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ABSTRACT 

Papaya (Carica papaya Linn.) is a tropical plant whose draft genome has been sequenced. 

Papaya produces large fruits rich in vitamins A and C and is an important cash crop in 

developing countries. Nonetheless, little is known about how the female gametophyte 

develops, how it is fertilized and how it develops into a mature seed containing an embryo 

and an endosperm. The Papaya female gametophyte displays a Polygonum-type architecture 

consisting of two synergid cells, an egg cell, a central cell, and three antipodal cells. Reports 

are available of the presumed existence of varieties in which cross fertilization is bypassed 

and autonomous development of embryos occurs (e.g., apomixis). In this study, we analyzed 

the development of female gametophytes in a commercial Hawaiian parental line and in the 

presumed apomictic Costa Rican line L1. Samples were collected before and after anthesis 

to compare the overall structure, size and transcriptional patterns of several genes that may 

be involved in egg and endosperm cell fate and proliferation. These genes were the putative 

papaya homologs of ARGONAUTE9 (AGO9), MEDEA (MEA), RETINOBLASTOMA 

RELATED-1 (RBR1), and SLOW WALKER-1 (SWA1). Our results suggest that its feasible to 

identify the contour of structural features of Polygonum-type development, and that in 
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bagged female flowers of line L1 we might have observed autonomous development of 

embryo-like structures. Possible downregulation of papaya homologs for AGO9, MEA, RBR1 

and SWA1 was observed in embryo sacs from line L1 before and after anthesis, which may 

suggest a tentative link between suspected apomixis and transcriptional downregulation of 

genes for RNA-directed DNA methylation, histone remodelers, and rRNA processing. Most 

notably, the large size of the papaya embryo sac suggests that it could be a cytological 

alternative to Arabidopsis thaliana for study. Significant variation in embryo sac size was 

observed between the varieties under study, suggesting wide differences in the genetic 

regulation of anatomical features. 

KEY WORDS: Carica papaya, sexual reproduction, embryo sac, embryo development, 

natural variation, food security. 
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Introduction 

Carica papaya Linn is a diploid species with male, female, or hermaphrodite flowers 

on the same plant. In nature, plants show male and female flowers on separate individuals 

(Geetika et al., 2018). However, commercial papaya cultivars show hermaphrodite flowers 

in some plants and only female ones in others (Geetika et al., 2018). Papaya is one of the top 

10 most important tropical fruit crops in the world, and its consumption has been 

recommended to prevent vitamin A deficiency in tropical and subtropical developing 

countries (Liao et al., 2017). Nonetheless, truly little is known about reproductive 

mechanisms involved in papaya sexual and/or asexual reproduction. 

In flowering plants such as maize and Arabidopsis thaliana, a megaspore mother cell 

(MMC) undergoes meiosis to produce four recombinant haploid cells, the megaspores 

(Rodríguez-Leal and Vielle-Calzada, 2012). Then a single megaspore may give rise to the 

female gametophyte. After cellular enlargement, the nucleus of the megaspore will undergo 

three rounds of mitosis to form a gametophyte containing seven cells: two synergids, the egg 

cell, a binucleated central cell and three antipodals (Rodríguez-Leal and Vielle-Calzada, 

2012). Double fertilization of the egg and central cell with one sperm nucleus each initiates 

the development of embryo and endosperm, respectively (Schmidt et al., 2014). In contrast, 

in clonal species of genus Boechera, one can observe 1) regular gametophytic apomixis, in 

which a diploid sporophytic cell of the nucellus develops in proximity to the MMC and then 

develops as an embryo or 2) diplospory, a type of gametophytic apomixis, in which the MMC 

itself becomes an apomictic initial cell that skips meiosis (apomeiosis) and gives rise to an 

unreduced embryo sac (Schmidt et al., 2014; Garman et al., 2019). The egg cell then develops 
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into an embryo without fertilization (parthenogenesis). Endosperm development can be 

autonomous or require fertilization (pseudogamy) (Schmidt et al., 2014). 

In her seminal article from 1943, Lois Thomson Foster described for the first time the 

reproductive organs of papaya (Thomson Foster, 1943). In most flowering plants, the 

development of embryo sacs displays a Polygonum-type architecture, an architecture that 

consists of seven cells: two accessory cells called synergids, which are important for pollen 

tube attraction; an egg cell, which gives rise to the embryo; a diploid central cell which gives 

rise to the endosperm; and three cells of unclear function called antipodal cells (Sundaresan 

and Alandete-Saez, 2010). However, this original work did not detail any of those features; 

instead, it included very approximate diagrams of tissue sections featuring the integuments, 

the purported location of the micropyle, the funicle, vascular bundles and the tiny megaspore. 

Considering that the draft papaya genome has been published (Ming et al., 2008), 

there should be focus on the development of cellular and molecular tools for studying the 

reproductive biology of such an important crop. Most notably, reports exist of asexual 

development of fruits in papaya (Vegas et al., 2003). Apomixis has been described as a 

process that involves development of embryos from sporophytic cells due to changes in the 

activity of cell-cycle regulators and perhaps due to the activity of Polycomb-group proteins 

that control high-order chromatin architecture (Rodrigues et al., 2010). Detailed 

cytoembryological of embryo sac development should be previously carried out to be able to 

produce solid information on the reproduction molecular control in this species. 

This study aimed to tackle those problems and investigated 1) whether papaya 

embryo sacs are Polygonum-type, 2) whether any structural or developmental variation exists 

between different lines, and 3) whether any differences exist in the transcriptional patterns 
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of putative regulators of embryo-sac development genes. Our results indicate that it might be 

methodologically feasible to study embryo sac development, that lines exhibit differences in 

the size of embryo sacs, that asexual development of embryos may occur in line L1, and that 

differences in transcriptional patterns occur.  

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.11.434975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434975
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Materials and Methods 

Plants  

Young plants from papaya parental lines L1 (pistillate) and Hawaiian 

(hermaphrodite) were grown at the Fabio Baudrit Agricultural Research Station at La Garita 

(San José district), Alajuela province, Costa Rica. The location is 010°00′18″N 084°15′56″W 

and 840 m above sea level. Average temperature is 22 °C. Plants from were grown under 

greenhouse conditions with drip irrigation. Each homozygous line was grown separately on 

dedicated greenhouses and cross pollinations were not performed during sample collection. 

Flowers were bagged with nylon fabric and collected considering that the time from flower 

bud emergence to anthesis is 45 to 47 days in pistillate flowers, whereas hermaphrodite 

flowers show a 2-day delay (Fisher, 1980). Also, because maximum anthesis occurs from 

18:00 to 20:00 h (Fisher, 1980), flowers were collected in the early morning of the next day. 

 

Preparation and analysis of embryo sac sections 

Fresh tissue samples (at least three flowers) were fixed in FAA (10% formaldehyde 

37% v/v, 5% glacial acetic acid, 85% ethanol 70% v/v) for 24 h at room temperature. Then, 

samples were dehydrated in a graded series of ethanol (70, 80, 90, 95 and 100%) v/v, for 10 

min each, then heated in a microwave to 50-60 °C (45 sec, 100 mL sample). After heating, 

samples were clarified in two changes of xylene for 10 min, then heated again to 50-60 °C, 

and finally embedded in Paraplast wax. The resulting samples were cut to 5 µm by using a 

Reichert-Jung 820H Histostat rotary microtome (Leica, Wetzlar, Germany) and Drukker 

VC186200 diamond knives (Cuijk, The Netherlands). The samples were dewaxed, hydrated, 
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and stained with nuclear stain Safranin-O (0.5% m/v in 50% v/v ethanol) for 30 min then 

with membrane stain Alcian blue (0.5% m/v in 3% v/v acetic acid solution) for 30 min. 

Finally, samples were dehydrated in a graded series of ethanol (95, 100 and 100% v/v), 

clarified with two changes of xylene, and finally mounted with Permount® (Kurczyńska et 

al., 2007; El Maâtaoui et al., 1990). Slides were examined under an Olympus BX53 

microscope coupled to a DP73 camera (both from Olympus Corp., Shinjuku, Tokyo). Image 

cropping and color correction involved using Adobe Photoshop 2020 (Adobe Inc., San Jose, 

CA, USA). 

 

Transcriptional analysis 

Extraction of mRNA involved the ReliaPrep RNA Cell Miniprep Kit (Promega, 

Madison, WI, USA), as per the manufacturer's instructions. RNA quality was evaluated with 

Qubit 4 fluorometer (Invitrogen, Waltham, MA, USA), and overall integrity was evaluated 

on 2% agarose gel. Reverse transcription (RT) involved the Access RT-PCR System 

(Promega), as per the manufacturer's instructions. Each RT reaction was performed with 31 

µL distilled water, 1 µL DNTP, 1 µL each primer, 2 µL MgSO4, 46 µL Master Mix, 1 µL 

polymerase and 2 µL mRNA. Each QPCR reaction was performed with 2 µL SYBR Green, 

100 µL GoTaq® qPCR Master Mix, 18 µL nuclease-free water, 40 µL cDNA (20 ng/µL), 

and 40 µL each primer (150-200 nM) for a total volume of 150 µL. Reactions were run and 

analyzed on a Rotor-Gene Q system operated with QRex software for comparative 

quantitation (both from Qiagen, Hilden, Germany). Melting curve analyses and/or negative 

controls were used to rule out primer-dimer artifacts and low specificity in the amplification 

reaction. Quantitative reactions were performed in triplicate and averaged. Primers biased 
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for the 3′-end of coding sequences were designed with Primer Express 3.0 and manufactured 

by Macrogen (Seoul). At least three flowers per line were used. 

 

Results and Discussion 

During the isolation of samples, we found differences in the relative number of ovules 

per flower (after anthesis). In Hawaiian papaya, we could count approximately 622 ± 15 

ovules per flower (n=20), whereas in L1, we could count only 140 ± 4 (n=20). Sample mass 

was different as well: after anthesis, the mean weight of ovules per flower in Hawaiian 

papaya was 874.5 ± 0.3 mg (n=20), whereas in L1 flowers, the mean weight was 420.1 ± 0.2 

mg (n=20). These results suggest that in Hawaiian papaya, each embryo sac has an 

approximate weight of 1.4 mg, whereas in L1, a single embryo sac may weigh 3.0 mg, so an 

L1 embryo sac may weigh twice on average. 

In Hawaiian ovules (collected 24 h after anthesis), the width was approximately 150 

± 13 µm and length 300 ± 17 µm (n=10), whereas in line L1, the width was approximately 

310 ± 22 µm and length 530 ± 40 µm (n =15), which suggests large natural variation. In 

contrast, ovules in Arabidopsis have an approximate width of 100 µm (Johnson et al., 2019). 

Two possible sources for this variation within papaya may be cell size and cell number. 

Tissue cells of L1 appear large, with nuclei deeply stained with Safranin-O. Cell numbers 

per layer appear to vary as well, especially in the inner integument; for instance, Hawaiian 

papaya has 6±1 cells versus 12±1 cells in L1. 

We could distinguish apparent early embryos in both lines (Figure 1C and 1F). No 

line showed supernumerary or ectopic structures. Flowers collected from line L1 were all 
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pistillate and were bagged 48 h before collection, moreover plants from L1 are routinely 

grown in a separate greenhouse to prevent pollen contamination. Flowers of the Hawaiian 

line were not emasculated since removal of anthers causes dehiscence and because it is 

assumed that only sexual seed is produced. Therefore, only line L1 showed apparent asexual 

development of embryos. Unfortunately, sample collection did not continue after anthesis; 

therefore, we could not determine know whether these suspected asexual structures might 

continue to develop into fully functional seeds that germinate. Asexual development of 

embryos in L1 may have been overlooked in the past because the plants are continuously 

used as obligate pollen recipients for breeding of the Costa Rican hybrid cultivar “Pococí”. 
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Figure 1. Embryo sac development in papaya lines Hawaiian and L1. Tissue sections of 

papaya ovules from hermaphrodite, pollen donor line Hawaiian (A-C) and pollen receptor, 

staminate line L1 (suspected apomictic, D-F), before and after anthesis (24 h). Abbreviations: 

antipodal cells (ant), central cell (cc), egg cell (egg), embryo (emb), inner integument (ii), 

outer integument (oi), micropyle (mic), synergid cells (syn), polar nuclei (pn). Line 

Hawaiian: A) top to bottom, approximate location of the antipodals, central cell (with a 

seemingly large vacuole stained by Alcian blue) and synergids; B) top to bottom, 

approximate location of antipodals, central cell, egg cell and synergids, with their nuclei 

appearing stained red by Safranin; C) developing embryo: the inner and outer integument, 

micropyle and contour of a nascent embryo can be identified. Line L1: D) ovule showing the 
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approximate location of the egg cell; E) approximate location of the antipodals, polar nuclei 

and synergids; F) ovule showing a developing embryo, probably of asexual origin, the 

approximate location of the inner and outer integuments and the micropyle. 
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Analysis of transcription by qPCR involved the use of primers biased for the 3’ end 

of coding sequences from the putative homologs of known Arabidopsis regulators of embryo 

sac development (Shi and Yang, 2011) (Table 1). Because no functional validation has been 

performed yet, the target loci were chosen entirely on the similarity of the papaya sequences 

to already characterized genes from A. thaliana (Table 1). All papaya homolog sequences 

were significantly similar and included the same functional motifs. 
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Table 1. Putative papaya ovule developmental regulators analyzed by quantitative real-time 
PCR (qPCR). Arabidopsis reference genes were selected from relevant sources (Yang et al., 
2010; Shi and Yang, 2011). Information was collected from The Arabidopsis Information 
Resource (TAIR, https://www.arabidopsis.org/), the Plant Comparative Genomics site (Plant 
GDB, http://www.plantgdb.org/) and the National Center for Biotechnology Information 
(NCBI, www.ncbi.nlm.nih.gov). The BLAST E-value is believed to denote significant 
sequence similarity at a cut off value of 1x10-8. 

 

Reference Arabidopsis 
Gene 

Function Putative papaya 
ortholog (from 

Plant GDB) 

BLAST- E 
value 

(Sequence 
Similarity) 

Primer Sequence (5’-3’), 
Forward and Reverse 

ARGONAUTE9 
(AGO9) (AT5G21150) 

Limits the 
number of 
egg cells 

and 
embryos 

PUT-167a-
Carica_papaya-

9206 

2 x 10-83 F: 
CCTTGGAAACGGAACAAACT 

R: 
AATGCATTGAGTGACCAGGA 

MEDEA (MEA) 
(AT1G02580) 

Embryo 
developme

nt 

PUT-167a-
Carica_papaya-

8743 

4 x 10-39 F: 
ACCGTGCAGGTTCTTCTTAC 

R: 
GTTTCCTTTGCGGTAAGCAT 

RETINOBLASTOMA 
RELATED1(RBR1) 

(AT3G12280) 

Zygote and 
endosperm 
formation 

PUT-167a-
Carica_papaya-

9639 

4 x 10-130 F: 
CTCTTGGAAGGCATTGTTGA 

R: 
CAGAACTTCCATCAGAGGCA 

SLOW WALKER 1 
(SWA1) (AT2G47990) 

Female 
gametophy

te 
developme

nt 

PUT-167a-
Carica_papaya-

6648 

1 x 10-24 F: 
CTTCGACATCAAGGAACGAA 

R: 
GAGTACGGAGAGGAGTTCGG 

UBIQUITIN 10 
(UBQ10) 

(AT4G05320) 

Houskeepi
ng gene 

PUT-167a-
Carica_papaya-

11961 
 

4 x 10-178 F: 
GCGTGGAAGAACCCTTGCAG 

R: 
GCATGCCACCACGAAGTTCA 
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QPCR results from flowers collected 24 h before and after anthesis suggest the 

existence of an opposite transcriptional pattern between Hawaiian and L1 lines (Figure 2). 

Relative expression of all loci is comparatively lower in L1, and unlike in Hawaiian papaya, 

the expression of all loci shows a sharp reduction after anthesis (Figure 2). 

Work in Arabidopsis indicates that loss in the activity of the RNA-dependent DNA 

methylation (RdDM) gene ARGONAUTE9 (AGO9) causes differentiation of ectopic cells in 

the embryo sac (Hernández-Lagana et al., 2016). Dominant mutations in AGO9 lead to 

phenotypes in which somatic sporophytic cells give rise to a female gametophyte without 

undergoing meiosis (Rodríguez-Leal and Vielle-Calzada, 2012). In general, mutations in 

genes from the RdDM pathway may lead to similar phenotypes, which suggests that silencing 

of heterochromatic repetitive sequences is crucial to differentiate between sexual and 

apomictic cell fate (Rodríguez-Leal and Vielle-Calzada, 2012). Arabidopsis genes of the 

Polycomb Group complexes (PcG) mediate the transition from vegetative to reproductive 

development (Holec and Berger, 2012) and enforce transcriptional repression by catalyzing 

H3K27 trimethylation and H2A ubiquitination (Wang et al., 2016). For instance, mutants of 

MEDEA (MEA) show endosperm proliferation without fertilization (Koltunow and 

Grossniklaus, 2003) and suppression of central cell proliferation (Kiyosue et al., 1999). 

MEDEA is a SET-domain PcG protein that may affect the degree of localized chromatin 

condensation, gene transcription and cell proliferation (Kiyosue et al., 1999). 

The Arabidopsis RETINOBLASTOMA RELATED1 (RBR1) gene is the direct 

repressor of the stem cell factor WUSCHEL (WUS) and PROLIFERATING CELL 

NUCLEAR ANTIGEN 1 (PCNA1) (Zhao et al., 2017). Besides its main role in regulating 

cell cycle progression, RBR1 also cooperates with the PcG complex PRC2, which includes 
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MEA, and has an important role in controlling gametophyte development (Kuwabara and 

Gruissem, 2014). In rbr1 mutants, meiocytes undergo several mitotic divisions, resulting in 

extra meiocytes, which develop into megaspores that can successfully attract a pollen tube 

and be fertilized but do not develop (Zhao et al., 2017). Finally, the slow walker1 mutation 

can cause partial female sterility because of delayed development of the female gametophyte 

at anthesis (Yang et al., 2010). Arabidopsis SLOW WALKER-1 (SWA1) encodes a nucleolar 

WD40-containing protein involved in the processing of pre-18S rRNA (Yang et al., 2010). 

SLOW WALKER-mediated RNA processing and ribosome biogenesis may be important for 

the progression of mitotic division cycles during Arabidopsis embryo-sac development (Liu 

et al., 2010). 

Taken together, reduced expression of the putative papaya homologs for AGO9, 

MEA, RBR1 and SWA1 in L1 embryo sacs (Figure 2) may account for sporophytic tissue 

proliferation in L1 embryo sacs. Although we do not know what causes these changes in the 

transcriptional patterns of L1, AGO9 has a prominent role in binding heterochromatic small 

interfering RNAs (siRNAs) that mostly target repetitive genomic regions and transposable 

elements (Hernández-Lagana et al., 2016). Thus, these changes in transcriptional activity 

may occur due to generalized failure to perform RNA-directed DNA methylation. In 

Arabidopsis, the patterns of transcriptional regulation and protein localization of AGO9 in 

developing ovules vary between ecotypes (Rodríguez-Leal et al., 2015). 

In Venezuela, Vegas et al. (2003) reported that one could harvest fruits from covered 

female flowers belonging to the papaya cultivars Costa Rica, Larga, Paraguanera, and Solo 

6, 7 and 8 at a rate of 32% to 81% (Vega et al., 2003). Fruits carry seeds at a rate of 64%, 

and these seeds do not develop endosperm but show seemingly functional embryos (Vega et 

al., 2003). Embryos from the cultivar Larga were cultured in vitro, and somatic 
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embryogenesis and subsequent plantlet regeneration were possible (Vega et al., 2003). These 

plantlets were grown in the field and were apparently identical in morphology (Vega et al., 

2003). Multiple embryos were observed at a low rate of 5/3000 per dissected seeds (Vega et 

al., 2003). 
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Figure 2. Transcriptional patterns in putative papaya regulators of embryo sac 
development. Results suggest differential expression between lines L1 (L) and Hawaiian 
(H). As compared with Hawaiian papaya, in the suspected apomictic line L1, the expression 
of loci CpAGO9, CpMEA, CpRBR1 and CpSWA1 appears to show a relative reduction in 
flowers both before anthesis (LB: L1 line before anthesis) and after anthesis (LA, L1 line 
after anthesis). The Arabidopsis homologs of these putative loci have been shown to repress 
endosperm (AGO9, RBR1) and embryo development (MEA), thus a reduction in expression 
might be interpreted as suggesting derepressed growth and autonomous egg and central cell 
differentiation. The Arabidopsis gene SWA1 is believed to control female gametophyte 
fertility and central cell proliferation, and its putative papaya homolog (CpSWA1) showed 
reduced expression in L1, suggesting deregulated proliferation. The expression pattern of all 
loci in line Hawaiian is opposite to L1 both before anthesis (HB) and after anthesis (HA). 
qPCR experiments were performed in triplicate from three biological samples.  
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Conclusions 

Dual staining of tissue sections is a conventional method that has proved successful 

in plant cytological studies (Blokhina et al., 2017). Our results indicate that this methodology 

may allow for identification of most features in the papaya ovules. In both papaya lines we 

could identify the contour of antipodal cells, polar nuclei/central cell, synergids and egg from 

about 10-15 samples. Deep coloring by the membrane stain Alcian blue suggested that their 

possible location might be similar to that observed in A. thaliana (Sundaresan and Alandete-

Saez, 2010), with the egg cell placed right behind the synergids, and a large vacuolated 

central cell placed behind the egg cell (Johnson et al., 2019). In fact, large vacuolar 

membranes are associated with all these cells (Shi and Yang, 2011). Papaya ovules conform 

to a Polygonum-type architecture, but significant variation in morphology was observed. 

Although we assume that papaya ovule development is synchronic within a flower, 

synchronicity has not been determined experimentally yet. 

Our results also hint at the existence of asexual embryo development in papaya, as 

previously reported by Vega et al. (2003). Variation in transcriptional patterns was also 

observed between different papaya parental lines at the ovule level. A possible link may exist 

between apomictic development in ovules of L1 and downregulation of papaya homologs for 

AGO9 (RdDM pathway), MEA (PcG-mediated histone remodeling), RBR1 (cell cycle and 

histone remodeling) and SWA1 (rRNA processing and cell cycle). The upstream determinant 

for such differences is unknown, and in-depth analyses of transcriptional activity may be 

needed to corroborate this very tentative hypothesis. However, breeding of interspecific 

hybrids between Carica and the related genera Cylicomorpha, Horovitzia, Jacaratia, Jarilla, 

and Vasconcellea often leads to the formation of parthenocarpic fruit (Fuentes and 
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Santamaría, 2014), which suggests that perhaps hybridization and polyploidization events in 

papaya might lead to a situation of genomic shock characterized by dysregulation of gene 

expression, high gene dosage sensitivity and disturbed cell divisions, as reported often for 

other plant apomictics (Hojsgaard, 2018). 

The large size of ovules in papaya suggests that because of its favorable cytology, 

this organism may well become an important emerging model system. Functional genomics 

of the reproductive apparatus of papaya may contribute to the advancement of plant breeding 

efforts in other species. For instance, in Arabidopsis and Torenia, a better understanding of 

pollen tube guidance within the embryo sac has allowed for the identification of cysteine-

rich peptides from the defensin family, called LURE1 and LURE2, that work as ovule 

attractants to facilitate fertilization and fruit formation (Higashiyama and Takeuchi, 2015). 

Development of fluorescent cell markers for the egg cell and central cell have also allowed 

for better understanding synergid and antipodal cell development, for identifying novel 

regulators of Arabidopsis ovule development (Liu et al., 2017). Taken together further in-

depth transcriptomic, cytological, and perhaps flow cytometry analyses in papaya ovules may 

be valuable from a scientific and agricultural point of view. 

Acknowledgements 

This project was kindly funded by Vicerrectoría de Investigación (University of Costa 
Rica) grant #B5A13. We thank Eric Mora-Newcomer (Fabio Baudrit Agricultural Research 
Station, University of Costa Rica) for kindly donating samples from his papaya breeding 
program, and to all students who contributed with their work. This manuscript was kindly 
edited by Ms. Laura Smales (BioMedEditing, Toronto, Canada). Pablo is a young member 
affiliate of TWAS/UNESCO and a member of the American Society of Plant Biologists 
(ASPB). 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.11.434975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434975
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

References 

BLOKHINA, O., VALERIO, C., SOKOLOWSKA, K., ZHAO, L., KÄRKÖNEN, A., 
NIITTYLÄ, T., and FAGERSTEDT, K. (2017). Laser capture microdissection protocol 
for xylem tissues of woody plants. Front Plant Sci 7: 1965. 
https://doi.org/10.3389/fpls.2016.01965. 

FISHER, J.B. (1980). The vegetative and reproductive structure of papaya (Carica papaya). 
Lyonia 1(4): 191-208. 

FUENTES, G., and SANTAMARÍA, J.M. (2014). Papaya (Carica papaya L.): Origin, 
domestication, and production. In Genetics and genomics of papaya, plant genetics and 
genomics: crops and models, volume 10 (pp. 3-16). 

GARMAN, J.G., MATEO DE ARIAS, M., GAO, L., ZHAO, X., KOWALLIS, B.M., 
SHERWOOD, D.A., SRIVASTAVA, M.K., DWIVEDI, K.K., PRICE, B.J., WATTS, 
L., and WINDHAM, M.D. 2019. Apospory and diplospory in diploid Boechera 
(Brassicaceae) may facilitate speciation by recombination-driven apomixis-to-sex 
reversals. Front Plant Sci 10: 724. https://doi: 10.3389/fpls.2019.00724. 

GEETIKA, S., RUQIA, M., HARPREET, K., NEHA, D., SHRUTI, K., and SINGH, S. P. 
(2018). Genetic engineering in papaya. In Genetic engineering of horticultural crops 
(pp. 137-154). https://doi.org/10.1016/b978-0-12-810439-2.00007-6. 

HERNÁNDEZ-LAGANA, E., RODRÍGUEZ-LEAL, D., LÚA, J., and VIELLE-
CALZADA, J.P. (2016). A multigenic network of ARGONAUTE4 clade members 
controls early megaspore formation in Arabidopsis. Genetics 204(3): 1045-1056. 
https://doi.org/10.1534/genetics.116.188151. 

HIGASHIYAMA, T., and TAKEUCHI, H. 2015. The mechanism and key molecules 
involved in pollen tube guidance. Annu Rev Plant Biol 66: 393-413. doi: 
10.1146/annurev-arplant-043014-115635. 

HOJSGAARD, D. 2018. Transient activation of apomixis in sexual neotriploids may retain 
genomically altered states and enhance polyploid establishment. Front Plant Sci 9:230. 
doi: 10.3389/fpls.2018.00230. 

HOLEC, S., and BERGER, F. (2012). Polycomb group complexes mediate developmental 
transitions in plants. Plant Physiol 158(1): 35-43. doi: 10.1104/pp.111.186445. 

KIYOSUE, T., OHAD, N., YADEGARI, R., HANNON, M., DINNENY, J., WELLS, D., 
KATZ, A., MARGOSSIAN, L., HARADA, J.J., GOLDBERG, R.B., and FISCHER, R, 
L. (1999). Control of fertilization-independent endosperm development by the MEDEA 
polycomb gene in Arabidopsis. P Natl Acad Sci USA 96(7): 4186-4191. doi: 
10.1073/pnas.96.7.4186. 

KOLTUNOW, A.M., and GROSSNIKLAUS, U. (2003).  Apomixis: a developmental 
perspective. Annu Rev Plant Biol 54: 547-574. doi: 
10.1146/annurev.arplant.54.110901.160842. 

KUNG, Y.J., YU, T.A., HUANG, C.H., WANG, H.C., WANG, S.L., and YEH, S.D. 2010. 
Generation of hermaphrodite transgenic papaya lines with virus resistance via 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.11.434975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434975
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

transformation of somatic embryos derived from adventitious roots of in vitro shoots. 
Transgenic Res 19: 621-635 doi: 10.1007/s11248-009-9344-2. 

KURCZYŃSKA, E. U., GAJ, M. D., UJCZAK, A., and MAZUR, E. (2007). Histological 
analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta 
226(3): 619-628. https://doi.org/10.1007/s00425-007-0510-6. 

KUWABARA, A., and GRUISSEM, W. (2014). Arabidopsis RETINOBLASTOMA-
RELATED and Polycomb Group proteins: cooperation during plant cell differentiation 
and development. J Exp Bot 65(10): 2667-2676. https://doi.org/10.1093/jxb/eru069. 

LIAO, Z., YU, Q., and MING, R. (2017). Development of male-specific markers and 
identification of sex reversal mutants in papaya. Euphytica 213: 53. 
https://doi.org/10.1007/s10681-016-1806-z. 

LIU, M., SHI, D.-Q., YUAN, L., LIU, J., and YANG, W.C. (2010). SLOW WALKER3, 
encoding a putative DEAD-box RNA helicase, is essential for female gametogenesis in 
Arabidopsis. J Integr Plant Biol 52: 817-828. doi:10.1111/j.1744-7909.2010.00972.x. 

LIU, Z., YUAN, L., SONG, X., YU, X., and SUNDARESAN, V. 2017. AHP2, AHP3, and 
AHP5 act downstream of CKI1 in Arabidopsis female gametophyte development. J Exp 
Bot 68(13): 3365-3373. doi:10.1093/jxb/erx18. 

EL MAÂTAOUI, M., ESPAGNAC, H., and MICHAUX-FERRIÈRE, N. (1990). Histology 
of callogenesis and somatic embryogenesis induced in stem fragments of cork oak 
(Quercus suber) cultured in vitro. Ann Bot 66(2): 183-190. 
https://doi.org/10.1093/oxfordjournals.aob.a088014. 

MING, R., HOU, S., FENG, Y., YU, Q., DIONNE-LAPORTE, A., SAW, J. H., and ALAM, 
M. (2008). The draft genome of the transgenic tropical fruit tree papaya (Carica papaya 
Linnaeus). Nature 452: 991-997. https://doi.org/10.1038/nature06856. 

RODRIGUES, J.C.M., LUO, M., BERGER, F., and KOLTUNOW, A.M.G. 2010. Polycomb 
group gene function in sexual and asexual seed development in angiosperms. Sex Plant 
Reprod 23:123-133. https://link.springer.com/article/10.1007%2Fs00497-009-0131-2. 

RODRÍGUEZ-LEAL, D., LEÓN-MARTÍNEZ, G., ABAD-VIVERO, U., and VIELLE-
CALZADA, J.P. (2015). Natural variation in epigenetic pathways affects the 
specification of female gamete precursors in Arabidopsis. Plant Cell 27 (4): 1034-1045. 
doi: 10.1105/tpc.114.133009. 

RODRÍGUEZ-LEAL, D., and VIELLE-CALZADA, J.P. (2012). Regulation of apomixis: 
learning from sexual experience. Curr Op Plant Biol 15(5): 549-555. 
https://www.sciencedirect.com/science/article/pii/S1369526612001173. 

SCHMIDT, A., SCHMID, M.W., KLOSTERMEIER, U.C., QI, W., GUTHÖRL, D., 
SAILER, C., WALLER, M., ROSENSTIEL, P., and GROSSNIKLAUS, U. (2014) 
Apomictic and sexual germline development differ with respect to cell cycle, 
transcriptional, hormonal and epigenetic regulation. PLoS Genet 10(7): e1004476. 
https://doi.org/10.1371/journal.pgen.1004476. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.11.434975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434975
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

SHI, D.Q., and YANG, W.C. 2011. Ovule development in Arabidopsis: progress and 
challenge. Current Opin Plant Biol 14: 74-80. 

SUNDARESAN, V., and ALANDETE-SAEZ, M. (2010). Pattern formation in miniature: 
The female gametophyte of flowering plants. Development 137: 179-189. 
https://doi.org/10.1242/dev.030346. 

THOMSON FOSTER, L. (1943). Morphological and cytological studies on Carica papaya. 
Bot Gaz 105(1): 116-126. https://www.jstor.org/stable/2472098. 

VEGAS, A., TRUJILLO, G., SANDREA, Y., and MATA, J. (2003). Apomixis, 
poliembrionía somática y cigótica in vivo en lechosa. Interciencia 28(12): 715-718. 
http://ve.scielo.org/scielo.php?script=sci_serial&pid=0378-1844&lng=es&nrm=iso. 

WANG, H., LIU, C., CHENG, J., LIU, J., ZHANG, L., HE, C., SHEN, W.H., JIN, H., XU, 
L., and ZHANG, Y. (2016). Arabidopsis flower and embryo developmental genes are 
repressed in seedlings by different combinations of polycomb group proteins in 
association with distinct sets of cis-regulatory elements. PLoS Genet 12(1): e1005771. 
https://doi.org/10.1371/journal.pgen.1005771. 

YANG, W.C., SHI, D.Q., and CHEN, Y.H. 2010. Female gametophyte development in 
flowering plants. Annu. Rev. Plant Biol. 61: 89-108. https://doi.org/10.1146/annurev-
arplant-042809-112203. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.11.434975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434975
http://creativecommons.org/licenses/by-nc-nd/4.0/

