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Abstract 18 

Mutations in the RNA-binding protein (RBP) Pumilio1 (PUM1) can cause dramatically different 19 

phenotypes. Mild mutations that reduce PUM1 levels by 25% lead to a mild, adult-onset ataxia, whereas 20 

more severe mutations that reduce PUM1 levels 40-60% produce an infantile syndrome involving 21 

multiple developmental delays and seizures. Why this difference in expression should cause such 22 

different phenotypes has been unclear; known PUM1 targets are de-repressed to equal degrees in both 23 

diseases. We therefore sought to identify PUM1’s protein partners in the murine brain. We identified a 24 

number of putative interactors involved in different aspects of RNA metabolism such as silencing, 25 

alternative splicing, and polyadenylation. We find that PUM1 haploinsufficiency alters the stability of 26 

several interactors and disrupts the regulation of targets of those interactors, whereas mild PUM1 loss 27 

only de-represses PUM1-specific targets. We validated these phenomena in patient-derived cell lines and 28 

show that normalizing PUM1 levels rescues the levels of interactors and their targets. We therefore 29 

propose that dosage sensitivity does not necessarily reflect a linear change in levels but can involve 30 

distinct mechanisms. Studying the interactors of RBPs in vivo will be necessary to understand their 31 

functions in neurological diseases. 32 
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Introduction 33 

 To quickly respond to a specific perturbation, cells must modify their protein repertoire. RNA-34 

binding proteins (RBPs) accomplish this at the post-transcriptional level, regulating RNA localization, 35 

transport, translation, splicing, and decay; they have been found to orchestrate hundreds of pathways that 36 

are responsible for proper biological functions (1, 2). RBPs can coordinate or compete with each other or 37 

exert mutual influence (3), and they also interact with microRNAs (miRNAs) to suppress the expression 38 

of their target genes by binding to a short complementary seed region in the 3’ UTRs of mRNAs. RBPs 39 

and microRNA machinery are particularly important in neurons, whose plasticity demands a rapid local 40 

response to stimuli that can be quite distant from the nucleus (4). It is therefore not surprising that 41 

disruptions in RBPs underlie several complex neurological disorders. For example, large CAG 42 

expansions in the RBP FMRP cause Fragile X syndrome, but milder “premutations” in FMRP cause 43 

adult-onset Fragile X-associated tremor and ataxia syndrome (FXTAS) (5). The RBPs TDP43 and FUS 44 

are both involved in amyotrophic lateral sclerosis, and TDP43 mutations is linked to frontotemporal 45 

dementia (6, 7). Despite increasing interest in how RBPs influence neuronal function through target 46 

regulation, we still know relatively little about RBP interactions and regulation (7-9).  47 

 Our recent work on the RBP Pumilio1 (PUM1) has led us to consider RBP interactions. We found 48 

that mutations in PUM1 that reduce its levels by 40-60% cause a neurodevelopmental disease in humans 49 

(PUM1-associated developmental delay and seizures, or PADDAS). PADDAS causes cognitive, speech, 50 

and motor delays and seizures.  On the other hand, mild mutations in PUM1 that reduce its levels by only 51 

25% lead to a slowly progressive, pure ataxia with onset in mid-life (PUM1-related cerebellar ataxia or 52 

PRCA). Although the severity of the PRCA and PADDAS phenotypes tracks with the levels of functional 53 

PUM1, precisely what is happening at the molecular level remains unclear. PUM1 contains a highly 54 

conserved RNA-binding domain composed of eight tandem repeats known as Puf homology domains 55 

(HDs). While the mutation that produces mild disease (PRCA), T1035S, lies within the HD domain and 56 

impairs RNA binding, the most severe PADDAS mutation (R1147W) lies outside this domain and does 57 

not impair RNA binding (10, 11). Moreover, known PUM1 targets are upregulated to similar degrees in 58 

the PRCA and PADDAS patient cell lines (10). This suggested to us that PRCA might be caused by 59 

deregulation of PUM1 targets, whereas PADDAS might result from disruption of PUM1’s interactions 60 

with its protein partners along with de-repression of the targets of these complexes.  61 

 Testing this hypothesis requires identifying PUM1 interactors in the mouse brain. Although a great 62 

deal is known about the PUMILIO/FBF (PUF) family of RBPs (12-20), of which PUM1 and its homolog 63 

PUM2 are members, little is known about PUM1 function in the postnatal mammalian brain. Protein 64 

interactions in general, and those of PUF family members specifically, can be organism-, transcript-, and 65 
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even condition-specific (21). We therefore took an unbiased approach by using in vivo proteomics to 66 

identify PUM1's native partners. Since Drosophila studies show that Pumilio can change its protein 67 

partners in different neuronal types (22), we first examined the brain as a whole and then repeated our 68 

analyses in three distinct brain regions that most highly express PUM1. We then determined the effect of 69 

loss of PUM1 on a subset of RBP interactors that were the most highly connected within the interactome, 70 

using PUM1 heterozygous and homozygous null mice and patient-derived cell lines. We identified targets 71 

shared among these interactors and examined their responses to PUM1 insufficiency in mice and cell 72 

lines from patients bearing the T1035S and R1147W mutations. These data underscore the need to 73 

examine all the interactions an RBP is engaged in. 74 

 75 

Results 76 

Establishing the Pumilio1 interactome across the adult mouse brain  77 

 To identify interactors of Pum1 (the murine protein), we performed co-immunoprecipitation (IP) for 78 

Pum1 on whole brains from 10-week-old wild-type (WT) mice, followed by liquid chromatography with 79 

tandem mass spectrometry (LC-MS/MS, or simply mass spec); we used IP against IgG (IP-IgG) as a 80 

negative control (see Methods). Post-IP western blot detected no residual Pum1 from brain tissue 81 

confirming that our protocol recovers virtually all of Pum1 (Supplemental Figure 1). To increase the 82 

likelihood that our candidates would prove to be genuine interactors, we required putative interactors to 83 

have at least two unique peptides present in at least five out of six IP-Pum1 samples compared to IP-IgG 84 

in label-free quantification intensity (LFQ-intensity, see Methods). 85 

 This analysis yielded 412 putative Pum1 interactors (Supplemental Figure 2A and Supplemental 86 

Table 1). We incorporated mammalian protein-protein interaction data from CORUM and the Human 87 

Protein Atlas by using g:GOSt (g:Profiler; see Supplemental Methods) (23) to reveal 22 clusters of 88 

functionally related proteins (Supplemental Figure 2A). Among the putative interactors we found those 89 

that have been previously identified, supporting the validity of our approach. For example, our mass spec 90 

identified Pum2 and Fmrp, which associate with Pum1 in neural progenitor cells (24). Other identified 91 

proteins belong to families previously found to interact with PUM1 in vitro, such as CNOT1, which is the 92 

central scaffold of the CCR4-NOT complex (16, 25), which PUM1 recruits to shorten poly(A) tails and 93 

promote mRNA degradation (15-17). Translation initiation factors (cluster 3) have been found to 94 

cooperate with Puf proteins in other species (26), and human PUM2-mediated repression was found to 95 

require PABPC1, while our mass spec yielded Pabpc4 (17). Cluster 8, which includes proteins that have 96 

been associated with RNA fate regulation, was the most strongly interconnected with other clusters.  97 

 Given the plethora of putative interactors, and the tissue-specificity of interactions (22), we repeated 98 
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the mass spec experiments on the cerebellum, hippocampus, and cortex, where Pum1 is most highly 99 

expressed (11). Scatter-plots and PCA showed a clear separation of Pum1 and IgG samples 100 

(Supplemental Figure 3A-D). Through this analysis we identified 854 putative Pum1 interactors in the 101 

cerebellum, 423 in the hippocampus, and 598 in the cortex (Figure 1A; Supplemental Table 1). 467 were 102 

unique to the cerebellum, 140 to the hippocampus, 229 to the cortex, and 154 unique to the rest of the 103 

brain (i.e., excluding these three regions). Only 88 candidates were shared among these three brain 104 

regions and the whole brain (Figure 1A, yellow dots). Interestingly, the only brain region to show 105 

interaction between Pum1 and Pum2 was the cortex (Supplemental Figure 4A), despite the fact that Pum2 106 

is expressed at roughly the same levels in the three brain regions (Supplemental Figure 4B). 107 

 This region-specific analysis yielded the same components of the APC/C (Supplemental Figure 4C) 108 

and mTOR pathways (Supplemental Figure 4D) across the three brain regions, but expanded the list of 109 

Pum1 interactors in several other afore-mentioned pathways (Figure 1A, Supplemental Figure 4C-E). For 110 

example, Cnot1 and Cnot2 turned up in all three brain regions, while Cnot10 appears to be cortex-specific 111 

(Figure 1A, Supplemental Figure 4E). There were many proteins involved in translation initiation, with 112 

Eif3b being specific to the hippocampus (Supplemental Figure 4E). Rbfox1 was specific to the cortex, 113 

and Rbfox2 to the cerebellum and hippocampus (Figure 1A), consistent with previous work showing that 114 

Rbfox1 mediates cell-type-specific splicing in cortical interneurons (27) and that Rbfox2 is needed for 115 

cerebellar development (28).  116 

 We then performed DAVID Gene Ontology analysis for hits from both the whole brain and from each 117 

brain region analyzed (Figure 1B and Supplementary Table 2). The main categories identified were 118 

ubiquitin ligases (anaphase-promoting complex [APC/C], E2/E3 and Kll-linked ubiquitin) and RBPs 119 

involved in various aspects of RNA metabolism (RNA silencing, 3'UTR binding, mRNA stability, 120 

transport, and splicing). We prioritized the RBPs in cluster 8 (Supplemental Figure 2)—Fmrp and Ago2 121 

(involved in RNA silencing), Pum2, Cnot1, and Rbfox3 (an alternative splicing factor)—for the following 122 

reasons. First, this cluster was the most highly interconnected with other clusters; second, RNA-related 123 

categories were prominent in the gene ontology analyses for both whole brain and all three brain regions; 124 

third, these RBPs have been well studied and would allow us to more readily test the consequences of 125 

PUM1 loss; fourth, these proteins are associated with Pum1 in whole brain; lastly, these proteins have 126 

been studied mostly in vitro and have never been associated with Pum1 in the murine brain.  127 

 128 

Pum1 associates with Pum2, Fmrp, Ago2, and Cnot1 in the absence of mRNA 129 

 The associations of Pum1 with Pum2, Fmrp, Ago2, Rbfox3, and Cnot1 were confirmed by co-IP 130 

followed by western blot (Figure 2A, left panel). Since Fmrp and Ago2 both bind Mov10 in vitro (29, 131 
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30), we also blotted for murine Mov10. Mov10 was pulled down with Pum1, likely in concert with Fmrp 132 

(Figure 2A). We co-IPed Pum1 and blotted for all six RBPs in Pum1-/- mouse brains and detected none of 133 

them (Supplemental Figure 5A), indicating that the Pum1 antibody we used is specific. As negative 134 

controls, we tested other proteins associated with the RISC complex (Ago1 and Ago3) that did not appear 135 

in our mass spec data, and our co-IP experiments found no interactions (Supplemental Figure 5B).  136 

 To exclude the possibility that the co-IPs recovered proteins that are co-bound to target RNAs but are 137 

not part of the same complex as the protein of interest, we treated mouse brain samples with RNase and 138 

verified that no detectable RNA remained (see Methods). Pum1 still associated with Pum2, Fmrp, Ago2, 139 

and Cnot1 in the absence of mRNA, but not with Rbfox3 or Mov10 (Figure 2A, right panel). We repeated 140 

the RNase experiments in HEK293T cells, which confirmed our results (except for RBFOX3, which was 141 

not detectable in these cells) (Figure 2B). These data suggest that Pum1 interacts with all the six RBPs in 142 

brain, and this interaction is RNA-independent.   143 

 144 

Some interactions among these RBPs require PUM1  145 

 To confirm the interaction between Pum1 and the six RBPs and to understand the reciprocal 146 

interactions among the interactors themselves, we performed reciprocal co-IP in wild-type and Pum1-/- 147 

10-week-old mouse brains for Pum2, Ago2, Fmrp, Cnot1, Rbfox3, and Mov10. We first confirmed that IP 148 

against each of these six RBP is pulling down Pum1 from WT but not from Pum1-/- mouse brain (Figure 149 

3A-F). Pum2 interacted with Cnot1 only in the presence of Pum1 (Figure 3A). Unexpectedly, Fmrp 150 

associated with Mov10 and Rbfox3 only in the presence of Pum1 (Figure 3B-D). Fmrp and Cnot1 did not 151 

associate in WT brain (Figure 3B, left) but did so in the absence of Pum1 (Figure 3B, right). Ago2 152 

associated with Pum1, Fmrp, Cnot1 and Mov10 in WT brain, but in the absence of Pum1 it no longer 153 

interacted with Fmrp or Mov10 (Figure 3E). Mov10 associated with Fmrp but not with Ago2 (Figure 3D 154 

and E). Rbfox3 associated with Cnot1 (Figure 3C) but not vice versa (Figure 3F). IPs against Pum2, 155 

Ago2, Fmrp, Cnot1, Rbfox3, and Mov10, performed in the presence or absence of RNA in WT and 156 

Pum1-/- mouse brains (Supplemental Figure 6A-F) confirmed that, in the absence of Pum1, these 157 

interactions require RNA.  158 

 In summary, Pum1 associates with Pum2, Fmrp, Ago2, and Cnot1, with or without RNA (Figure 3A-159 

F and Supplemental Figure 6A-F).  Pum1 seems to be required for association between Fmrp, Mov10 and 160 

Rbfox3, and between Ago2 and Fmrp, Mov10, and Cnot1. In the absence of Pum1, the associations 161 

between Pum2, Fmrp, Ago2 and Cnot1 require RNA (Supplemental Figure 6A-F). These data suggest 162 

that the interaction between Pum1 and these RBPs seems to be prior binding the RNA. 163 

Pum1 loss alters levels of RBP interactors in mouse cerebella by brain region and sex  164 
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 If Pum1 is an important interactor for these six RBPs, loss of Pum1 should affect their stability or 165 

abundance. Pum1 heterozygous and homozygous null mice showed changes in the quantities of Pum2, 166 

Ago2, and Mov10 proteins across the brain (Supplemental Figure 7A), but only Pum2 showed changes in 167 

mRNA levels (Supplemental Figure 7B). Since Ago2 and Mov10 levels fell only in male mice 168 

(Supplemental Figure 7A), we quantified Pum2, Fmrp, Ago2, Rbfox3, Cnot1 and Mov10 in the 169 

cerebellum, cortex, and hippocampus of male and female mice. We first measured Pum1 mRNA and 170 

protein levels to confirm the reduction of Pum1 in our Pum1+/- or Pum1-/- mice in each brain region 171 

(Figure 4A-C, and Supplemental Figure 8). Pum2 protein levels rose in all three brain regions, as did its 172 

mRNA (Figure 4A-C, and Supplemental Figure 8).  173 

 As previously reported, Fmrp protein expression was upregulated in all three brain regions in male 174 

KO mice, but in female KO cerebella Fmrp was reduced by almost 70% (Figure 4A) (31, 32). Three other 175 

proteins also showed divergent responses to Pum1 loss according to sex and brain region: Ago2, Rbfox3 176 

(in the hippocampus), and Cnot1 (in the cerebellum) (Figure 4A-C). None of these proteins showed any 177 

changes in mRNA levels (Supplemental Figure 8), despite the fact that Fmr1 and Cnot1, like Pum2, have 178 

a Pumilio Response Element (PRE) (33) in their 3’UTR. In summary, these data suggest that loss of 179 

Pum1 could cause a sex- and region-specific reorganization of these complexes, or that there are 180 

additional sex-specific Pum1 interactors.  181 

 182 

Pum1 loss dysregulates Ago2 and the microRNA machinery in mouse cerebella by sex 183 

 To confirm these Pum1 sex-specific functions—and because Pum1 loss has deleterious effects on the 184 

cerebellum in both mice (11) and humans (10)—we asked whether the divergence of Ago2 protein levels 185 

in males and females extended to cerebellar miRNAs. A miRNAseq found 701 expressed miRNAs, many 186 

of which diverged in expression between the two sexes (Supplemental Figure 9). Hierarchical heatmap 187 

clustering of significant miRNA expression in Pum1-/- and WT male and female cerebella at 10 weeks of 188 

age revealed that the expression of 166 miRNAs (Supplemental Table 3) diverged between the two sexes 189 

in parallel with Ago2 expression (Figure 4D).  190 

 To examine the functional consequences of this Ago2/miRNA dysregulation, we studied the 191 

expression of downstream targets that are co-bound by those miRNAs in 10-week-old WT and Pum1-/- 192 

male and female cerebella. To perform this experiment we selected all the miRNAs with at least a 25% 193 

change in expression in either direction, for a total of 49 miRNAs. Using TargetScan and CoMeTa  (34, 194 

35) we identified 6832 putative targets that are co-bound by at least 2 out of 49 possible miRNAs. We 195 

prioritized targets that are co-bound by at least 8 miRNAs, for a total of 49 putative targets. Pum1-/- male 196 

and female cerebella showed gene expression changes for 44 out of these 49 targets, which correlated 197 
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with the sex-dependent differences in Ago2 levels (Figure 4E, Supplemental Figure 10 and Supplemental 198 

Table 4). 199 

 To elucidate the biological pathways in which these miRNAs play an essential role, we performed 200 

David Gene Ontology with all the non-redundant targets predicted by CoMeTa (35) and TargetScan 7.1 201 

(34) that are co-bound by at least four miRNAs. This analysis yielded 2127 targets (Supplemental Figure 202 

11A-C). Under "cellular components" there was an enrichment in multiple categories having to do with 203 

synaptic function. Under "biological processes" the most enriched categories are organ growth and post-204 

embryonic development (PADDAS children have growth defects (10), consistent with this GO analysis). 205 

Under KEGG pathways, there was a particular enrichment in Wnt signaling, dopaminergic and 206 

cholinergic pathways, cancers (increased Pum1 levels have been described in several cancers (36-38)), 207 

protein ubiquitination (which accords with interactions with the APC/C complex).  208 

 To understand the neuron-related biological pathways, the same targets were analyzed by SynGO 209 

(39), a curated ontology analysis based on genes that are exclusively expressed in specific neurons from 210 

single-cell data. SynGO confirmed that 117 targets are presynaptic, whereas 124 are postsynaptic 211 

(Supplemental Figure 11D). Moreover, among the 166 miRNAs inversely expressed between sexes, we 212 

found the entire miR-200 family (miR-200a, miR-220b, miR-200c, miR-141, and miR-429), which has 213 

been reported to regulate crucial targets involved in neurogenesis, glioma, and neurodegenerative diseases 214 

(40, 41). Overall, these results are consonant with our mass spec and suggest an intimate relation between 215 

Pum1 and Ago2 in mouse cerebellum. 216 

 217 

Pum1, Pum2, Fmrp, Ago2, and Rbfox3 share their top targets 218 

 If indeed the complexes Pum1 forms with these RBPs are physiologically relevant, as seen for Ago2 219 

in cerebellum, then they should co-regulate at least some of the same mRNA targets. Indeed, one 220 

corollary of the "regulon theory," which posits that mRNA targets in the same pathway are co-regulated 221 

(2, 42-44), is that there should be a discernible set of RBPs that do the co-regulating.  222 

 To test this hypothesis, we analyzed all the high-throughput sequencing UV-crosslinking and 223 

immunoprecipitation (HITS-CLIP) data available from the murine brain (such data exist for Fmrp (45), 224 

Ago2 (46), Rbfox3 (47), Pum1, and Pum2 (24)). We then performed gene set enrichment analysis 225 

(GSEA) (48) using Fmrp as the basis for comparison (because it has the largest dataset). As negative 226 

controls, we used HITS-CLIP data from mouse brain for four RBPs that did not show up as Pum1 227 

interactors in our mass spec: Mbnl2 (49), Nova (50), Apc (51), and Ptpb2 (52).  228 

 This analysis revealed that Pum1 targets were preferentially distributed in the top 5th percentile of all 229 

Fmrp targets, with an enrichment score (ES) of 0.93 (the maximum is 1) and a FDR of 0 (Figure 5A, blue 230 
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line represents ES). Pum2, Ago2, and Rbfox3 showed nearly identical patterns (Figure 5A). There was no 231 

significant overlap between the targets of Fmrp and those of any negative control (Nova had the highest 232 

ES, but this was only 0.36 with a rank max of 45th percentile and FDR=1; Figure 5B). Neither Pum1, 233 

Pum2, Rbfox3, Fmrp, nor Ago2 targets were enriched among any of the ranked target lists of the negative 234 

controls (Supplemental Figure 12A, and data not shown). 235 

 To ascertain that the highest-ranking Fmrp targets correspond to the genes with the highest 236 

probability of being Pum1 targets, we divided the Fmrp ranked target list into 10 equal bins according to 237 

percentile. We then repeated GSEA of Pum1 HITS-CLIP data for each bin and found that 648 of the 1194 238 

identified Pum1 targets (54%) are in the top 10th percentile of Fmrp targets, with an ES of 0.8 (Figure 239 

5C). This was also true for Pum2, Ago2, and Rbfox3 (Figure 5C).  240 

 We performed the same analysis using the Pum1 target list as the basis for comparison. We ran 241 

GSEA on each of the four Pum1 partners against the list of Pum1 target genes, and each partner's targets 242 

are within the top 20% of the Pum1 list (Figure 5D). Specifically, Fmrp's targets reside in the top 10th 243 

percentile (with an ES of 0.81), Pum2's targets within the 16th percentile (ES=0.9), Ago2's targets within 244 

the 18th percentile (ES=0.76), and Rbofx3's targets within the 19th percentile (ES=0.67). The four RBPs 245 

used here as negative controls have a minimum rank at the 37th percentile, and the best ES was 0.26 for 246 

Apc; none of the five reached statistical significance (Figure 5D). These analyses demonstrate that there is 247 

substantial overlap among the highest-ranked targets of Pum1, Pum2, Fmrp, Ago2, and Rbfox3. 248 

 We also studied the targets shared by Pum1, Pum2, Ago2, and Rbfox3 to determine how they 249 

distribute within Fmrp. We found an ES of 0.93 falling within the top 5th percentile (Figure 5E); 141 out 250 

of 175 common targets were within the top 10th percentile (bin 1) of Fmrp targets, with 99 within the top 251 

5th (Figure 5F). This contrasts with the negative controls, for which the best ES was 0.41 within the top 252 

40th-60th percentile (Figure 5G). DAVID gene ontology analysis of those 175 common targets between 253 

Ago2, Pum1, Pum2, Fmrp, and Rbfox3 revealed pathways enriched in neurons and axonal projections 254 

(Supplemental Figure 12B and C). Previous studies have shown that Pum1 and Pum2 cooperate with the 255 

miRNA machinery to suppress certain targets (11, 13). Among Fmrp HITS-CLIP targets, there were 256 

almost 300 microRNAs. Pum1 HITS-CLIP has 60 miRNAs, only four of which are not shared with Fmrp; 257 

Pum2 HITS-CLIP has no miRNAs that are not shared with either Pum1 or Fmrp (Supplemental Figure 258 

12D and Supplemental Table 6).  259 

 260 

PUM1 interactors are destabilized in cell lines from PADDAS, but not PRCA, patients 261 

 Having identified Pum1 interactors and shared targets, we asked whether mutations associated with 262 

either mild or severe disease destabilize human PUM1 interactors in patient-derived cell lines. For 263 
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PADDAS, we compared fibroblasts from one 9-year-old female patient (R1147W) with fibroblasts from 264 

three different 9-year-old female healthy controls. For PRCA, we compared lymphoblastoid cells from 265 

two female PRCA patients (both with the T1035S mutation; 59 and 58 years old, respectively) with 266 

lymphoblastoid cells from three different 58-year-old female healthy controls (10). IP against PUM1 267 

followed by western blot showed that PADDAS cells had 49%, and PRCA cells 76%, of the amount of 268 

PUM1 found in healthy controls (Supplemental Figure 13A and B), consistent with our previous report 269 

(10). Post-IP did not detect any residual PUM1 from PADDAS or PRCA cell lines, or their controls, 270 

confirming that our protocol efficiently pulled down PUM1 protein from both patient-derived cell lines 271 

(Supplemental Figure 13C and D). 272 

 Co-IP confirmed that PUM1 associates with FMRP, AGO2, CNOT1, and MOV10 in patient cell lines 273 

(Supplemental Figure 13A and B). The mild T1035S variant reduced PUM1 binding to AGO2 but this 274 

was not significant (Supplemental Figure 13D). The more severe R1147W, however, reduced PUM1 275 

association with AGO2, CNOT1, and MOV10 by ~84%, ~59%, and ~90%, respectively (Supplemental 276 

Figure 13A). Interaction with FMRP did not appear to be affected. (We could not examine the effect of 277 

PUM1 mutations on RBFOX3, which is not expressed in fibroblasts or lymphoblastoid cells.) 278 

 To compare the mutants in the same cell type, we turned to HEK293T cells. We found that GST-279 

AGO2 associated with Myc-PUM1-R1147W 72% less than it did with Myc-PUM1-WT (Figure 6A), in 280 

alignment with our observations in the PADDAS cell lines (Supplemental Figure 13A and B). We also 281 

found ~35% less interaction with CNOT1 (Figure 6B) but no decrease in PUM1 association with FMRP 282 

(Figure 6C), again in accord with our findings in patient-derived cells (Supplemental Figure 13A and B).  283 

 We next asked whether the R1147W mutation might be impaired in binding with WT PUM1. We 284 

found that IP against Myc-PUM1-R1147W pulled down 51% of the total GST-PUM1-WT, while the 285 

interaction between Myc-PUM1-T1035S and GST-PUM1-WT remained unchanged (Figure 6D). The 286 

same interaction was observed after RNase treatment, suggesting that mammalian PUM1 interacts with 287 

itself in the absence of RNA (Supplemental Figure 14A). These data suggest that the R1147W mutation 288 

might exert a dominant-negative effect on WT PUM1. Moreover, the combination of lower protein levels 289 

and marked protein instability explains why the R1147W human phenotype is closer to that of the Pum1 290 

null mice than to the heterozygous mice (10). 291 

 To confirm that R1147W destabilizes PUM1 interactors, we quantified the protein levels of these 292 

RBPs from patient-derived cell lines. This analysis revealed that the proteins that lose their association 293 

with the R1147W variant also are reduced in their expression (Figure 6E). Note that MOV10's association 294 

with R1147W was greatly reduced (Supplemental Figure 13A) even though its protein levels were 295 

unchanged (Figure 6E). AGO2 and CNOT1 levels were unchanged in the PRCA cell line but were ~50% 296 
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lower in the PADDAS cell line (Figure 6E). The mRNA levels of PUM1, AGO2, CNOT1, and MOV10 297 

did not change (Supplemental Figure 14B), confirming that the reductions in their respective protein 298 

levels were due to the loss of interaction with PUM1-R1147W. These data suggest that the R1147W 299 

variant might also exert a dominant-negative effect on PUM1-RBP interactors by destabilizing them. 300 

 301 

Shared targets are upregulated in PADDAS but not PRCA 302 

 We had hypothesized that PRCA involves dysregulation of PUM1 targets, whereas PADDAS 303 

involves both destabilization of PUM1 interactors and dysregulation of their targets. We therefore tested 304 

the effects of the T1035S and R1147W mutations on both shared targets and validated PUM1-specific 305 

targets (11, 24, 53) that are not in the HITS-CLIP data for the other RBPs but are expressed in both 306 

fibroblasts and lymphoblasts. PUM1-specific mRNA were dysregulated to very similar extents in PRCA 307 

and PADDAS patient cells, with only a few targets being up to 20% more upregulated in PADDAS 308 

(Supplemental Figure 14C).  309 

 Of the 175 targets shared between PUM1, PUM2, AGO2, FMRP, and RBFOX3 (Figure 5E and 310 

Supplemental Table 5), 54 were expressed in both PADDAS fibroblasts and PRCA lymphoblastoid cells. 311 

Fifty-one of those were upregulated in PADDAS but not in PRCA (Figure 7A), by an average of two-fold 312 

(ranging from a low of 121% for IDS to 347% for TLK1). There was little or no change in most of these 313 

targets in PRCA cells, though levels of CALM1, ATP2A2, CREB1, and GNAQ fell by ~40%, and CALM2, 314 

TAOK1, and UBE2A by ~20% (Figure 7A). 315 

 Finally, we tested whether restoring PUM1 levels would normalize expression of these shared targets.  316 

Transfection of Myc-PUM1-WT in PADDAS cells (Figure 7B, and Supplemental Figure 14D) rescued 317 

AGO2 and CNOT1 protein levels compared to the age- and sex-matched healthy controls (transfection 318 

with an empty vector was used here as negative control) (Figure 7B). Moreover, this reduced the levels of 319 

the top 15 upregulated shared targets. These data confirm that the effects of the R1147W mutation, which 320 

does not impair PUM1 binding to mRNA (10), result from loss of interactions with RBPs that repress the 321 

same mRNA targets. These results also support the hypothesis that the symptoms observed in PRCA are 322 

attributable to the dysregulation of PUM1-specific target genes, while PADDAS involves both protein 323 

partner destabilization and dysregulation of the partner proteins’ targets.  324 

 325 

Discussion 326 

 Since our initial study describing PUM1-related diseases (10), we and others have identified 327 

additional PADDAS and PRCA patients (10, 54-56). In our cohort, the R1147W mutation accounts for 328 

the majority of PADDAS patients, and T1035S for the majority of PRCA, which supports the value of 329 
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studying these particular two mutations. The question that drove the present study is: why should the 330 

additional 25% drop in PUM1 levels from PRCA to PADDAS produce such different phenotypes, 331 

especially when R1147W is not impaired in binding to mRNA? Our data support the hypothesis that the 332 

difference is not due to a linear increase in the de-repression of mRNA targets but is rather a function of 333 

an additional mechanism coming into play: the destabilization of numerous interactors and the de-334 

repression of their downstream targets. This conclusion relies on five lines of evidence. First, loss of 335 

Pum1 in heterozygous and knockout mice changes the levels of associated proteins, with unexpected 336 

differences emerging between brain regions and between male and female mice. These differences 337 

involved exchanges between members of the same protein families (e.g., the Rbfox family). The odds of 338 

consistently identifying specific proteins in different brain regions and sexes as false positives, across as 339 

many mice as these experiments required, are extremely low. Second, we observed diminished function 340 

of the RBP interactors in the absence of Pum1, insofar as their targets are dysregulated in Pum1-KO mice; 341 

moreover, the dysregulation of miRNA showed opposite patterns in male and female cerebella that 342 

correlated with the sex-specific patterns of Ago2 expression. Third, the levels of these proteins were 343 

reduced 40-70% in PADDAS patient cell lines, despite unaltered mRNA levels, but not in PRCA patient 344 

cells; we also found that 55 shared targets expressed in both lymphoblasts and fibroblasts were 345 

derepressed in PADDAS, but not PRCA, cells. Fourth, our in vitro studies showed that AGO2 and 346 

CNOT1 lose their interaction with PUM1-R1147W. Fifth, re-expression of PUM1 in PADDAS cell lines 347 

rescued the levels of its interactors and restored suppression of downstream shared targets. In aggregate, 348 

these data suggest that a ~50% loss of PUM1 disrupts interactions with native partners, differentiating 349 

PADDAS from PRCA. These results underscore the importance of examining RBP interactions in vivo, in 350 

specific contexts (different sex or brain regions), with and without RNase treatment.  351 

 There are other dosage-sensitive proteins that produce different phenotypes depending on their 352 

expression level (57), and our results raise the possibility that interacting complexes may be disrupted 353 

once expression falls below a certain threshold. What that threshold might be likely differs for different 354 

proteins, but for PUM1 it seems to be somewhere between the 75% of wild-type levels of PUM1 seen in 355 

PRCA and the 60% level estimated for the R1139W mutation that produced a milder form of PADDAS 356 

(10). In this context it is worth noting that a recent study found that, below a threshold of ~70% of normal 357 

levels of FMRP, there were steep decreases in IQ for each further decrement in FMRP levels, even as 358 

small as 5-10% (58). The amount of loss that can be sustained for a given protein would likely depend on 359 

its usual quantities, and it is possible that for some proteins, the difference in phenotype between greater 360 

and lesser abundance may indeed reflect a linear progression from mild to severe. For example, in 361 

proteopathies such as Alzheimer’s or Parkinson’s disease, genetic duplications of APP or SNCA cause an 362 
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earlier onset of what is recognizably the same disease (59, 60). Similarly, a mutation in MECP2 that 363 

reduces its protein levels by only 16% is still sufficient to cause a mild form of Rett syndrome (61).  364 

 In contrast, there are diseases in which the phenotypes do not simply range from mild to severe 365 

versions of the same symptoms, but seem to take on a different character. In the polyglutaminopathies, 366 

the disease-causing protein bears an abnormally expanded CAG tract that tends to expand upon 367 

intergenerational transmission. Although the range of normal and pathogenic repeat tract lengths differs 368 

from one polyglutamine disease to another, larger expansions are more unstable, cause earlier onset, and 369 

affect far more tissues than smaller expansions (62). For example, adult-onset SCA7 presents as ataxia, 370 

but infantile SCA7 affects the entire nervous system, the heart, and the kidneys, and leads to death by two 371 

years of age (63). Another example is Huntington’s disease (HD), where the juvenile form frequently 372 

lacks the classic chorea yet produces seizures, which are not a feature of the adult-onset disease; brain 373 

morphometry is also quite different in adult- and juvenile-onset cases (64). In this family of diseases, 374 

therefore, the mechanism is the same (repeat expansion), but different tissues have different thresholds for 375 

the CAG repeats. Moreover, the brain regions most vulnerable to HD show dramatic levels of somatic 376 

instability that correlate better with clinical outcomes than the germline polyglutamine expansion (65, 377 

66). 378 

 In the case of PUM1-related disease, it seems that an additional mechanism comes into play for the 379 

more severe phenotypes, beyond upregulation of mRNA targets. Interestingly, FMRP, which harbors a 380 

dynamic CGG repeat, is also associated with very different diseases, through two different mechanisms. 381 

Very large expansions silence the gene and produce Fragile X syndrome, whereas premutations are 382 

thought to cause the adult-onset Fragile-X-associated tremor/ataxia syndrome through RNA toxicity 383 

(FXTAS) (67). Interestingly, the clinical presentation of FXTAS differs by sex. We have more females 384 

with PUM1 mutations in our cohort, but with only 60 patients the sample is too small to draw any 385 

conclusions about the influence of sex on either the PADDAS or PRCA phenotype.  386 

 There are several limitations to this study. The most notable is that it is difficult to demonstrate 387 

direction interactions in vivo, and it is theoretically possible that we could be seeing post-lysis 388 

interactions. However, we examined the interactions in different brain regions where the two proteins of 389 

interest are equally expressed, and we repeatedly identified interactions that were consistently restricted to 390 

certain regions, such as with Pum2. A mere post-lysis interaction cannot be specific to a particular brain 391 

region or sex, especially with as many biological replicates as we have performed.  We also had only 392 

three patient cell lines to test (one PADDAS, two PRCA), and lymphoblasts and fibroblasts are not 393 

directly comparable; they are also not neurons. Nevertheless, both fibroblasts and lymphoblasts express 394 

almost one-third of the shared targets we identified in mouse brains, and these were clearly dysregulated 395 
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in both cell types. Moreover, we replicated the patient-derived cell line results in vitro with tagged 396 

proteins. Future studies in iPSC-derived neurons would be useful, although the neuronal type and the sex 397 

of the patient would have to be taken into account.  398 

 Despite these clear limitations, our data suggest some provocative possibilities for future 399 

investigation. It has never been clear how the various modes of action attributed to PUM1 or other RBPs 400 

relate to one another. Our data suggest that the three mechanisms of repression that have been proposed 401 

for PUM1—collaborating with the miRNA machinery (12-14), recruiting the CCR4-NOT deadenylase 402 

complex to trigger degradation (15-17), and antagonizing poly(A)-binding proteins to repress translation 403 

(18)—might be coordinated in neurons, insofar as PUM1, PUM2, FMRP, AGO2, MOV10, CNOT1 and 404 

RBFOX3 (and related proteins in specific brain regions) either interact or are so close to each other within 405 

the ribonucleosome that the loss of Pum1 or RNA can change the composition of the complexes that are 406 

identified by co-IP, in ways that are specific to brain region and sex. In this context it is worth noting that 407 

a very recent study found alternative splicing is altered in hippocampal slices from Fmrp-deficient mice; 408 

this observation was attributed to changes in H3K36me3 levels (68), but our data suggest that FMRP has 409 

a closer relationship with the RBFOX protein family and alternative splicing machinery. Indeed, recent 410 

work has provided tantalizing glimpses of close interactions among various kinds of RNA metabolism. 411 

For example, members of the RBFOX family of proteins may, depending on their interactors (and 412 

perhaps cell type, sex, age, and species), be involved in microRNA processing in the nucleus and 413 

translation in the cytoplasm (69). The FMRP/MOV10 complex appears to be involved in regulating 414 

translation through miRNA, with evidence that this role may change according to cell type (29). Another 415 

study used quantitative mass spectroscopy to examine how Fmrp expression levels change with age in the 416 

wild-type rat dentate gyrus, and found differences in the levels of myriad proteins; among the 153 417 

proteins with the most significant changes in levels were Pum1, Pum2 and Papbc1 (70). The region-, sex-, 418 

and age-specificity of certain interactions indicates that unraveling RBP interactomes in vivo will require 419 

considerable finesse. But creating such interactomes should lead to a more complex yet realistic picture of 420 

RBP roles in neuronal function and in neurological disease. 421 
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 447 

Figure 1. A brain-region specific Pum1 interactome. (A) Pum1 interactome from 10-week-old mouse 448 

cerebellum (n=8 mice, 4 male and 4 female), hippocampus (n=10, 5/5), cortex (n=8, 4/4) and the rest of 449 

the brain (i.e., excluding those three regions) for a total of 1,500 proteins (Supplemental Table 1). Node 450 

colors represent different brain regions or the overlap between two or more brain regions as noted. All 451 

experiments were performed at least in triplicate. IP against IgG was used as a negative control. (B) 452 
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Rnpep
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Bubble plots show the top categories from gene ontology analyses of Pum1 interactors from whole brain, 453 

hippocampus, cortex, and cerebellum. Only the categories with fold enrichment >1.5 and FDR<0.05 are 454 

shown; not all are labeled because of space limitations. The full list of gene ontology categories is 455 

available in Supplemental Table 2. 456 

 457 

 458 

 459 

 460 

 461 
 462 

Figure 2. Validation of Pum1 associations with post-transcriptional RNA-binding proteins in mouse 463 

brain and HEK293T cells. (A) Representative western blot of proteins pulled down by IP against Pum1 464 

compared to IgG from wild-type mice brain without (left) and with (right) RNase treatment. In this panel, 465 

after IP-Pum1, we immunoblotted for Pum1 (positive control), Pum2, Fmrp, Ago2, Rbfox3, Cnot1, and 466 

Mov10. (see Methods.). (B) Representative western blots of the same proteins validated in panels A after 467 

IP against PUM1 with or without RNase treatment from HEK293T cell lines. In panels A and B, IP 468 

against IgG was used as a negative control and Input (1% from the initial protein lysate) as a loading 469 

control. The numbers on the right are the respective molecular weights expressed in kilodaltons (kDa). 470 

All the experiments were repeated at least four times. All mice were sacrificed at 10 weeks of age.  471 

 472 
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 475 
 476 

Figure 3. Effects of Pum1 loss on interactions among the six RNA-binding proteins. Representative 477 

western blot of the proteins pulled down by (A) Pum2, (B) Fmrp, (C) Rbfox3, (D) Mov10, (E) Ago2, and 478 

(F) Cnot1 from WT and Pum1-/- mouse brain at 10 weeks of age. IP against IgG was used as a negative 479 

control, and Input (1% from the initial protein lysate) as a loading control. Molecular weights to the right 480 

are expressed in kilodaltons (kDa). All the experiments were repeated at least three times. Since Rbfox3 481 

and Mov10 interactions with Pum1 are RNA-dependent we did not perform IP from Pum1-/- mouse brain. 482 
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Figure 4. Pum1 interactors and the microRNA machinery show brain region- and sex-specific 489 

responses to Pum1 loss. Representative western blots of Pum1, Pum2, Fmrp, Ago2, Rbfox3, Cnot1, and 490 

Mov10 in (A) cerebellum, (B) hippocampus, and (C) cortex in both male (left panel) and female (right 491 

panel) WT, Pum1+/-, and Pum1-/- mice. All the experiments were conducted with equal numbers of 10-492 

week-old male and female mice per genotype, for a total of at least 12 mice per genotype (data represent 493 

mean ± SEM). Graphs below show quantification for each protein by brain region, sex, and genotype. All 494 

data were normalized to Gapdh protein levels. Data represent mean ± SEM. P values were calculated by 495 

two-tailed Student’s t test. *p < 0.05, **p < 0.01, ***p < 0.001. P1 indicates Pum1. See Supplemental 496 

Figure 8 for mRNA quantification for each interactor, brain region, and sex. (D) Heatmap showing 166 497 

microRNAs from cerebella of Pum1-/- male and female mice that were dysregulated (fold change -3 to +3) 498 

relative to wild-type cerebellum. The full list of miRNA names and fold changes are available in 499 

Supplemental Table 3. See Supplemental Figure 9 for male and female miRNA scatter plots. (E) Heatmap 500 

showing mRNA quantification by qPCR for 49 targets co-bound by a minimum of eight dysregulated 501 

miRNAs (>25% change) from panel D. For D and E, three cerebella per genotype and sex were analyzed. 502 

Statistical significance and magnitude of dysregulation are illustrated for both male and female in 503 

Supplemental Figure 10. The entire list of targets predicted to be co-bound by at least two miRNAs is 504 

presented in Supplemental Table 4.  505 
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 506 
 507 

Figure 5. Pum1 and its RNA-binding protein interactors share many neuronal mRNA targets. (A) 508 

Enrichment plots generated by Gene Set Enrichment Analysis (GSEA) of Pum1, Pum2, Rbfox3, and 509 

Ago2 HITS-CLIP targets plotted again Fmrp ranked HITS-CLIP data. Pum1, Pum2, Rbfox3, and Ago2 510 

targets are enriched at the top 10th percentile of the Fmrp targets with FDR=0. (B) GSEA analysis scores 511 

of HITS-CLIP data from each negative control (Apc, Nova, Ptpb2, and Mbnl2) plotted against Fmrp 512 

ranked HITS-CLIP data. The negative controls have a maximum enrichment score of 0.36 for Apc 513 
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ranking at the top 44.7% with FDR=1. (C) GSEA analysis scores of Pum1, Pum2, Rbfox3, and Ago2 514 

HITS-CLIP data plotted against Fmrp HITS-CLIP data divided into 10-percentile ranked bins shows the 515 

shared targets are among the top percentiles of targets for each protein. (D) GSEA analysis scores of the 516 

HITS-CLIP data for Fmrp, Pum2, Ago2, Rbfox3 and four negative controls (Apc, Nova, Ptpb2, and 517 

Mbnl2) against Pum1 ranked HITS-CLIP data. The targets of Fmrp, Ago2, Pum2, and Rbfox3 are 518 

enriched at the top 5th to 18th percentile of Pum1 targets. (E) GSEA analysis of the shared targets between 519 

Pum1, Pum2, Ago2, and Rbfox3 against Fmrp showing that they are enriched in the top 5th percentile of 520 

Fmrp ranked targets. (F) Pum1, Pum2, Ago2, and Rbfox3 shared targets plotted against Fmrp ranked 521 

HITS-CLIP targets and divided into 10-percentile bins shows that all of their respective targets are 522 

enriched at the top 10th percentile of the Fmrp ranked targets. (G) GSEA analysis scores of the targets 523 

shared by Pum1, Pum2, Ago2, and Rbfox3 and the four negative controls (Apc, Nova, Ptpb2, and Mbnl2) 524 

plotted against Fmrp. At best the negative controls are enriched at the top 40% with a maximum ES of 525 

0.41. For all the GSEA analyses, the False Discovery Rate (FDR) was provided by GSEA: **FDR<0.05 526 

and ***FDR<0.01. ES=Enrichment score (blue line). Note that lowest rank at max percentage indicates 527 

stronger targets in the rank (see Methods). HITS-CLIP data, and the respective rank, were obtained from 528 

the literature and were initially acquired as follows: Pum1 and Pum2 (24), Fmrp (45), Ago2 (46), Rbfox3 529 

(47), Nova (50), Ptpb2 (52), Mbnl2 (49), and Apc (51) (see Methods for more details). The full list of 530 

shared targets is reported in Supplemental Table 5. 531 

 532 
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 533 
 534 

Figure 6. The R1147W mutation, but not T1035S, destabilizes PUM1 interactors. (A-D) 535 

Representative western blots and relative IP quantification (bar graphs) of IP against Myc-PUM1-WT, 536 

Myc-PUM1-T1035S (PRCA), or Myc-PUM1-R1147W (PADDAS) followed by immunoblotting for: (A) 537 

GST-AGO2, (B) GST-CNOT1, (C) GST-FMRP, and (D) GST-PUM1-WT. Myc- and GST-tagged 538 

proteins were co-transfected in HEK293T cells in equal quantities (250ng each). The molecular weights 539 

were expressed in kilodaltons (kDa). The amount of protein pulled down compared to IP-PUM1 was 540 

quantified as [IPX/(InputX/GAPDHX)]/ [IPPUM1/(InputPUM1/ GAPDHPUM1)], where X is the protein of 541 
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interest. (E) Representative western blots (left panels) and relative quantification (bar graphs to the right) 542 

of protein levels for PUM1, PUM2, FMRP, AGO2, CNOT1, and MOV10 in PADDAS patient-derived 543 

fibroblasts and PRCA patient-derived lymphoblastoid cells compared to their respective age- and sex- 544 

matched fibroblast (for PADDAS patients) and lymphoblastoid (for PRCA patients) controls. Data were 545 

normalized to Gapdh protein levels. From A to E, all the experiments were performed at least three times. 546 

Data represent mean ± SEM. P values were calculated by two-tailed Student’s t test. *p < 0.05, **p < 547 

0.01, ***p < 0.001.  548 

 549 
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Figure 7

mRNA levels of HITS-CLIP targets shared by PUM1, PUM2, FMRP, AGO2, and RBFOX3 in PADDAS and PRCA 
patient-derived cells normalized against their respective age- and sex-matched controls
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Figure 7. Shared targets are upregulated only in PADDAS, not in PRCA. (A) mRNA level 551 

quantification of PUM1 neuronal targets in common with FMRP, PUM2, AGO2, and RBFOX3 (Figure 552 

5E and Supplemental Table 5) in fibroblasts from subject 1 (PADDAS patient, R1147W) compared to the 553 

three age- and sex-matched control fibroblast lines (blue bars), and in lymphoblastoid cells from subjects 554 

2 and 3 (PRCA patients, T1035S) compared to the three age- and sex-matched control lymphoblastoid 555 

cell lines (orange bars). Only genes expressed in both fibroblasts and lymphoblasts are represented here 556 

for a total of 54 genes. (B) Representative western blots (right panel) and relative quantifications (left 557 

panel) of PUM1 and its interactors (AGO2, CNOT1, FMRP, and MOV10) in PADDAS fibroblast 558 

patient-derived cell lines after Myc-PUM1-WT expression. (C) mRNA quantification of the top 15 shared 559 

target genes from panel A in PADDAS fibroblast patient-derived cell lines after Myc-PUM1-WT 560 

expression. All data were normalized to GAPDH mRNA or protein levels and experiments were 561 

performed at least three times. Data represent mean ± SEM. P values were calculated by two-tailed 562 

Student’s t test. *p < 0.05, **p < 0.01, ***p < 0.001. The full list of shared targets expressed in fibroblast 563 

and lymphoblast cell lines is reported in Supplemental Table 5. 564 

 565 

Methods 566 

A detailed description is found in the Supplemental Methods. 567 

 568 

Ethical statement and mouse strains. All animal procedures were approved by the Institutional Animal 569 

Care and Use Committee at Columbia University, New York under the protocol AC-AAAU8490. Mice 570 

were maintained on a 12-hr light, 12-hr dark cycle with regular chow and water ad libitum. Pum1 knock-571 

out mice were generated as previously described (53). C57BL/6J wild-type mice were purchased from 572 

Jackson Laboratory and maintained as described above. For brain dissection, mice were anesthetized with 573 

isoflurane, and the brain rapidly removed from the skull and lysed in the appropriate buffer according to 574 

the experiment (see Materials and Methods Details). 575 

 576 

Experimental design. For protein and RNA quantification from patient-derived cell lines, we used values 577 

from at least six independent experiments with three biological replicates for each experiment. At every 578 

stage of the study, the experimenter was blinded to the identity of control and patient-derived cell lines. 579 

For example, for the data regarding both human patient-derived cell lines and mice, Experimenter #1 580 

made a list of samples and controls to be tested, and Experimenter #2 randomized this list and re-labeled 581 

the tubes; Experimenter #2 was the only person with the key to identify the samples. These samples were 582 

then distributed to Experimenter #3 to culture the cells, then to Experimenter #1 to perform western blots 583 
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and qRT-PCR, and lastly Experimenters #1 and #4 analyzed the data. Only then was the key applied to 584 

identify the samples. 585 

 For mouse experiments, the experimenters were randomized and blinded as described above. The 586 

number of animals used and sex, and the specific statistical tests used, are indicated for each experiment 587 

in the figure legends. Sample size was based on previous experience using the same mice (11).  588 

 589 

Software and statistical analysis. Statistical significance was analyzed using GraphPad Prism 8 590 

(https://www.graphpad.com/ scientific-software/prism/) and Excel Software (Microsoft). All data are 591 

presented as mean ± SEM. Statistical details for each experiment can be found in the figures and the 592 

legends. The range of expression levels in qPCR was determined from at least six independent 593 

experiments with three biological replicates by calculating the standard deviation of the ΔCt (71). The 594 

range of expression levels in western blots was determined from at least six independent experiments with 595 

at least six biological replicates. P values were calculated by Student's T-test or analysis of variance with 596 

Tukey's post hoc analysis. For the IP and protein quantification in patient cell lines in Figure 6E and 597 

Supplemental Figure 13A and B, we had only one PADDAS patient, so the repeated experiments were 598 

technical replicates rather than biological replicates. We therefore calculated the statistical significance 599 

based on these technical replicates in comparison to the three biological replicates (i.e., healthy controls).  600 

 601 

Study approval. PADDAS and PRCA patient cell lines are the same as those reported previously (10). 602 

The consent form for each subject specifically allows for sharing of medical information and physical 603 

exam findings; the sharing of cell lines from the PADDAS and PRCA subjects and the controls was 604 

approved under the Columbia University Medical Center IRB-AAAS7401 (Y01M00) and the Baylor 605 

College of Medicine IRB H-34578. 606 

 607 

Data Availability 608 

Materials and reagents. Further information and requests for resources, reagents, and mouse models 609 

used in this manuscript should be directed to and will be fulfilled by Vincenzo A. Gennarino 610 

(vag2138@cumc.columbia.edu). 611 

 612 

Code and raw data. No software was generated for this project. All software used in this study is 613 

publicly available and links are provided as appropriate in different sections of the Materials and 614 

Methods. Mass spectrometry, RNA sequencing and microRNA sequencing raw data generated during this 615 

study are available at PRIDE Archive at https://www.ebi.ac.uk/pride/archive, and Gene Expression 616 
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Omnibus (GEO) at https://www.ncbi.nlm.nih.gov/geo/ with the accession numbers pending.  617 
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Supplemental figures 
 

 
Supplemental Figure 1. Pumilio1 antibody efficiency. (A) Pre-IP, IP, and post-IP against Pum1 and 
IgG from wild-type mouse brain. Even at very long exposure, the post-IP Pum1 lane has no residual band 
at 120 kDa even though 10 times more protein is loaded than Input. This demonstrates the high efficiency 
of the Pum1 antibody, which makes it suitable for IP mass spec. The numbers on the right show 
molecular weight in kilodaltons (kDa). (B) Volcano plot analysis showing all the proteins pulled down by 
IP against IgG and Pum1 from mouse brain. 
 
 
 
 
 
 
  

A

Pum1

Pum1

Input (1%) IP:IgG IP:Pum1 Pum1IgG

Post-IP (10%)

IP:Pum1 from WT mouse brain
compared to IgG at 10 weeks of age

Longer exposure time to visualize the Input and the post-IPs

120 kDa

120 kDa

B

Student’s T-test difference IP:Pum1 – IP:IgG
-L

og
 S

tu
de

nt
’s

 T
-te

st
 p

-v
al

ue
 IP

:P
um

1 
–

IP
:Ig

G

0

1

2

3

4

5

0-5 5 10

Mass Spec scatter plot - mouse brain

IP:Pum1 enriched interactorsIP:IgG enriched
interactors



 
Supplemental Figure 2. A brain-specific Pum1 interactome. Network of putative Pum1 interactors in 
10-week-old mouse brain (circles connected to Pum1 by gray lines). Interactions between interactors 
(purple lines) were inferred by g:GOSt from Corum and the Human Protein Atlas (see Methods). The 
proteins in each of the 22 clusters are listed to the right. We combined and homogenized whole brains 
from two 10-week-old wild-type mice per sample (1 female and 1 male), aliquoting half of each sample 
for IP against either Pum1 or IgG, then performed six biological replicates (six samples, 12 mice total) for 
each mass spec experiment against IP-Pum1 and IP-IgG. All putative Pum1 interactors are listed in 
Supplemental Table 1. 
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Supplemental Figure 3. Volcano plot and PCA analyses of IP:Pum1 followed by mass spectrometry 
in cerebellum, hippocampus, and cortex. (A-C) Volcano plots show all the proteins pulled down by IP 
against IgG and Pum1 from (A) cerebellum, (B) cortex, and (C) hippocampus at 10 weeks of age. (D) 
Principal component analysis (PCA) of IP-Pum1 followed by mass spectrometry (MS) in cortex, 
hippocampus, and cerebellum from WT mice. IP against IgG was used as a negative control. Each dot 
represents a total of 3 samples processed by MS for each brain region. All putative Pum1 interactors are 
listed in Supplemental Table 1. 
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Supplemental Figure 4. Pum1 interactors can differ by brain region. (A) Immunoblot for Pum1 
(positive control), Anapc1, Cnot1 and Pum2. While Cnot1 and Anapc1 can be pulled down from all three 
brain regions, Pum2 can only be pulled down from cortex. All experiments performed in triplicate.  
Cerebellar and cortical tissues: n=8 wild-type mice (4 male and 4 female), for a total of 24 mice. 
Hippocampus: n=10 wild-type mice (5 female and 5 male), for a total of 30 mice. All mice were 10 weeks 
of age. IP against IgG was used as a negative control. Molecular protein weights are expressed in 
kilodaltons (kDa). (B) Western blot analysis at 10 weeks of age to evaluate Pum2 expression levels in 
eight different brain regions as well as whole brain. Pum2 is highly expressed in olfactory bulbs and 
amygdala, and expressed at similar levels in hippocampus, cerebellum, and cortex. HP: hippocampus; 
CB: cerebellum; CX: cortex; MB: midbrain; OB: olfactory bulbs; AM: amygdala; SN: substantia nigra 
pars compacta; BS: brain stem; WB: whole brain. All the experiments were repeated at least three times. 
(C-E) The three most enriched protein complexes among the Pum1 interactors for each brain region are 
shown in (C) for the anaphase promoting complex/cyclosome (APC/C); (D) for the mTOR pathway; (E) 
for RNA-silencing (RISC), CCR4-NOT, translation initiation and polyA binding. Edge colors (C-E) 
represent a specific brain region: red for cortex, green for cerebellum, blue for hippocampus, and gray for 
proteins in common between two or more brain regions.  
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Supplemental Figure 5. Immunoprecipitation (IP) against Pum1 from whole brain in Pum1-/- mice. 
(A) IP against Pum1 in Pum1-/- mouse demonstrates the complete absence of Pum1 and thus the 
specificity of the anti-Pum1 antibody. IP against IgG was used as a negative control, and Input (1% from 
the initial protein lysate) as a loading control. (B) IP against Pum1 (with or without RNase treatment) 
shows no interaction with Ago1 or Ago3 in the mouse brain. These lanes are from the same experiment 
shown in Figure 2A, so the Pum1 row is precisely the same. Molecular weights at the right are in 
kilodaltons (kDa). All the experiments were repeated at least three times. IP against IgG was used as a 
negative control, and Input (1% from the initial protein lysate) as a loading control. Equal numbers of 
male and female mice were sacrificed at 10 weeks of age.  
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Supplemental Figure 6. Immunoprecipitation (IP) against Pum1 interactors from whole brain in 
wild-type and Pum1-/- mice with RNase treatment. (A-F) Representative western blots of the proteins 
pulled down by (A) Pum2, (B) Fmrp, (C) Ago2, (D) Cnot1, (E) Rbfox3, and (F) Mov10 from wild-type 
(WT, left panel) and Pum1-/- (right panel) mouse brain. IP against IgG was used as a negative control, and 
Input (1% from the initial protein lysate) as a loading control. Molecular weights at the right are in 
kilodaltons (kDa). All the experiments were repeated at least three times. IP against IgG was used as a 
negative control, and Input (1% from the initial protein lysate) as a loading control. Equal numbers of 
male and female mice were sacrificed at 10 weeks of age. 
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Supplemental Figure 7. Protein and mRNA quantification from WT, Pum1+/- and Pum1-/- mouse 
brains. (A) Representative western blot with relative quantifications of Pum1, Pum2, Fmrp, Ago2, 
Rbfox3, Cnot1, and Mov10 from whole brains of WT, Pum1+/- and Pum1-/- mice. All data were 
normalized to Gapdh protein levels. The numbers on the right are the respective molecular weights 
expressed in kilodaltons (kDa). (B) mRNA level quantification by qPCR of Pum1, Pum2, Fmrp, Ago2, 
Rbfox3, Cnot1, and Mov10 from whole brains of WT, Pum1+/- and Pum1-/- mice. Again, all data were 
normalized to Gapdh mRNA levels. All the experiments were conducted with equal number of male (at 
least 6 per genotype) and female (at least 6 per genotype) mice at 10 weeks of age, for a total of at least 
12 mice per genotype (data represent mean ± SEM). The p values were calculated by the Student’s t test. 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Supplemental Figure 8. mRNA quantification of Pum1 interactors by brain region and sex in WT, 
Pum1+/- and Pum1-/- mice. mRNA levels in cerebellum, hippocampus, and cortex in male and female for 
all the validated Pum1 interactors. The same number of mice were used here as in Figure 4A-C for a total 
of at least 12 mice per genotype and sex at 10 weeks of age. All data were normalized to Gapdh mRNA 
levels. All the experiments were performed at least six times (data represent mean ± SEM). The p values 
were calculated by the Student’s t test. *p < 0.05, **p < 0.01, ***p < 0.001. 
 
  

0

1

2

0

1

2

0

1

2

Fo
ld

 c
ha

ng
e 

2-∆
∆C

t 

(G
ap
dh

no
rm

al
.)

WT Pum1+/- Pum1-/-

Cerebellum both sexes Cerebellum male Cerebellum female

Hippocampus both sexes Hippocampus male Hippocampus female

Cortex both sexes Cortex male Cortex female

***
**

* *

** **

*

** **

*
* *

** ***

*

***
**

* * * *

** ***

** ***

* *

** ***
** ***

* * *

*
*

Pu
m1

Pu
m2 Fm

r1
Ag
o2
Rb
fox
3
Cn
ot1
Mo
v10 Pu

m1
Pu
m2 Fm

r1
Ag
o2
Rb
fox
3
Cn
ot1
Mo
v10 Pu

m1
Pu
m2 Fm

r1
Ag
o2
Rb
fox
3
Cn
ot1
Mo
v10

mRNA levels – 10 weeks of age



 

 
Supplemental Figure 9. Volcano plots representing all the miRNAs sequenced by miRNAseq in 
male and female. Volcano plots show the expression profile for all the miRNAs in male and female 
Pum1-/- mice compared to WT at 10 weeks of age. The orange dots represent the miRNAs upregulated in 
female and downregulated in males; the blue dots represent the miRNAs downregulated in female and 
upregulated in males. miRNAseq was performed in triplicate (see Methods). 
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Supplemental Figure 10. mRNA quantification of the 49 targets co-bound by at least eight 
dysregulated miRNAs in mouse cerebellum. qPCR in cerebellum of male (left, red) and female (right, 
blue) mice at 10 weeks of age for the 49 targets co-bound by at least eight dysregulated miRNAs (with 
minimum 25% change in expression) from Figure 4E and Supplemental Table 4. All the experiments 
were performed in triplicate for both male and female (data represent mean ± SEM). The p values were 
calculated by two-tailed Student’s t test. *p < 0.05, **p < 0.01, ***p < 0.001. 

Table showing the order of gene represented in the figure above starting from 
Gapdh as represented in Figure 4E
Position in the 
graph Gene Male Female Error_Male Error_Female Co-bound 

miRNAs
1 Gapdh 1.000 1.000 0.065 0.188 11
2 Aak1 1.222 0.714 0.099 0.096 11
3 Plekhm3 1.283 0.764 0.132 0.102 11
4 Zbtb20 1.268 0.636 0.185 0.093 10
5 Ago3 1.485 0.686 0.122 0.102 10
6 Dgkh 1.511 0.751 0.106 0.103 10
7 Fto 1.407 0.618 0.132 0.097 10
8 Grin2b 1.517 0.749 0.071 0.117 10
9 Lpp 1.353 0.689 0.124 0.123 10
10 Stx17 1.266 0.682 0.108 0.098 10
11 Acvr2b 1.359 0.668 0.108 0.092 9
12 Ap5m1 2.366 0.456 0.282 0.101 9
13 Chl1 1.506 0.691 0.121 0.094 9
14 Gpr161 1.457 0.735 0.118 0.113 9
15 Kcnn3 1.477 0.694 0.145 0.094 9
16 Klf7 1.262 0.670 0.103 0.103 9
17 Nfat5 1.228 0.598 0.099 0.086 9
18 Plxna4 0.712 0.680 0.051 0.092 9
19 Slc1a2 1.344 0.713 0.125 0.111 9
20 Slc8a1 0.904 0.417 0.094 0.056 9
21 Ston2 1.669 0.690 0.148 0.114 9
22 Tsc22d2 1.319 0.743 0.146 0.137 9
23 Xkr4 1.823 0.573 0.093 0.105 9
24 A1cf 2.821 0.232 0.314 0.031 8
25 Aff4 1.053 1.304 0.116 0.238 8
26 Clstn2 1.340 0.768 0.062 0.109 8
27 Cnnm2 1.475 0.605 0.097 0.099 8
28 Csnk1a1 1.698 0.641 0.115 0.087 8
29 Ctdspl2 1.749 0.624 0.108 0.108 8
30 Dcaf7 1.685 0.750 0.141 0.132 8
31 Fmnl3 1.705 0.620 0.246 0.106 8
32 Frmd4a 1.394 0.654 0.085 0.123 8
33 Grin2a 1.459 0.755 0.148 0.112 8
34 Hipk2 1.381 0.662 0.094 0.088 8
35 Kif26b 1.588 0.627 0.181 0.094 8
36 Klf12 2.030 0.668 0.202 0.101 8
37 Lmln 1.435 0.595 0.143 0.091 8
38 Lrrc40 1.262 0.679 0.126 0.113 8
39 Myo5a 0.958 0.707 0.089 0.102 8
40 Nav2 1.377 0.658 0.135 0.097 8
41 Psd3 1.493 0.728 0.076 0.110 8
42 Ptbp2 1.463 0.177 0.068 0.177 8
43 Rimkla 1.368 0.779 0.092 0.112 8
44 Snx30 1.833 0.781 0.147 0.112 8
45 Taok1 1.290 0.660 0.078 0.088 8
46 Zbtb10 1.624 0.686 0.102 0.092 8
47 Apbb2 1.278 0.660 0.094 0.097 8
48 Acap2 1.374 0.697 0.107 0.093 8
49 Acer2 1.544 0.610 0.187 0.083 8
50 Aebp2 1.219 1.904 0.085 0.269 8
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Supplemental Figure 11. Gene ontology analysis for all targets predicted by CoMeTa and 
TargetScan that are co-bound by at least four miRNAs. (A-C) David Gene Ontology representing the 
enriched (A) biological processes, (B) cellular components, and (C) KEGG pathways for all the targets 
co-bound by at least four miRNAs. For this analysis we set FDR<0.01 and a fold-enrichment >2. (D) 
Synaptic Gene Ontology (SynGO) predicts that 117 targets are are presynaptic and 124 are postsynaptic 
with a log10Q value≥5. 
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Supplemental Figure 12. GSEA and Gene Ontology data pertaining to Figure 5. (A) Gene Set 
Enrichment Analysis (GSEA) of Pum1 HITS-CLIP data plotted against HITS-CLIP data from the 
negative controls (RBPs that did not show up in the Pum1 interactome: Ptpb2, Nova, Apc, and Mbnl2) 
reveals no significant enrichment. (B-C) Gene ontology analysis of the HITS-CLIP targets shared 
between Pum1, Pum2, Fmrp, Ago2, and Rbfox3 reveals enrichment for certain (B) biological functions 
and (C) cellular localization. Only categories with FDR<0.05 and fold enrichment > 5 were plotted in B 
and C. (D) Venn diagram of miRNAs identified by Pum1 and Pum2 shows almost 100% overlap with the 
miRNAs pulled down by Fmrp HITS-CLIP. For full list of shared miRNAs see Supplemental Table 6. 
For all GSEA analyses the False Discovery Rate (FDR) was provided by GSEA, ***FDR < 0.01. 
ES=Enrichment score (blue line).  
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Supplemental Figure 13. PUM1 validation experiments in patient-derived cells. (A) IP against PUM1 
from PADDAS (R1147W; Subject 1 or S1) patient-derived fibroblasts confirms the interactions between 
PUM1 (used here as a positive control), and PUM2, FMRP, AGO2, CNOT1, and MOV10. Bottom panel: 
protein quantification shows loss of interaction between PUM1-R1147W and AGO2, CNOT1 and 
MOV10 compared to three age- and sex- matched control fibroblasts. Input (1%) was used as a loading 
control and IP against IgG was used as a negative control. (B) IP against PUM1 from two PRCA 
(T1035S) patient-derived lymphoblastoid cell lines (S2 and S3) confirm the interaction between PUM1 
(used here as positive control), and PUM2, FMRP, AGO2, CNOT1, and MOV10. Bottom panel: protein 
quantification shows a slight decrease in interactions with FMRP and AGO2, and a slight increase with 
CNOT1 and MOV10, compared to age- and sex- matched lymphoblastoid controls. Input (1%) was used 
as a loading control and IP against IgG was used as a negative control. In A and B, the amount of protein 
pulled down compared to IP-PUM1 was quantified as follows: [IPX/(InputX/GAPDHX)]/ 
[IPPUM1/(InputPUM1/GAPDHPUM1)], where X is the protein of interest. All the IPs were repeated at least 
three times. Data represent mean ± SEM. P values were calculated by two-tailed Student’s t test. *p < 
0.05, **p < 0.01, ***p < 0.001. (C-D) Pre-IP, IP, and post-IP against PUM1 and IgG from 
(C) PADDAS fibroblasts and (D) PRCA lymphoblastoid cells. In both cell lines we were able to pull 
down 100% of PUM1. Pre-IP represents 1% from the initial protein lysate as a loading control, while 
10% of the protein lysate was loaded as post-IP. Molecular weights provided at right in kilodaltons (kDa). 
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Supplemental Figure 14. PUM1 dimerization with RNase treatment, quantification of PUM1 
interactor mRNA and PUM1-specific targets in patient-derived cell lines. (A) Representative western 
blots of IP with RNase treatment against Myc-PUM1-WT, Myc-PUM1-T1035S (PRCA), and Myc-
PUM1-R1147W (PADDAS) followed by immunoblotting to test binding between PUM1 proteins without 
the RNA. The numbers on the right are the respective molecular weights expressed in kilodaltons (kDa). 
(B) mRNA quantification for all of the immunoblotted proteins in Figure 6E in PADDAS and PRCA 
patient-derived cell lines compared to their respective age-, sex-, and cell-type-matched controls. (C) 
qPCR analysis of validated PUM1-specific targets from PADDAS patient-derived fibroblasts (blue bars) 
compared to three age- and sex-matched fibroblast control cell lines, and PRCA patient-derived 
lymphoblastoid cell lines (orange bars) compared to three age- and sex-matched lymphoblastoid control 
cell lines. Only genes expressed in both fibroblasts and lymphoblasts are represented here, for a total of 
10 genes. (D) mRNA quantification of PUM1 from PADDAS patient-derived fibroblasts transfected with 
empty and Myc-PUM1-WT vectors, compared to three age- and sex-matched fibroblast control cell lines. 
For B, C, and D all data were normalized to GAPDH mRNA levels and experiments performed at least 
three times. Data represent mean ± SEM. P values were calculated by two-tailed Student’s t test. *p < 
0.05, **p < 0.01, ***p < 0.001. 
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Supplemental Methods 

 

HEK293T cell culture and maintenance  

 Human embryonic kidney immortalized 293T (HEK293T) cells were grown in DMEM (GenDepot, 

#CM002-320) supplemented with 10% of heat-inactivated fetal bovine serum (FBS [GenDepot, #F0901-

050) and 1% penicillin/streptomycin (GenDepot, #CA005-010). All cells were incubated at 37 °C in a 

humidified chamber supplemented with 5% CO2. HEK293T cells were later processed according to the 

needs of specific experiments (described below). 

 

Patient-derived cell lines  

 Primary fibroblasts from the PUM1 PADDAS patient and the age- and sex-matched controls were 

generated as previously described (1). Briefly, cells were isolated from skin biopsies taken from the 

patient or age-matched controls using standard methodology (Barch and Association of Cytogenetic 

Technology, 1991) and placed in a transport medium (Ham’s F10, Thermo Scientific, #11550043). The 

skin specimen was later removed from the transport medium using a sterile technique (in a Class II 

biohazard cabinet) and transferred to a sterile Petri dish where it was cut into small pieces (< 0.5 mm) 

using sterile scalpel blades. These pieces were transferred to the lower surface of a 25 cm2 culture flask 

(6-8 pieces per flask) which had been pre-moistened with 1-2 mL of AmnioMAX Complete Medium 

(Thermo Scientific, #11269016) supplemented with 1% penicillin/streptomycin (GenDepot, #CA005-

010). Cell cultures were maintained at 37 °C in a humidified incubator supplemented with 5% CO2. When 

cell growth was observed around the edges of the tissue, usually 3 to 5 days later, 2 to 3 mL of 

AmnioMAX Complete Medium were added. Once growth was established and the tissue was anchored to 

the flask, another 8 mL of AmnioMAX Complete Medium was added. Thereafter, the medium was 

renewed every 3 to 4 days until ready for sub-culturing. 

 Lymphoblastoid cells from PUM1 PRCA patients and the age- and sex-matched controls were 

generated as previously described (1). Briefly, lymphoblastoid suspension cell cultures were grown in 

RPMI 1640 medium (Invitrogen, #11875093) supplemented with 10% heat-inactivated fetal bovine 

serum (Atlanta Biological, Flowery Branch, #S11195H) and 1% penicillin/streptomycin (GenDepot, 

#CA005-010). Cell cultures were maintained at 37°C in a humidified incubator supplemented with 5% 

CO2. Medium was renewed every 2 to 3 days. 

 

Immunoprecipitation (IP) experiments using mouse brain tissue 

 Mouse brain tissues were gathered from an equal number of 10-week-old male and female mice. For 

whole-brain experiments, we combined and homogenized two 10-week-old wild-type mouse brains per 
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sample (1 female and 1 male), aliquoting half of each sample for IP against either Pum1 or IgG, then 

performed six biological replicates (12 mice total) for each mass spec experiment against IP-Pum1 and 

IP-IgG. For experiments on the hippocampus, cerebellum, and cortex, we needed much larger numbers of 

mice: we combined cerebellar and cortical tissues from eight wild-type mice (4 male and 4 female) and 

performed the experiment in triplicate (total of 24 mice), while for hippocampus we combined tissues 

from ten wild-type mice (5 female and 5 male) for three experiments (a total of 30 mice).  

 Samples were processed with a dounce homogenizer using a lysis buffer consisting of 200mM NaCl2, 

100mM NaPO4, 20mM Hepes pH 7.4, 1% Triton X (which should disrupt all but the strongest protein-

protein interactions) and complemented by 1X of Xpert Protease and 1X of Phosphatase Inhibitor 

Cocktail Solutions (GenDepot, #P3100-100, #P3200-020). Following homogenization, the samples were 

placed on ice for 15 minutes then centrifuged at 14,800 rpm at 4°C for 25 minutes to remove the debris 

from the supernatant. The supernatant was then moved to 1.5 ml tubes (Beckman microfuge tube 

#357448) and spun down in a Beckman ultra-centrifuge (Optima Max XP) at 4°C for 25 minutes at 

44,000 rpm. 10% of the protein lysate was stored as input and only 1% was loaded for western blot. The 

protein extract was later divided into two aliquots, one for IP against the protein of interest (antibodies 

listed below) and the other for IP against IgG, and was then incubated with 30 μL of DynabeadsTM Protein 

G (Invitrogen, #10004D) and 5 μg of antibody overnight at 4°C on a rotisserie tube rotator. The next day, 

the beads were washed four times with the same lysis buffer used for IP and resuspended in 40μL of 

elution buffer (consisting of lysis buffer, NuPAGE 10X Reducing Agent [Invitrogen, #NP0009], 

NuPAGE LDS sample buffer at 1X final concentration [Invitrogen, #NP0007]) and boiled at 95°C for 

10 minutes before the samples were loaded in the NuPAGE 4%–12% Bis-Tris Gels (Invitrogen, 

#NP0335BOX & #NP0336BOX) for further resolution and western blot analysis.  

 For the IP with RNase treatment, the beads were resuspended in 400 μL of lysis buffer after the three 

final washes and divided into two separate 1.5 ml tubes of 200 μL each. To establish the dose required to 

remove all RNA, we tested different amounts of RNase I (Invitrogen, #EN0602) and found that 4 μL was 

enough to render RNA undetectable both by denaturing gel and cDNA amplification. This sample and the 

negative control (i.e., one without RNase treatment) were incubated at 37°C for 15 min on a rotisserie 

tube rotator. After incubation, all the samples were washed one last time with 500 μL of lysis buffer and 

then eluted in 20 μL of elution buffer. We used the same protocol for all the IP processed by mass 

spectrometry. 

The antibodies used for IP were: goat a-PUM1 (Bethyl Laboratories, #A300-201A), rabbit a-PUM2 

(Bethyl Laboratories,  #A300-202A), rabbit a-FMRP (Abcam Cambridge,  #ab17722), rabbit a-AGO2 

(Abcam Cambridge, #ab32381), rabbit a-NeuN (Thermo Fisher Scientific, #PA5-37407), rabbit a-

CNOT1 (Cell Signaling Technology, #44613), rabbit a-MOV10 (Bethyl Laboratories, #A301-571A), and 
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rabbit a-ANAPC1 (Bethyl Laboratories, #A301-653A). 

Please note that in vivo IPs from brain lysates present certain challenges that are not encountered in 

vitro. Whereas the total lysate from cells is usually 200µl-300µl, the brain lysate is made in a large 

volume, usually 1.5 to 2.4 ml, depending on the size of the brain or brain region. This means that in a 

normal western blot that accommodates 30-40µl total volume, including reducing buffer and loading blue, 

we cannot load more than 1%-3% from the total brain lysate as input. Therefore, when we pull down a 

protein of interest (Pum1) and immunoblot for the same protein compared to a standard input (loading the 

entire IP in one gel), the resulting IP band will be much darker than the input. We then need to expose the 

Input from the same membrane much longer to visualize it—this is common practice when working with 

in vivo tissues (2-7).  

 

Immunoprecipitation experiments from HEK293T and patient-derived cell lines 

 HEK293T cells and patient-derived fibroblasts or lymphoblastoid cells were lysed by pipetting up and 

down with a 1000μl tip in a lysis buffer consisting of 200mM NaCl2, 100mM NaPO4, 20mM Hepes pH 

7.4, 1% Triton X and complemented by 1X of Xpert Protease and 1X of Phosphatase Inhibitor Cocktail 

(GenDepot, #P3100-100, #P3200-020). The rest of the protocol is the same as described above for mouse 

brain tissue, except that we used 2.5 μg of primary antibody for IP. 

 

Co-Immunoprecipitation in-gel digestion for mass spectrometry 

 Immunoprecipitated samples were separated on NuPAGE 4-12% gradient SDS-PAGE (Invitrogen, 

#NP0335BOX & #NP0336BOX) and stained with SimplyBlue (Invitrogen, #LC6060). Protein gel slices 

were excised and in-gel digestion performed as previously described (8), with minor modifications. Gel 

slices were washed with 1:1 Acetonitrile and 100mM ammonium bicarbonate for 30 min then dehydrated 

with 100% acetonitrile for 10 min until shrunk. The excess acetonitrile was then removed and the slices 

dried in a speed-vacuum at room temperature for 10 minutes. Gel slices were reduced with 5 mM DTT 

for 30 min at 56oC in an air thermostat, cooled down to room temperature, and alkylated with 11 mM 

IAA for 30 min with no light. Gel slices were then washed with 100 mM of ammonium bicarbonate and 

100% acetonitrile for 10 min each. Excess acetonitrile was removed and dried in a speed-vacuum for 10 

min at room temperature and the gel slices were re-hydrated in a solution of 25 ng/μl trypsin in 50 mM 

ammonium bicarbonate for 30 min on ice and digested overnight at 37 oC in an air thermostat. Digested 

peptides were collected and further extracted from gel slices in extraction buffer (1:2 ratio by volume of 

5% formic acid: acetonitrile) at high speed, shaking in an air thermostat. The supernatants from both 

extractions were combined and dried in a speed-vacuum. Peptides were dissolved in 3% acetonitrile/0.1% 

formic acid.  
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Liquid chromatography with tandem mass spectrometry (LC-MS/MS) 

 The Thermo Scientific Orbitrap Fusion Tribrid mass spectrometer was used for peptide tandem mass 

spectroscopy (MS/MS). Desalted peptides were injected in an EASY-SprayTM PepMapTM RSLC C18 

50cm X 75cm ID column (Thermo Scientific) connected to the Orbitrap FusionTM TribridTM. Peptide 

elution and separation were achieved at a non-linear flow rate of 250 nl/min using a gradient of 5%-30% 

of buffer B (0.1% (v/v) formic acid, 100% acetonitrile) for 110 minutes, maintaining the temperature of 

the column at 50 °C during the entire experiment. Survey scans of peptide precursors are performed from 

400 to 1500 m/z at 120K full width at half maximum (FWHM) resolution (at 200 m/z) with a 2 x 105 ion 

count target and a maximum injection time of 50 ms. The instrument was set to run in top speed mode 

with 3-second cycles for the survey and the MS/MS scans. After a survey scan, MS/MS was performed 

on the most abundant precursors, i.e., those ions that had a charge state between 2 and 6, and an intensity 

of at least 5000, by isolating them in the quadrupole at 1.6 Th. We used collision-induced dissociation 

(CID) with 35% collision energy and detected the resulting fragments with the rapid scan rate in the ion 

trap. The automatic gain control (AGC) target for MS/MS was set to 1 x 104 and the maximum injection 

time was limited to 35ms. The dynamic exclusion was set to 45s with a 10ppm mass tolerance around the 

precursor and its isotopes. Monoisotopic precursor selection was enabled. 

 

LC-MS/MS data analysis 

 Raw mass spectrometric data were analyzed using the MaxQuant environment v.1.6.1.0 (9) and 

Andromeda for database searches (10) at default settings with a few modifications. The default was used 

for first search tolerance and main search tolerance (20 ppm and 6 ppm, respectively). MaxQuant was set 

up to search with the reference mouse proteome database downloaded from Uniprot 

(https://www.uniprot.org/proteomes/UP000000589). MaxQuant searched for trypsin digestion with up to 

2 missed cleavages. Peptide, site and protein false discovery rates (FDR) were all set to 1% with a 

minimum of 1 peptide needed for identification; label-free quantitation (LFQ) was performed with a 

minimum ratio count of 1. The following modifications were used for protein quantification: oxidation of 

methionine (M), acetylation of the protein N-terminus, and deamination for asparagine or glutamine 

(NQ). Results obtained from MaxQuant were further analyzed using the Perseus statistical package (11) 

that is part of the MaxQuant distribution. Protein identifications were filtered for common contaminants. 

Proteins were considered for quantification only if they were found in at least two replicate groups. 

Significant alterations in protein abundance were determined by ANOVA with a threshold for 

significance of P < 0.05 (permutation-based FDR correction). Pum1 protein interactors were later 

considered if they were found in at least five out of six mass spec experiments for whole brain and in at 
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least two out of three experiments for each respective brain region with a fold-change of >1.5 between 

LFQ-PUM1-WT and LFQ-IgG-WT (see Supplemental Table 1). 

 

Protein-protein interaction map 

 The protein-protein interaction map for the whole brain (Supplemental Figure 2A) was generated by 

Cytoscape (https://cytoscape.org/) (12) and interactions were inferred from Corum (13) and the Human 

Protein Atlas (14) by g:GOSt, which is a package of g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) (15). 

The brain region-specific map (Figure 1A) was generated by Cytoscape. 

 

Protein quantification and western blot analysis 

 Patient-derived lymphoblastoid, fibroblast cell lines, and control cell lines were collected at 6 × 

106 cell confluence and processed for protein extraction. For mouse tissues, we processed either half of 

the whole brain (the other half was processed for RNA extraction, see below) or the entire hippocampus, 

cortex, or cerebellum for protein extraction. Mouse tissues or cell pellets were subsequently lysed with 

modified RIPA buffer consisting of 25 mM Tris-HCL, pH 7.6, 150 mM NaCl, 1.0% Tween 20, 1.0% 

sodium deoxycholate, 0.1% SDS, completed with 1X Xpert Protease and 1X Phosphatase Inhibitor 

Cocktail Solutions (GenDepot, #P3100-100 & #P3200-020). Cells were lysed by pipetting them up and 

down with a p1000 tip and then placed on ice for 20 min followed by centrifugation at 14,800 rpm at 4°C 

for 25 minutes. Mouse brain tissues were pipetted up and down by syringe needles—starting from an 18G 

1½” (Becton Dickson, #305196), moving to 21G 1½” (Becton Dickson, #305167) and finally to a 26G 

1½” (Becton Dickson, #305111) needle—until the lysate passed through the needle smoothly. 

Proteins were quantified by Pierce BCA Protein Assay Kit (Thermo Scientific, # PI23225) and their 

absorbance measured by NanoDrop OneC (Thermo Scientific). Proteins were resolved by high resolution 

NuPAGE 4%–12% Bis-Tris Gel (Invitrogen, #NP0335BOX & #NP0336BOX) according to the 

manufacturer’s instructions. All the blots were acquired on the G:BOX Chemi XX9 machine (Syngene; 

Frederick, MD) using GeneSys software 1.6.5.0. Gel exposures were determine by the software.   

Antibodies used for western blot experiments were: goat a-PUM1 [1:2500, (Bethyl Laboratories, 

#A300-201A)], rabbit a-PUM1 [1:2000, (Abcam Cambridge, #ab92545)], rabbit a-PUM2 [1:2000, 

(Bethyl Laboratories, # A300-202A)], rabbit a-FMRP [1:1000, (Abcam Cambridge, #ab17722)], rabbit 

a-AGO2 [1:1000, (Abcam Cambridge, #ab32381)], rabbit a-NeuN (Rbfox3) [1:1000, (Thermo 

Scientific, #PA5-37407)], rabbit a-CNOT1 [1:1000, (Cell Signaling Technology, #44613)], rabbit a-

MOV10 [1:2000, (Bethyl Laboratories, #A301-571A)], and mouse a-GAPDH [1:10000, (Millipore, 

#CB1001)]. 
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RNA extraction and quantitative real-time PCR (qPCR) 

 Human fibroblast, lymphoblastoid, and respective control cell lines were harvested at 6 X 

106 confluence prior to RNA extraction. For mouse tissues, half of the whole brain (the other half was 

processed for protein extraction, see above) or the entire hippocampus, cortex, or cerebellum were 

processed for RNA extraction. The RNA was collected for both human cells, mouse brain and brain 

region tissues using the miRNeasy kit (QIAGEN, # 217004) according to the manufacturer’s instructions. 

RNA was quantified using NanoDrop OneC (Thermo Fisher Scientific). cDNA was synthesized using 

Quantitect Reverse Transcription kit (QIAGEN, # 205313) starting from 1 μg of RNA. Quantitative RT-

polymerase chain reaction (qRT-PCR) experiments were performed using the CFX96 Touch Real-Time 

PCR Detection System (Bio-Rad Laboratories, Hercules) with PowerUP SYBR Green Master Mix 

(Applied Biosystems, #A25743). Real-time PCR runs were analyzed using the comparative CT method 

normalized against the housekeeping human gene GAPDH or mouse Gapdh, depending on the 

experiment (16). 

 

Fibroblast patient-derived cell lines transfection 

 Fibroblasts from age- and sex-matched healthy controls and from a female PADDAS patient were 

seeded at 80% of confluency in 6-well plates (~150.000 cells/well). The day after, 500ng of pRK5-CMV-

Myc-Pum1 or pRK5-CMV-Myc-Empty plasmids were transfected in antibiotic-free DMEM (GenDepot, 

#CM002-320) using Lipofectamine LTX with Plus Reagent (Thermo Fisher, #15338030) according to the 

manufacturer's protocol. After 5 hours we replaced the media with new complete DMEM supplemented 

with 10% of heat-inactivated fetal bovine serum (FBS [GenDepot, #F0901-050]) and 1% 

penicillin/streptomycin (GenDepot, #CA005-010). Cells were incubated at 37 °C in a humidified chamber 

supplemented with 5% CO2 and collected after 72 hours for RNA and protein extraction.  

 

MicroRNA library construction and sequencing 

 Library preparation and microRNA sequencing was performed by LC Sciences according to the 

following criteria. Total RNA was extracted from cerebellum of WT and Pum1-/- male and female at 10 

weeks of age in triplicate, for a total of 12 samples using the miRNeasy kit (QIAGEN, # 217004) 

according to the manufacturer’s instructions. The total RNA quality and quantity were assessed with 

Bioanalyzer 2100 (Agilent Technologies, Santa Clara) with RIN number > 7.0. Approximately 1 µg of 

total RNA were used to prepare the small RNA library according to the protocol of TruSeq Small RNA 

Sample Prep Kits (Illumina, San Diego). Then the single-end sequencing 50bp was performed on an 

Illumina Hiseq 2500 at LC Sciences (Hangzhou, China) following the vendor’s recommended protocol. 
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MicroRNA sequencing bioinformatic analysis 

 Raw reads were subjected to an in-house program, ACGT101-miR (LC Sciences, Houston), to 

remove adapter dimers, junk, common RNA families (rRNA, tRNA, snRNA, snoRNA), and repeats. 

Subsequently, unique sequences of 18–26 nucleotides in length were mapped to specific species 

precursors in miRBase 22.0 (http://www.mirbase.org/) by BLAST search to identify known miRNAs and 

novel 3p- and 5p-derived miRNAs. Length variation at both 3’ and 5’ ends and one mismatch inside of 

the sequence were allowed in the alignment. The unique sequences mapping to specific species of mature 

miRNAs in hairpin arms were identified as known miRNAs. The unique sequences mapping to the other 

arm of known specific species precursor hairpins opposite the annotated mature miRNA-containing arm 

were considered to be novel 5p- or 3p-derived miRNA candidates. The remaining sequences were 

mapped to other selected species precursors (with the exclusion of specific species) in miRBase 22.0 by 

BLAST search, and the mapped pre-miRNAs were further BLASTed against the specific species 

genomes to determine their genomic locations. The last two were also defined as known miRNAs. The 

unmapped sequences were BLASTed against the specific genomes, and the hairpin RNA structures 

containing sequences were predicted from the flank 80 nt sequences using RNAfold software 

(http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi). The criteria for secondary structure 

prediction were: (1) number of nucleotides in one bulge in stem (≤12), (2) number of base pairs in the 

stem region of the predicted hairpin (≥16), (3) cutoff of free energy (kCal/mol ≤-15), (4) length of hairpin 

(up and down stems + terminal loop ≥50), (5) length of hairpin loop (≤20), (6) number of nucleotides in 

one bulge in mature region (≤8), (7) number of biased errors in one bulge in mature region (≤4), (8) 

number of biased bulges in mature region (≤2), (9) number of errors in mature region (≤7), (10) number 

of base pairs in the mature region of the predicted hairpin (≥12), (11) percent of mature region in stem 

(≥80). 

 

Gene Set Enrichment Analysis (GSEA) 

 GSEA was performed as previously described (17). The cumulative distribution function was 

conducted by performing 1000 random gene-set membership assignments. A nominal p-value < 0.01 and 

an FDR < 0.25 were used to assess the significance of the enrichment score (ES). HITS-CLIP data, and 

the respective rank, were obtained from the literature and were initially acquired as follows: Pum1 and 

Pum2 from neonatal murine brains (18), Fmrp from cerebellum, cortex, and hippocampus together (19), 

Ago2 from neocortex at embryonic day 13 (20), Rbfox3 from mouse brain (age not specified) (21), Nova 

from mouse brain (age not specified) (22), Ptpb2 from neocortex at embryonic day 18.5 (23), Mbnl2 from 

hippocampus at 8-12 weeks of age (24), and Apc from mouse brain at embryonic day 14 (25).  
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Gene ontology analyses 

 Gene ontology analyses were performed with David Gene Ontology (GO). For Figure 1B, 

Supplemental Figure 12B and C only categories with FDR<0.05 were considered; while for Supplemental 

Figure 11D only categories with FDR<0.01 were considered. David GO for the Pum1 interactome in 

Figure 1B considered the entire interactome as background. For the GO regarding the HITS-CLIP targets 

shared among Pum1, Pum2, Fmrp, Ago2, and Rbfox3 (Supplemental Figure 12B and C), we considered 

the entire set of all targetomes together as background. Regarding the Synaptic (Syn) GO analysis, brain- 

expressed genes were used as background (26). 

 

Myc and GST cloning procedure with in vitro immunoprecipitation (IP) assays 

 Human PUM1 full-length cDNA was amplified by PCR and subcloned in a pRK5 plasmid containing 

the Myc tag sequence (Addgene, pRK5-Myc-Parkin #17612) at the N-terminal by using SalI (New 

England Biolabs, # R3138S) and NotI (New England Biolabs, #R0189S) restriction enzymes to replace 

Parkin with PUM1. For GST, the human full-length PUM1 cDNA was, again, subcloned first in the 

pRK5 plasmid containing the GST tag sequence (Addgene, pRK5-HA GST RagC wt, #19304) at the N-

terminal by using SalI and NotI restriction enzymes to replace RagC with PUM1. Human FMRP, AGO2 

and CNOT1, full-length cDNA were cloned and contain the GST tag sequence at the N-terminal, as 

described for GST-PUM1.  

To introduce the T1035S or R1147W mutations we used the QuikChange II XL Multi Site-Directed 

Mutagenesis kit (Agilent Technologies, #200521). The primers for the single mutagenesis experiments 

were designed by QuikChange software (Stratagene, San Diego, https://www.genomics.agilent.com/ 

primerDesignProgram.jsp). 

For IP, HEK293T cells were seeded in 6-well plates for 24 h and then transfected with 250 ng of 

either WT or mutant PUM1 plasmid with one of the interactors using the jetPRIME Transfection Reagent 

(Polyplus transfection, #55-132) as per the manufacturer’s protocol. pRK5-Myc empty plasmid (no 

cDNA) was used as a negative control. After 48 h, the cells were collected and processed for 

immunoprecipitation. Protein lysates were incubated overnight at 4°C with mouse a-Myc antibody 

(1:400, [Cell Signaling Technologies, #2276]) on a rotisserie tube rotator. The next day, the beads were 

washed four times with an IP lysis buffer and resuspended in 40 μL elution buffer (lysis buffer, NuPAGE 

10X Reducing Agent [Invitrogen, #NP0009], NuPAGE LDS sample buffer 4X [Invitrogen, #NP0007]) 

and boiled at 95°C for 10 minutes before loading the samples in NuPAGE 4%–12% Bis-Tris Gels 

(Invitrogen, #NP0335BOX & #NP0336BOX) for further resolution and western blot analysis. Antibodies: 

mouse a-Myc antibody [1:2000, (Cell Signaling Technologies, #2276)], rabbit a-GST antibody [1:1000, 

(Cell Signaling Technologies, #2625)], mouse a-GAPDH [1:10000, (Millipore, #CB1001)]. 
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Primers 

 For the qPCR analysis to unambiguously distinguish spliced cDNA from genomic DNA 

contamination, specific exon primers were designed to amplify across introns of the gene tested. The 

primers for all genes tested were designed with Primer3 (27, 28). Cloning primers were manually 

designed to amplify the longest spliced gene isoform tested; if there was more than one isoform according 

to the UCSC Genome Browser (https://genome.ucsc.edu/), we chose the longest. See Supplemental Table 

7 for primer sequences. 
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