H(f2(x̂))|

(

1 + 
(

1
A2

))

, (14)

where the determinant of the Hessian, |H(f2(x̂))| = −
∏

k,l,j ñ
(j)
Wk ,l

(

1 − ñ(j)Wk ,l

)

< 0 when condi-
tioned on eventAW . The higher order terms in Equation 14will be bounded if the covariance
of the saddle point approximation

(

−(H(f2(x̂)))−1
)

is bounded, which we ensure by condi-

tioning on event AW . This completes the evaluation of I
(1)
num
.
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Following the same sequence of arguments, we evaluate the denominator of Equation 10
denoted by I (1)

den
. Accordingly, we derive:

I (1)
den

= ℎ(1)
den
(n̂) × exp (A1f1(n̂))

√

(2�)TLN
−A1|H(f1)|

(

1 + 
(

1
A1

))

,

ℎ(1)
den
(n̂) = r(1)

den
(x̂) × exp (A2f2(x̂))

√

(2�)KLN

−A2|H(f2(x̂))|

(

1 + 
(

1
A2

))

, (15)

where r(1)
den
(x) = 1

√

(2�)(W +1)KLN�2TNLw |Σx|KL
exp

(

− 1
2

∑

k,l

(

xWk ,l − �x − sWk
d
)⊤ Σ−1x

(

xWk ,l − �x − sWk
d
)

)

.

Finally, by combining Equation 12, Equation 14 and Equation 15, the maximum likelihood
estimator in Equation 10 takes the form:

d̂j =
I (1)
num

I (1)
den

= d̃j

(

1 + 
(

1
A1

))(

1 + 
(

1
A2

))

(

1 + 
(

1
A1

))(

1 + 
(

1
A2

)) = d̃j
(

1 + 
(

�2w
))

(

1 + 
( 1
W

))

.

Further, following the same sequence of reasoning, simplifying the numerator (I (2)
num

) and
denominator (I (2)

den
) of Equation 11 yields:

(�̂x)i,j =
I (2)
num

I (2)
den

= (�̃x)i,j

(

1 + 
(

1
A1

))(

1 + 
(

1
A2

))

(

1 + 
(

1
A1

))(

1 + 
(

1
A2

)) = (�̃x)i,j
(

1 + 
(

�2w
))

(

1 + 
( 1
W

))

.

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

This concludes the proof of Lemma 1.1214

Given that �−1(z) is unbounded for z = 0 or z = 1, we consider another truncation:
�−1B′ (z) ∶= min{max{�

−1(z),−B′}, B′}, where B′ = 2 log (2 exp (B) + 1). This choice of B′ guaran-

tees that over AW ,
|

|

|

|

�−1B′
(

n(j)Wk ,l

)

|

|

|

|

< B′ for all j = 1,⋯ , N , k = 1,⋯ , K and l = 1,⋯ , L: and thus

�−1B′
(

n(j)Wk ,l

)

= �−1
(

n(j)Wk ,l

)

on AW .

1215

1216

1217

1218

From Lemma 1, the bias and variance of the maximum likelihood estimators, d̂j and
(�̂x)i,j are upper-bounded, if those of d̃j and (�̃x)i,j are bounded:

|

|

|

|

bias
(

d̂j
)

|

|

|

|

≤
|

|

|

|

bias
(

d̃j
)

|

|

|

|

+ �j , Var
(

d̂j
)

≤ Var
(

d̃j
)

+ �̃j , (16)

and
|

|

|

|

bias
(

(�̂x)i,j
)

|

|

|

|

≤
|

|

|

|

bias
(

(�̃x)i,j
)

|

|

|

|

+ �i,j , Var
(

(�̂x)i,j
)

≤ Var
(

(�̃x)i,j
)

+ �̃i,j , (17)

where �j , �̃j , �i,j and �̃i,j represent terms that are (�2w) or 
(

1
W

)

. Thus, we seek to derive the

performance bounds of d̃j and (�̃x)i,j .

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

Bounding the bias of d̂j1230

Let us first consider d̃j . Note that:

|

|

|

|

bias
(

d̃j
)

|

|

|

|

∶=
|

|

|

|

E
[

d̃j
]

− dj
|

|

|

|

(a)
=
|

|

|

|

E
[

d̃j −
(

d
Oracle

)

j

]

|

|

|

|

(b)
≤ 1
L
∑K

k=1 s
2
Wk

K,L
∑

k,l=1

|

|

|

sWk

|

|

|

E
[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

(18)
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where (a) holds since the Oracle estimator,
(

d
Oracle

)

j =
1

L
∑K
k=1 s

2
Wk

∑K,L
k,l=1 sWk

(

x(j)Wk ,l
− �(j)x

)

(i.e.,

observing xt,l directly) is unbiased and (b) follows through the application of Jensen’s inequal-
ity and triangle inequality. To simplify this bound, the triangle inequality yields:

E
[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

≤ E
[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(j)Wk ,l

)

|

|

|

|

]

+ E
[

|

|

|

|

�−1B′
(

n(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

. (19)

Then, to bound each of these terms, we establish a piece-wise linear Lipschitz-type bound on

�−1B′ (z). First, consider the first term E
[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(j)Wk ,l

)

|

|

|

|

]

. We seek to upper-bound

this expectation by bounding
|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(j)Wk ,l

)

|

|

|

|

via the following technical lemma:.

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

Lemma 2. Conditioned on event AW , the following bound holds for all j = 1,⋯ , N , k = 1,⋯ , K
and l = 1,⋯ , L:

"
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

∶=
|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(j)Wk ,l

)

|

|

|

|

≤ g (B) ||
|

ñ(j)Wk ,l
− n(j)Wk ,l

|

|

|

,

where
g (B) = max

{

4 (1 + exp (B))2 , 4 exp (−B) log (2 exp (B) + 1)
(

1 + (2 exp (B) + 1)2
)}

.

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

Proof of Lemma 2. First, consider the case n(j)Wk ,l
≤ 0.5. We bound the function "

(

ñ(j)Wk ,l
, n(j)Wk ,l

)

in a piece-wise fashion as follows. Note that �−1B′
(

ñ(j)Wk ,l

)

is convex for ñ(j)Wk ,l
≥ 0.5 and concave

for ñ(j)Wk ,l
≤ 0.5. Thus, it immediately follows that for ñ(j)Wk ,l

≤ n(j)Wk ,l
, "

(

ñ(j)Wk ,l
, n(j)Wk ,l

)

is convex and

hence:

"
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

≤

|

|

|

|

B′ + �−1B′
(

n(j)Wk ,l

)

|

|

|

|

|

|

|

n(j)Wk ,l
− 1

1+exp(B′)
|

|

|

(

n(j)Wk ,l
− ñ(j)Wk ,l

)

. (20)

1254

1255

1256

1257

1258

1259

1260

Furthermore, for n(j)Wk ,l
≤ ñ(j)Wk ,l

≤ 0.5, "
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

is concave, and hence is bounded by

the tangent at n(j)Wk ,l
:

"
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

≤ 1
n(j)Wk ,l

(1 − n(j)Wk ,l
)

(

ñ(j)Wk ,l
− n(j)Wk ,l

)

. (21)

1261

1262

1263

1264

1265

Finally, for the case of ñ(j)Wk ,l
≥ 0.5, consider the line,

ℎ
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

∶=

|

|

|

|

B′ − �−1B′
(

n(j)Wk ,l

)

|

|

|

|

|

|

|

1
1+exp(−B′)

− n(j)Wk ,l
|

|

|

(

ñ(j)Wk ,l
− n(j)Wk ,l

)

. (22)

From the convexity of "
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

, ℎ
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

upper bounds "
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

for ñ(j)Wk ,l
≥

0.5, since ℎ
(

0.5, n(j)Wk ,l

)

≥ "
(

0.5, n(j)Wk ,l

)

for n(j)Wk ,l
≤ 0.5. Combining the piece-wise bounds in

Equation 20, Equation 21 and Equation 22, we conclude that for n(j)Wk ,l
≤ 0.5:

"
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

≤ g̃
(

n(j)Wk ,l
, B′

)

|

|

|

ñ(j)Wk ,l
− n(j)Wk ,l

|

|

|

, (23)
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where

g̃
(

n(j)Wk ,l
, B′

)

= max

⎧

⎪

⎨

⎪

⎩

1
n(j)Wk ,l

(1 − n(j)Wk ,l
)
,

|

|

|

|

B′ + �−1B′
(

n(j)Wk ,l

)

|

|

|

|

|

|

|

n(j)Wk ,l
− 1

1+exp(B′)
|

|

|

,

|

|

|

|

B′ − �−1B′
(

n(j)Wk ,l

)

|

|

|

|

|

|

|

1
1+exp(−B′)

− n(j)Wk ,l
|

|

|

⎫

⎪

⎬

⎪

⎭

.

Due to the symmetry of "
(

ñ(j)Wk ,l
, n(j)Wk ,l

)

, the same bound in Equation 23 can be established
for n(j)Wk ,l

> 0.5 as well.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

Then, using
|

|

|

|

�−1B′
(

n(j)Wk ,l

)

|

|

|

|

≤ B′ and conditioning on event AW , we simplify this bound as:

g̃
(

n(j)Wk ,l
, B′

)

≤ max
{

4 (1 + exp (B))2 ,
4B′ (1 + exp (B′)) (1 + exp (B))
exp (B′) − (2 exp (B) + 1)

}

.

Finally, based on the fact that B′ = 2 log (2 exp (B) + 1), the latter is further upper bounded as:

g̃
(

n(j)Wk ,l
, B′

)

≤ g (B) ,

where

g (B) = max
{

4 (1 + exp (B))2 , 4 exp (−B) log (2 exp (B) + 1)
(

1 + (2 exp (B) + 1)2
)}

.

This concludes the proof of Lemma 2.

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Following Lemma 2, by conditioning on the event AW we have:

EAW

[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(j)Wk ,l

)

|

|

|

|

]

≤ g (B)EAW

[

|

|

|

ñ(j)Wk ,l
− n(j)Wk ,l

|

|

|

]

. (24)

Then, we note that:

E
[

|

|

|

ñ(j)Wk ,l
− n(j)Wk ,l

|

|

|

] (c)
≤

√

E
[

|

|

|

ñ(j)Wk ,l
− n(j)Wk ,l

|

|

|

2
]

(d)
=
�w

√

1 + �2
√

W
, (25)

where in (c) we have used the Cauchy-Schwarz inequality, and in (d) we have used the fact
that the observation noise across theW time instances is i.i.d. and white. From the bounds

in Equation 24 and Equation 25, we conclude that the first expectation in Equation 19,
conditioned on event AW is bounded as:

EAW

[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− �−1B′
(

n(j)Wk ,l

)

|

|

|

|

]

≤ g (B)EAW

[

|

|

|

ñ(j)Wk ,l
− n(j)Wk ,l

|

|

|

]

≤ g (B)
�w

√

1 + �2
√

W ℙ
(

AW
)

. (26)

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

The foregoing sequence of reasoning similarly follows for E
[

|

|

|

|

�−1B′
(

n(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

, since

1
1+exp (B)

≤ �
(

x(j)Wk ,l

)

≤ 1− 1
1+exp (B)

for k = 1,⋯ , K , l = 1,⋯ , L and j = 1,⋯ , N (as a consequence

of |x(j)Wk ,l
| < B for k = 1,⋯ , K , l = 1,⋯ , L and j = 1,⋯ , N , conditioned on AW ). Accordingly,
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we derive the upper bound on the second term in Equation 19, conditioned on event AW :

EAW

[

|

|

|

|

�−1B′
(

n(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

≤ g (B)EAW

[

|

|

|

|

n(j)Wk ,l
− �

(

x(j)Wk ,l

)

|

|

|

|

]

(e)
≤ g (B)
W ℙ

(

AW
)

√

√

√

√

√E
⎡

⎢

⎢

⎣

(

W
∑

w=1
n(j)(k−1)W +w,l −W �

(

x(j)Wk ,l

)

)2
⎤

⎥

⎥

⎦

(f )
=

g (B)
W ℙ

(

AW
)

√

E
[

W�
(

x(j)Wk ,l

)(

1 − �
(

x(j)Wk ,l

))]

(g)
≤ g (B)

2
√

W ℙ
(

AW
)

, (27)

where (e) follows from the application of Jensen’s inequality, (f ) follows from the formula
for the variance of a Binomial random variable, and (g) follows from the inequality �

(

x(j)Wk ,l

)

×
(

1 − �
(

x(j)Wk ,l

))

≤ 1∕4, for �
(

x(j)Wk ,l

)

∈ [0, 1]. Combining the results in Equation 26 and
Equation 27, the overall expectation in Equation 19, conditioned on the event AW is upper-

bounded by:

EAW

[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

]

≤ 2g (B)
√

W

(

�w
√

1 + �2 + 1
2

)

, (28)

where we have lower bounded the probability of the event AW by 1∕2 (that is, ℙ
(

AW
)

> 1∕2).
Thus, from Equation 18 and Equation 28 we derive:

|

|

|

|

biasAW

(

d̃j
)

|

|

|

|

≤ 2g (B)
√

W

(

�w
√

1 + �2 + 1
2

)

∑K,L
k,l=1

|

|

|

sWk

|

|

|

L
∑K

k=1 s
2
Wk

(ℎ)
≤ 2g (B)

�s
√

W

(

�w
√

1 + �2 + 1
2

)

,

where in (ℎ) we have used the Cauchy-Schwarz inequality
∑K

k=1
|

|

|

sWk

|

|

|

≤
√

K
√

∑K
k=1 s

2
Wk
while

defining �2s ∶=
1
K

∑K
k=1 s

2
Wk
.

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

Then, for B ≥ 2.5, we have g (B) = 4(1 + exp (B))2 and B′ = 2 log(2 exp (B) + 1) ≤ 3B. Let
B ∶= �m

√

8q logW for some q > 1
64
. Further, for some � < 1∕2, suppose that:

logW ≥ max
⎧

⎪

⎨

⎪

⎩

log(8KLN∕�)
q

,
32�2mq
�2

,
2 log(64q)
1 − 2�

,
max

{

6.25, 4
(

‖�x‖∞ + maxk,j
{

|sWk
dj|

})2
}

8q�2m
, log 2

⎫

⎪

⎬

⎪

⎭

.

(29)

Under these conditions,

g (B) ≤ 4
(

1 + exp(�m
√

8q logW )
)2

(i)
≤ 16 exp

(

2�m
√

8q logW
)

≤ 16W � , (30)

where in (i) we have used the fact that ex ≥ 1 for x ≥ 0. Thus, under the conditions in
Equation 29, we have:

|

|

|

|

biasAW

(

d̃j
)

|

|

|

|

≤ 32

�s
√

W 1−2�

(

�w
√

1 + �2 + 1
2

)

. (31)
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Finally, from Equation 16 and Equation 31, we conclude that:
|

|

|

|

biasAW

(

d̂j
)

|

|

|

|

≤ 1
√

W 1−2�
C1

(

2�w
√

1 + �2 + 1
)

+ 
(

�2w
)

+ 
( 1
W

)

,

where C1 ∶=
16
�s
.

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

Bounding the variance of d̂j1352

Next, we prove the upper bound on the variance of the maximum likelihood estimator, d̂j .
To that end, we upper-bound the variance of d̃j . First, using the Cauchy-Schwarz inequality,
we have:

Var
(

d̃j
)

∶= E
[

|

|

|

|

d̃j − E
[

d̃j
]

|

|

|

|

2]

≤
⎧

⎪

⎨

⎪

⎩

√

E
[

|

|

|

d̃j − (dOracle)j
|

|

|

2
]

+
√

Var
(

(

d
Oracle

)

j

)

⎫

⎪

⎬

⎪

⎭

2

. (32)

Then, we upper-bound the conditional second moment of
|

|

|

d̃j − (dOracle)j
|

|

|

using the same

techniques as we used in bounding the first moment. Accordingly, we get:
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]
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⎢
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)

|
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|

2
⎤

⎥

⎥

⎦
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⎪

⎩
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|

|

|

√
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(
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|

|

|

|

2]
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⎪

⎬

⎪

⎭

2

(l)
≤

{
√

2g (B)

�s
√

W

(
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√

1 + �2 + 1
2

)

}2

(33)

where in (k) we have used the Cauchy-Schwarz inequality and (l) follows from

EAW

[

|

|

|

|

�−1B′
(

ñ(j)Wk ,l

)

− x(j)Wk ,l

|

|

|

|

2]

≤ 2(g(B))2

W

(

�w
√

1 + �2 + 1
2

)2
, which can be proven by the same

techniques as before.

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

Next, we note that the variance of the Oracle estimator (d
Oracle

)j :

Var
(

(d
Oracle

)j
)

= 1
(

L
∑K

k=1 s
2
Wk

)2

K,L
∑

k,l=1
s2Wk
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((

x(j)Wk ,l
− �(j)x

))

=
(�x)j,j

L
∑K

k=1 s
2
Wk

=
(�x)j,j
LK�2s

(34)

Combining Equation 32, Equation 33 and Equation 34, we can upper-bound the conditional
variance of d̃j as:, following Equation 32:

√

VarAW

(

d̃j
)

≤

√

(�x)j,j
KL�2s (1 − �)

+

√

2g (B)

�s
√

W

(

�w
√

1 + �2 + 1
2

)

Then, following Equation 16, under the conditions for W in Equation 29, we conclude the
proof of the conditional variance of d̂j :

√

VarAW

(

d̂j
)

≤

√

(�x)j,j
KL�2s (1 − �)

+ 1
√

W 1−2�
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(
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√

1 + �2 + 1
)

+ (�2w) + 
( 1
W

)

,

(35)
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where C2 ∶=
8
√

2
�s
.
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Bounding the bias of (�̂x)i,j1382

Next, following the foregoing techniques, we upper-bound the bias and variance of the noise

covariance estimator (�̂x)i,j . To that end, we first note:

|

|

|

|

bias
(

(�̃x)i,j
)

|

|

|

|

∶=
|

|

|

|

E
[

(�̃x)i,j
]
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|

|

|
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≤

|

|
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)
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]

|

|

|

|

+
|

|

|

|
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(

(

�
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)

i,j

)

|

|

|

|

(36)

where (m) follows from the triangle inequality, with the Oracle noise covariance estimator
(i.e., observing xt,l directly), being defined as:

(

�
Oracle

)

i,j =
1
KL

∑K,L
k,l=1

(

x(i)Wk ,l
− �(i)x − sWk

(d
Oracle

)i
)

×
(

x(j)Wk ,l
− �(j)x − sWk

(d
Oracle

)j
)

. Then, to simplify the first term in Equation 36, we use similar
techniques as before. Accordingly,
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|
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(
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|
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ñ(i)Wk ,l

)

− �(i)x
)

∑K,L
k′ ,l′=1 sWk′

(

�−1B′
(

ñ(i)Wk′ ,l′

)

− �(j)x
)

−
∑K,L

k,l=1 sWk

(

x(i)Wk ,l
− �(i)x

)

∑K,L
k′ ,l′=1 sWk′

(

x(j)Wk′ ,l′
− �(j)x

)

|

|

|

|

]

,

(37)

where (n) follows through the application of Jensen’s inequality and triangle inequality. Next,
we have:
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where �m = ‖�x‖∞ and we have used B′ = 2 log (2 exp (B) + 1). Similarly, the second term in
Equation 37 can be bounded as:
EAW
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|
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|
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|
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|
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ñ(i)Wk ,l

)

�−1B′
(
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|
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|

|

)2{
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√
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g (B)
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√
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2

)

}

. (40)

Then, by combining the bounds in Equation 38 and Equation 40 and using an instance of
Cauchy-Schwarz inequality

(

∑K
k=1

|

|

|

sWk

|

|

|

)2
≤ K

∑K
k=1 s

2
Wk
, we see that the bound in Equation 37

can be expressed as:
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|

|

|
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�
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)

i,j

]

|

|

|

|
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√
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√

W

{
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4
√

W
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(41)
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Next, we see that the oracle estimator follows an Inverse Wishart distribution, that is

KL�
Oracle

∼ InvWishN(�x, KL − 1). Therefore, we get:

E
[

�
Oracle

]

=
(KL − 1)
KL

�x.

Thus, the bias of the oracle estimator is given by:

|

|

|

|
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�
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)

i,j

)

|

|

|

|

= 1
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|

|

|

(

�x
)

i,j
|

|

|

. (42)

Combining the results in Equation 41 and Equation 42, the bias of (�̃x)i,j can be bounded as:

|

|

|

|
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)

|

|

|

|
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|

|
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. (43)
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Finally, under the conditions forW in Equation 29, the latter inequality simplifies to:

|

|

|

|
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(

(�̃x)i,j
)
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|

|

|
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|
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|
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(
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W
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(q)
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√

2q logW
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(
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√
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)

+ 
( 1
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)

(44)

where in (p) we have used 2 log(2 exp (B) + 1) ≤ 3B and B > 2�m and in (q) we have used
Bg(B) ≤ 16L��m

√

8q logL, which follows from Equation 30. Thus, following Equation 17 we
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derive the bound on the bias of the maximum likelihood estimator:

|

|

|

|

biasAW
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where C3 ∶= 64�m
√

2q.
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Bounding the variance of (�̂x)i,j1436

Next, we establish an upper bound on the variance of the maximum likelihood estimator of

the noise covariance. To that end, we upper-bound the variance of (�̃x)i,j . First, using the
Cauchy-Schwarz inequality, we get:
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(
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)
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[
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[
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.

(45)

Then, we upper-bound the conditional second moment of
|

|
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techniques used in bounding its first moment. Accordingly, we derive:
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where the last bound follows from the Cauchy-Schwarz inequality. Then, we derive:
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ñ(i)Wk′ ,l′

)

− �(i)x
)

)(

�−1B′
(
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k′=1 sWk′

2∑K
k′′=1 sWk′′

2

∑K,L
k′ ,k′′ ,l′ ,l′′=1 sWk′

sWk′′

((

�−1B′
(

ñ(i)Wk′ ,l′

)

− �(i)x
)(

�−1B′
(
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)

− �(j)x
)

−
(

x(i)Wk′ ,l′
− �(i)x

)(

x(j)Wk′′ ,l′′
− �(j)x

))

}2]

≤ 2 (g (B))2

W

(

�w
√

1 + �2 + 1
2

)2
(

g (B)
√

W

(

�w
√

1 + �2 + 1
2

)

+ 2(B + �m)

)2

×
⎛

⎜

⎜

⎝

1 +
sWk

L
∑K

k′=1 sWk′

L
∑K

k′=1 sWk′
2
+
sWk

L
∑K

k′′=1 sWk′′

L
∑K

k′′=1 sWk′′
2
+
s2Wk

L
∑K

k′=1 sWk′
L
∑K

k′′=1 sWk′′

L2
∑K

k′=1 sWk′
2∑K

k′′=1 sWk′′
2

⎞

⎟

⎟

⎠

2

. (47)
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Using the final bound of Equation 47 in Equation 46, we get:
√

EAW

[

|

|

|

(�̃x)i,j − (�Oracle)i,j
|

|

|

2
]

≤
√

2g (B)
√

W

(

�w
√

1 + �2 + 1
2

)

(

g (B)
√

W

(

�w
√

1 + �2 + 1
2

)

+ 2(B + �m)

)

× 1
KL

(

KL +
L
∑K
k=1 |sWk |

∑K
k′=1 |sWk′ |

∑K
k′=1 sWk′

2 +
L
∑K
k=1 |sWk |

∑K
k′′=1 |sWk′′ |

∑K
k′′=1 sWk′′

2 +
L
∑K
k=1 s

2
Wk

∑K
k′=1 |sWk′ |

∑K
k′′=1 |sWk′′ |

∑K
k′=1 sWk′

2∑K
k′′=1 sWk′′

2

)

≤
4
√

2g (B)
√

W

(

�w
√

1 + �2 + 1
2

)

(

g (B)
√

W

(

�w
√

1 + �2 + 1
2

)

+ 2(B + �m)

)

, (48)

where the last inequality follows from an instance of the Cauchy-Schwarz inequality, i.e.,
(

∑K
k=1

|

|

|

sWk

|

|

|

)2
≤ K

∑K
k=1 s

2
Wk
.

1452

1453

1454

1455

1456

1457

Then, following the observation KL �
Oracle

∼ InvWishN(�x, KL − 1), we derive the variance
of

(

�
Oracle

)

i,j :

Var
(

(

�
Oracle

)

i,j

)

= �2i,j =
(KL − 1)

(

(�x)2i,j + (�x)i,i(�x)j,j
)

K2L2
. (49)

Combining Equation 45, Equation 48 and Equation 49, we express the upper bound on the
conditional variance of (�̃x)i,j as:

√

VarAW

(

(�̃x)i,j
)

≤ 1
√

1 − �
�i,j +

8
√

2g (B)
√

W
(B + �m)

(

�w
√

1 + �2 + 1
2

)

+ 
(

g (B)2

W

)

.

Then, following Equation 17 and the conditions in Equation 29, we conclude the proof of the
upper bound on the conditional variance of (�̂x)i,j :

√

VarAW

(

(�̂x)i,j
)

≤ 1
√

1 − �
�i,j +

√

logW
W 1−2�

C4
(

2�w
√

1 + �2 + 1
)

+ 
(

�2w
)

+ 
( 1
W 1−2�

)

,

where C4 ∶= 384�m
√

q.
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1472

1473

Finally, it only remains to prove that the event AW occurs with high probability for

sufficiently largeW :
1474

1475

Lemma 3. The probability of occurrence of the eventAW =
{

|

|

|

x(j)Wk ,l
|

|

|

≤ B and 1
2(1+exp (B))

≤ n(j)Wk ,l
≤

1 − 1
2(1+exp (B))

for j = 1,⋯ , N, k = 1,⋯ , K and l = 1,⋯ , L
}

is upper-bounded as follows:

ℙ
(

AW
)

≥ 1 − �,

for some constant 0 < � ≤ 1∕2 satisfying the conditions of Eq. (29).

1476

1477

1478

1479

1480

1481

Proof of Lemma 3. First, using the union bound, we have:

ℙ
(

AW
)

≥ 1 −
∑K,L,N

k,l,j=1

{

ℙ
(

|

|

|

x(j)Wk ,l
|

|

|

> B
)

+ ℙ
(

n(j)Wk ,l
< 1

2(1+exp (B))

)

+ ℙ
(

n(j)Wk ,l
> 1 − 1

2(1+exp (B))

)}

.

(50)
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Next, we bound the probabilities on the right hand side using Chernoff’s inequality (Boucheron
et al., 2013). First, note that:

ℙ
(

x(j)Wk ,l
> B

)

= ℙ
(

x(j)Wk ,l
− �(j)x − sWk

dj > B − �(j)x − sWk
dj
)

(r)
≤ ℙ

(

x(j)Wk ,l
− �(j)x − sWk

dj >
B
2

)

(s)
≤ exp

(

− B2

8�2m

)

,

where (r) follows if B > 2
(

‖�x‖∞ + maxk,j
{

|sWk
dj|

})

(which will hold under the conditions in

Equation 29) and (s) has been derived by applying the Chernoff’s bound on the Gaussian
random variable x(j)Wk ,l

. From the same reasoning we see that ℙ
(

x(j)Wk ,l
< −B

)

≤ exp
(

− B2

8�2m

)

.

Combining these two results, we get the upper bound:

ℙ
(

|

|

|

x(j)Wk ,l
|

|

|

> B
)

≤ 2 exp
(

− B2

8�2m

)

. (51)

1482

1483
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1485
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1489

1490

1491

1492

1493

1494

1495

1496

1497

Next, note that:

ℙ
(

n(j)Wk ,l
< 1
2(1 + exp (B))

)

(u)
≤ ℙ

(

n(j)Wk ,l
− �

(

x(j)Wk ,l

)

< −1
2(1 + exp (B))

)

(v)
≤ exp

(

− W
16(1 + exp (B))2

)

, (52)

where (u) follows from the observation 1
1+exp (B)

< �
(

x(j)Wk ,l

)

(which is a consequence of |x(j)Wk ,l
| <

B). Then, we note that the zero-mean random variable n(j)Wk ,l
− �

(

x(j)Wk ,l

)

is sub-Gaussian with

variance factor
2
W
. Thus, using the Chernoff’s inequality on sub-Gaussian random variables

(Boucheron et al., 2013), we derive the upper-bound (v) in Equation 52. In a similar fashion,
based on the observation �

(

x(j)Wk ,l

)

< 1 − 1
1+exp (B)

, we conclude the bound:

ℙ
(

n(j)Wk ,l
> 1 − 1

2(1 + exp (B))

)

≤ exp
(

− W
16(1 + exp (B))2

)

. (53)
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1499

1500
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1504
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1506
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1508

1509

By combining the bounds in Equation 51, Equation 52 and Equation 53, the upper bound
on ℙ

(

AW
)

in Equation 50 takes the form:

ℙ
(

AW
)

≥ 1 − 2KLN exp
(

− W
16(1 + exp(B))2

)

− 2KLN exp
(

− B2

8�2m

)

.

Finally, under the assumptions in Equation 29, we further simplify this bound as:

ℙ
(

AW
)

≥ 1 − 2KLN exp
(

−W
1−�

64

)

− 2KLN
W q ≥ 1 − 4KLN

W q ,

where we have used W ≥ 2 (which gives logW ≥ 2 log logW ) and logW ≥ 2 log(64q)
1−2�

to show

that
W 1−�

64
≥ q logW . Thus, logW ≥ log(8KLN∕�)

q
ensures that ℙ

(

AW
)

≥ 1 − �, for 0 < � ≤ 1
2
.
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This concludes the proof of Theorem 1.1521

1522
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Figure 2–Figure supplement 1. A) Noise (first row) and signal (second row) correlations corre-
sponding to the ground truth (first column), estimated by the two-stage Pearson method using

the FCSS (Kazemipour et al., 2018) (second column) and constrained f-oopsi (Pnevmatikakis et al.,
2016) (third column) spike deconvolution techniques, for the simulation study in Figure 2. The
NMSE and leakage ratios of the estimates are indicated below each panel. While the correlation

estimates based on these two methods are comparable, there exist notable differences between

them, as a result of the slight discrepancies in the deconvolved spikes. This demonstrates that the

two-stage estimates are notably sensitive to minor differences in the estimated spikes obtained by

different deconvolution techniques. In addition, both two-stage Pearson estimates fail to capture

the ground truth correlations (as is also evident from the high NMSE and leakage values). B) Simu-

lated observations (black, re-scaled for ease of visual comparison) and ground truth spikes (blue),

as well as the estimated calcium concentrations (purple) and putative spikes (green) for the 1st trial
of neuron 1 in the simulation study of Figure 2, using the FCSS (Kazemipour et al., 2018) (second
row) and constrained f-oopsi (Pnevmatikakis et al., 2016) (third row) spike deconvolution methods.
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 Two-Stage GPFA

(L  = 20) 
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Figure 2–Figure supplement 2. Performance of two stage estimates based on ground truth spikes.
Noise (first row) and signal (second row) correlations corresponding to the ground truth (first

column) are repeated from Figure 2. The second and third columns show the results of two-stage
GPFA and two-stage Pearson methods using L = 20 trials, respectively. The fourth column shows
the results of the two-stage Pearsonmethod using L = 1000 trials. All estimates were obtained using
the ground truth spikes, as opposed to extracting the spikes via a deconvolution technique. Thus,

these results isolate the effect of the non-linearities involved in spike generation on the estimation

performance. The NMSE and leakage ratios of the estimates are indicated below each panel. Even

though the ground truth spikes are used, the NMSE and leakage ratios indicated in the second and

third columns are remarkably high. This further shows that the usage of conventional definitions

and GPFA estimates is not optimal for the recovery of signal and noise correlations. In accordance

with our theoretical analysis in Appendix 1, the performance of the two-stage Pearson method
significantly improves as the number of trials is increased to L = 1000, a number that is unrealistic
in the context of typical two-photon imaging experiments. However, our proposed method shown

in Figure 2 achieves comparable performance with number of trials as low as L = 20. In summary,
these results suggest that the two-stage methods produce highly biased estimates under limited

number of trials, even if the ground truth spikes were ideally deconvolved from the two-photon

data.
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Figure 2–Figure supplement 3. A) Proposed noise and signal correlation estimates for data
simulated at lower SNR than the setting of Figure 2 and model mismatch introduced by using a
second-order autoregressive model for the calcium decay. The ground truth correlations are the

same as those in Figure 2. The NMSE and leakage ratio are given at the bottom. B) putative spikes
(green) and estimated calcium concentrations (purple). The model mismatch and lower SNR result

in slight performance degradation compared to Figure 2 (in terms of NMSE and leakage), and our
method is capable of recovering the underlying correlations faithfully.
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Figure 6–Figure supplement 1. Null distributions of A) the similarities between Nspon and Nstim (top:

Ts(N̂spon, N̂stim)) and B) the dissimilarities between Ŝstim and N̂stim (bottom: Td(Ŝstim, N̂stim)), obtained by
the shuffling procedure applied to the results of real data study 2 in Figure 6. The observed test
statistic in each case is indicated by a dashed vertical line. Rows from left to right: proposed method,

Pearson correlations from two-photon data, two-stage Pearson correlations and two-stage GPFA

estimates. These results show that the only statistically significant outcomes (with p ≤ 0.05) are the
similarities and dissimilarities obtained by our proposed method.
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Figure 7–Figure supplement 1. Comparison of marginal distributions of signal and noise correla-
tions. A) Cumulative marginal probability distributions of signal (blue) and noise (red) correlations

along the rostrocaudal (top) and dorsoventral (bottom) directions, as estimated by the proposed

method (left) and Pearson correlations from two-photon data (right), in layer 2/3 neurons. The

Kolmogorov–Smirnov (KS) test statistic along with the corresponding p-values are indicated as insets

in each panel. Panel B shows the results for layer 4 in the same organization as panel A. These

results show that along both directions and in both layers, the signal correlation distributions are

significantly different from the corresponding noise correlation distributions, consistently for both

methods. However, the KS statistics (i.e., effect sizes) for the proposed estimate are remarkably

larger than those obtained from the Pearson estimates.
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Figure 7–Figure supplement 2. Polar plots of the angular marginal distributions of correlations.
A) Polar histograms indicating the distribution of signal (top) and noise (bottom) correlations as a

function of relative angle (in the dorsoventral-rostrocaudal coordinate system) between pairs of

neurons in layer 2/3, as estimated by the proposed method (left) and Pearson correlations from

two-photon data (right). The KS test statistic comparing each polar distribution with a uniform

distribution (shown in magenta), along with the corresponding p-values are indicated below each

polar plot. The mode of each probability distribution is also indicated in blue fonts. Panel B shows

the results for layer 4 in the same organization as panel A. All distributions are significantly non-

uniform, and particularly indicate a rostrocaudal directionality in layer 4 (as indicated by the mode

angles in panel B).
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