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Abstract

Assemblies of neurons, called concepts cells, encode acquired concepts in human Medial Temporal
Lobe. Those concept cells that are shared between two assemblies have been hypothesized to encode
associations between concepts. Here we test this hypothesis in a computational model of attractor
neural networks. We find that for concepts encoded in sparse neural assemblies there is a minimal
fraction cmin of neurons shared between assemblies below which associations cannot be reliably im-
plemented; and a maximal fraction cmax of shared neurons above which single concepts can no longer
be retrieved. In the presence of a periodically modulated background signal, such as hippocampal
oscillations, recall takes the form of association chains reminiscent of those postulated by theories of
free recall of words. Predictions of an iterative overlap-generating model match experimental data
on the number of concepts to which a neuron responds.
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Introduction

Human memory exploits associations between concepts. If you visited a famous place with a friend, a
postcard of that place will remind you of him or her. The episode “with my friend at this place” has
given rise to an association between two existing concepts: before the trip (the episodic event), you
already knew your friend (first concept) and had seen the place (second concept), but only after the trip,
you associate these two concepts.

Concepts are encoded in the human Medium Temporal Lobe (MTL) by neurons, called “concept
cells”, that respond selectively and invariantly to stimuli representing a specific person or a specific place
[1–3]. Each concept is thought to be represented by an assembly of concept cells that increases their
firing rates simultaneously upon presentation of an appropriate stimulus. The fraction γ of neurons in
the human MTL which is involved in the representation of each concept is estimated to be γ ∼ 0.23% [4].
Under the assumption that each memory item is represented by the activation of a fixed, but random,
subset of active neurons, a single concept is expected to activate γN neurons and two arbitrary concepts
are expected to share γ2N cells, where N is the total number of neurons in the relevant brain areas.
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Experimental studies have shown that single neurons can become responsive to new concepts while
learning pairs of associations [5]. Moreover, it has been estimated that assemblies representing two
arbitrary concepts share less than 1% of neurons, whereas assemblies representing previously associated
concepts share about 4 − 5% of neurons [6] suggesting that an increased fraction of shared neurons
supports the association between concepts [6–8].

With the presence of shared neurons, the activation of a first assembly (e.g., a place) may also
activate a second assembly (e.g., a person). This poses several theoretical questions. First, for the
brain to function correctly as a memory network, it must remain possible to recall the two associated
concepts separately (e.g. place without your friend), and not automatically the two together. However,
if the concepts share too many neurons it becomes likely that the two memory items can no longer
be distinguished, but are merged into a single, broader concept encoded by a larger number of active
neurons. We therefore ask as a first question: what is the maximally allowed fraction cmax of shared
neurons between two assemblies before the possibility of separate memory recalls breaks down? Shared
concept cells can be visualised as an overlap between two memory engrams. Below the maximal fraction
cmax of shared neurons, each of the associated patterns can be recalled as a separate memory pattern,
as schematically illustrated in Fig. 1A.

As an alternative to a static recall of one or the other concept (or the two associated concepts
together), we could also ask whether the activation of a concept would facilitate the recall of an associated
one, or even a temporal chain activation of associations (as described in free memory recall tasks [9–12]),
due to overlaps in the representations. In this context, we ask a second question: if each concept is
represented by a small fraction of active neurons γ, given the activation of a concept, is there a minimal
fraction of shared neurons cmin necessary to enable a reliable activation of associated ones?

Moreover, while most experimental studies have dealt with pairwise associations between, say one
person and one place, more recent work has shown that a single neuron can respond to multiple concepts
[6], e.g., several related places. In view of this, we ask a third question: how should memory be organized
in a neural network such that k different memory engrams all have the equal size pairwise overlaps?

Associative memory in recurrent networks, such as the area CA3 of the hippocampus, has been
modeled with attractor neural networks [13–17] where each memory item is encoded as a memory engram
[18, 19] in a fixed random subset of neurons (called “pattern” in the theoretical literature [17]) such that
no pattern has an overlap above chance with another one. Animal studies provide evidence of attractor
dynamics in area CA3 [20, 21]. The few theoretical studies that considered overlapping memory engrams
above chance level in the past [22, 23] focused on overlaps arising from a hierarchical organization of
memories. Whereas such a hierarchical approach is suitable for modeling memory representation in the
cortex, we are interested in modeling MTL, and in particular area CA3 of the hippocampus, where
experimentally no hierarchical or topographical organization has been observed [6]. In experiments,
episodic associations between arbitrary different concepts (such as a person and a place) - and shared
neurons in the corresponding assemblies - can be induced by joint presentation of images representing the
different concepts [5]. Inspired by these experiments, we create pairwise associations between a number
of concepts by artificially introducing shared concept cells in the model. We will talk about “overlapping
engrams” if the number of shared concept cells is beyond the number γ2N of cells that are shared by
chance.

Results

The first two questions introduced above can be summarized as a more general one: What is the role
of those concept cells that are shared between stored memory engrams? To answer this question, we
consider an attractor neural network of N neurons in which P engrams are stored in the form of binary
random patterns [7]. The pattern ~ξµ = {ξµi ∈ {0, 1}; 1 ≤ i ≤ N} with pattern index µ ∈ {1, . . . , P}
represents one of the stored memory engrams: a value ξµi = 1 indicates that neuron i is part of the
stored memory engram and therefore belongs to the assembly of concept µ, while a value of ξµi = 0
indicates that it does not. A network that has stored P memory engrams is said to have a memory load
of α = P/N .

Since concept-cells in human hippocampus form sparse neural assemblies with a sparseness parameter
γ ∼ 0.23% [4], we focus on the case of sparse memory engrams. In other words, an arbitrary neuron i has
a low probability γ = Prob(ξµi = 1)� 1 to participate in the assembly of concept cells corresponding to
memory engram µ.

The attractor neural network is implemented in a standard way [24, 25]. Each neuron, i = 1, . . . , N ,
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is modelled by a firing rate model [25]

τ
dri
dt

= −ri + φ(hi), (1)

where ri(t) is the firing rate of neuron i and φ(h) = rmax/{1 + exp[−b(h − h0)]} is the sigmoidal
transfer function, or frequency-current (f-I) curve, characterized by the firing threshold h0, the maximal

steepness b, and the maximal firing rate rmax. The patterns ~ξµ are encoded in the synaptic weights wij
via a Hopfield-Tsodyks connectivity for sparse patterns so that the average of synaptic weights across a
large population of neurons vanishes [17].

In attractor neural network models, memory engrams µ induce stable values r∗µ,i of the neuronal firing
rates during the retrieval of a stored concept. In mathematical terms, to each engram µ corresponds a
fixed point ~r∗µ in such a way that the firing rate r∗µ,i of neuron i is high if ξµi = 1 and low if ξµi = 0.
When the network state ~r(t) is initialized close enough to the stored memory µ, the attractor dynamics
drives the network to the retrieval state ~r∗µ characterized by persistent activity of all those neurons that
belong to the assembly of concept µ.

The similarity between the momentary network state and a stored memory µ is defined as

mµ(t) =
1

Nγ(1− γ)rmax

N∑
j=1

(
ξµj − γ

)
rj(t). (2)

The similarity measures the correlation between the firing rates {rj(t)}j=1,...,N and the stored patterns
~ξµ such that if memory concept µ is retrieved, then mµ ∼ 1 (schematics in Fig. 1B), and, if no
memory is recalled (resting state), then mµ ∼ 0 for all µ. The similarity of the network activity with
a stored memory develops as a function of time. For example, computer simulations of a network of
N = 10 000 interacting neurons indicate that, if one of two engrams that share concept cells is stimulated
for 120ms, then the similarity of the network activity with this engram increases to a value close to one,
indicating that the memory has been recalled (Fig. 1C middle) while the second memory is only weakly
activated quantified by a small, but non-zero similarity. However, if the fraction of shared neurons is
above a maximally allowed fraction cmax, then the second memory always gets activated even before it is
stimulated (Fig. 1C bottom) indicating that associations are so strong that the two concepts have been
merged.

Maximal fraction of shared neurons between memory engrams

In order to better understand the network dynamics, we develop a mathematical theory that depends on
the fraction of neurons c that are shared between two engrams. The total number n of shared neurons
in a network of size N depends on c and the sparsity parameter γ, i.e., n = γcN .

Let us imagine to gradually increase the fraction of shared neurons between the first two memory
engrams. At the lowest end, c = γ, the patterns ~ξ1 and ~ξ2 are independent, and hence cell assemblies 1
and 2 share a small fraction of neurons corresponding to chance level. It is well known, that in this case,
each memory engram generates a separate attractive fixed-point of the network dynamics [17] implying
that the two corresponding concepts can be retrieved separately. However, experimental data reports
that, for associated concepts, the fraction of shared neurons c ∼ 4 − 5% [6] is much larger than the

chance level γ ∼ 0.23%. This observation suggests that the patterns ~ξ1 and ~ξ2 of two associated memory
engrams have a fraction of shared neurons larger than chance level, c > γ. On the other hand, in the
(trivial) limit case of large fraction of shared neurons c→ 1, the two memory engrams and hence the two
cell assemblies share all neurons, and it is clearly impossible to retrieve one memory without the other.

To study the maximal fraction of shared neurons cmax at which independent memory recall breaks
down, we use a mean-field approach for large networks and work in the limit N → ∞. In this limit, it
is possible to fully describe the network dynamics using the similarities mµ as the relevant macroscopic
variables. Since we are interested in the retrieval process of concepts µ =1 and 2, we assume the similarity
of the present network state with other memories µ > 2 to be close to zero: we will refer to these non-
activated memories as “background patterns”. Under these assumptions, we find dynamical mean-field
equations that capture the network dynamics through the similarity variables m1 and m2.

τ
dm1

dt
= −m1 + F1(m1,m2) (3a)

τ
dm2

dt
= −m2 + F2(m1,m2) (3b)
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where the explicit form of the functions F1 and F2 is given in Eq. (10) of Methods. Equation (3) rep-
resents a two-dimensional dynamical systems which can be analyzed using phase-plane analysis. Figure
1D shows three phase-planes in the m1 −m2 space, each for a different value of the fraction of shared
neurons. The m1- or m2-nullclines solve dm1/dt = 0 or dm2/dt = 0 in Eq. (3a) and (3b), respectively.
The intersections between the m1- and m2-nullcline are equilibrium solutions, or fixed points, of the
mean-field dynamics and are color-coded according to their stability. For c = γ, we identify four sta-
ble fixed points: the resting state (m1,m2) = (0, 0), two single-retrieval states (m1,m2) = (1, 0) and
(m1,m2) = (0, 1) corresponding to the retrieval of concept µ = 1 and the retrieval of concept µ = 2,
respectively. Finally, there is a symmetric state which corresponds to the activation of both concepts
simultaneously, (m1 = m2 . 1).

Once a maximally allowed value c = cmax is reached, the two single-retrieval states merge with their
nearby saddle points and disappear. To compute the numerical value of the maximal fraction of shared
neurons, we extract it from the bifurcation diagram (Fig. S1). For fractions of shared neurons c > cmax

only two stable fixed points are left, the resting state and the symmetric state in which assemblies of
both concepts are activated together: this symmetric state is the theoretical description of the state
that we qualitatively predicted above where the activation of a first concept leads inevitably to the
activation of the second, overlapping one (Fig. 1C, bottom). The minimum external stimulation needed
to activate the second concept depends on the fraction of shared neurons (Fig. 1E). With our choice
of parameters, no external stimulation is needed to recall the second memory, if the fraction of shared
neurons is c > cmax = 22%, since the two concepts have merged into a single one and are always recalled
together.

In the limit of infinite steepness b → ∞, vanishing load α = 0 and vanishing sparseness γ → 0, the
value c0max of the maximal fraction of shared neurons can be calculated analytically. Since this value
provides an upper bound of the maximal fraction of shared neurons for arbitrary b, we have the inequality
(Fig. 2A)

cmax ≤ c0max ≡ γ + (1− γ)
h0

Armax
, (4)

where A characterizes the overall strength of synaptic weights (see Eq.(5) below). Further analysis
(see Methods) shows that the stationary states of the mean-field dynamics depend – apart from the
parameters γ, C and α related to the patterns – only on two dimensionless parameters: the rescaled
firing threshold ĥ0 = h0/(Armax) and the rescaled steepness b̂ = b · (Armax). We find that the maximal

fraction of shared neurons cmax increases with b̂ and, for ĥ0 < 0.8, also with ĥ0 (Fig.2A).
We proceed by studying how the maximal fraction of shared neurons varies as a function of the

memory load α = P/N (Fig. 2B). As the load increases, we observe that the maximal fraction of shared
neurons decreases, but the change is modest. This weak dependence on the load is robust against two
variations of the network where (i) self-interaction of neurons is excluded; or (ii) the P − 2 background
patterns are also overlapping in pairs, e.g., pattern 3 is overlapping with pattern 4, 5 with 6, etc. For
both modifications, the mean-field equations look slightly different (Methods) but neither modification
leads to a significant change of the maximal fraction of shared neurons cmax (Fig.2A). In a network
that has stored a total of P memory engrams, the maximal fraction of shared neurons could potentially
depend on the group size p of patterns that are all overlapping with each other. So far we have considered
p = 2. We extended the mean-field approach to the case of three and four overlapping patterns (SI) by
rewriting and adapting Eq. (10). Again we find that the maximal overlap is not significantly influenced
by the group size p of overlapping patterns (Fig. 2B). The group size p can be large provided that the
total number of patterns P does not exceed the memory capacity of the network.

In summary, we found a maximal fraction cmax of shared neurons beyond which the retrieval of single
concepts is no longer possible. The value of cmax depends on frequency-current curve of neurons.

What is the minimal fraction of shared concept cells to encode associations?

We find that a symmetric double-retrieval state exists where two concepts are recalled at the same time
(Fig 1D, top), even if the fraction of shared concept cells is at chance level. This co-activation of two
unrelated concepts could be an artifact of the model considered so far.

In order to check whether our findings in Figs. 1 and 2 are generic, we added to the network the
effect of inhibitory neurons by implementing a negative feedback proportional to the overall activity of
the N neurons in the network. Inhibitory feedback of strength J0 > 0 causes competition during recall
of memories. We find that for J0 = 0.5, each of the two concepts can be recalled individually, but
simultaneous recall of both concepts is not possible if the fraction of shared concept cells is at chance
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level (Fig 3A). If we increase the fraction of shared concept cells above c = 5%, then individual as well
as simultaneous recall of the two associated memories becomes possible (Fig 3B). The effect becomes
even more pronounced at c = 20% (Fig 3C). If the fraction of shared neurons reaches a high value of
cmax = 50%, then the separate retrieval of the two individual concepts is no longer possible, indicating
that the two concepts have merged into a single one (Fig. 3D). Thus, in the presence of inhibition of
strength J0, we find that the fraction c of shared neurons must be in a range cmin(J0) < c < cmax(J0)
to enable individual as well as joint recall of associated concepts. For J0 < 0.5, the minimal fraction
cmin(J0) is at chance level and for J0 = 0.5 at cmin = 5% .

Association chains

Neurons shared between memory engrams have been proposed to be the basis for the recall of a memorized
list of words [9–12, 26]. In order to translate this idea to chains of associated concepts (Fig. 4A),
we follow earlier work [9–12, 26] and add two ingredients to the model of the previous subsection.
First, the strength of global inhibitory feedback is now periodically modulated by oscillations mimicking
Hippocampal oscillatory activity. The oscillations provide a clock signal that triggers transitions between
overlapping concepts. Second, we add to each neuron i an adaptation current θi(t) in order to prevent
the network state to immediately return to the previous concept. With this extended model, the network
state hops from one concept to the next (Fig. 4B). Transitions are repeated, but after some time the
network state returns to one of the already retrieved memories, leading to a periodic cycle of patterns [9]
(Fig. 4B). In network simulations where concepts are represented by sparse memory engrams (γ = 0.2%),
we allow a subgroup of p = 2, 4 or 16 memory engrams to share a fraction of neurons of c = 20%. Because
the number of shared concept cells is identical between all pairs of concepts within the same subgroup, the
order of the recalled concepts depends on the initial condition. If the subgroup of overlapping engrams is
small (p = 2, 4), all memory items are retrieved, while for a large group of overlapping engrams (p = 16)
the cycle closes once a subgroup of the overlapping memory engrams has been retrieved (Fig. 4B).

In previous studies [9–12, 26], each memory engram involved a large fraction (γ = 10%) of neurons so
that transitions could rely on the number of units shared by chance. However, given that the value of the
sparsity in MTL is much smaller (γ ∼ 0.23%), it is natural to ask whether the number of neurons shared
by chance (c = γ) is sufficient to induce a sequence of memory retrievals. Our simulations indicate that
this is not the case (Fig. 4C). Thus, in a network storing assemblies with a realistic level of sparsity
γ ∼ 0.2%, memory engrams with a fraction of shared neurons above chance level are necessary for the
retrieval of chains of concepts.

To better understand the role of overlaps between engrams for the formation of association chains,
we extend the mean-field dynamics to include the global feedback with periodic modulation J0(t). Since
simulations indicate that overlaps are necessary, we want to estimate the minimal and maximal fractions
of shared neurons required to enable association chains. Because, in our model, the periodic modulation
of the global inhibition strength J0(t) is slow, we consider the mean-field dynamics and the corresponding
phase portraits quasi-statically at the two extreme cases, where J0 is at its maximum and where J0 is at
its minimum. For our parameter setting, when J0(t) is clamped at its minimum, the network possesses
three stable states: the resting state and the two single retrieval states (Fig. 5B, left). For a successful
association chain, we need that concepts can be retrieved separately. The fraction of shared neurons,
c′max, that makes the two single retrieval states disappear therefore sets the upper bound of the useful
range of c. The parameter c′max is analogous to cmax in the previous section, but evaluated in the presence
of perdiodic inhibition.

Next, we consider the situation when the global inhibition is clamped at its maximum and find the
minimal fraction such that the system has, besides the resting state, a second fixed point for m1 = m2 > 0
where the assemblies of both the previous and next concept are simultaneously active at low firing rates.
Since this state is necessary to enable the transition, we call it the transition state. If the transition
state is present, the network could, once global inhibition decreases, either return from the transition
state to the previous concept, or jump to the next one (Fig. 5B, right side). However, in the presence
of adaptation (which is not included in the phase plane picture of Fig. 5), the transition to the next
concept is systematically favored because neurons participating in the assembly of the earlier concept
are fatigued. The existence of the transition state is a necessary condition for the formation of temporal
association chains. Thus, the lower bound of the fraction of shared neurons c′min is the smallest overlap
such that the transition state exists. Since in the mean-field limit, the transition state appears only for
c > γ, a fraction of shared neurons above chance level is needed to allow the hopping between concepts.
In Fig. 5C-E we show the dependence of the maximal and minimal fraction of shared concept cells upon
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the sparsity γ and the steepness b: in both cases the dependence is not strong, but sparser networks lead
to a slightly smaller range of the admissible fraction c of shared neurons supporting association chains.
Importantly, the minimal fraction of shared neurons necessary for association chains is significantly above
the fraction of neurons that are shared by chance. We find that for a suitable choice of neuronal and
network parameters, association chains are possible for realistic values of γ and c as measured in human
MTL. This suggests that, in principle, associations could be implemented as sequences of transitions if
the number of shared neurons is above cmin.

In conclusion, we have shown the need for overlaps between memory engrams – equivalent to a
number of shared concept cells significantly above chance level – to explain free memory recall as a chain
of associations in recurrent networks such as the human CA3 where each engram involves only a small
fraction of neurons.

How does a network embed groups of overlapping memories?

In our discussion on shared concept cells, we have so far mainly focused on neurons that are shared
between a single pair of memory engrams such as one place and one person. However, humans are able
to memorize many different persons and places, some memories forming subgroups of associated items,
others not. In order to compare our network model with human data we therefore need to encode several
subgroups of two or more of overlapping memory engrams in the same network of N neurons. Based on
the results of the previous sections, we wondered whether we can explain the experimental distribution
of the number of concepts a single neuron responds to. We find that imposing the fraction c of shared
concept cells between pairs of concepts, does not predict uniquely how many neurons are used if a given
number of memory engrams is embedded in a network. Therefore, imposing c as a target number of
shared concept cells while encoding multiple concepts is not sufficient to predict whether a given neuron
responds to 3 or 5 different concepts. The question then is: to how many concepts does a single neuron
respond if several groups of overlapping engrams have been embedded in the network?.

To study this question we consider three different algorithms that all construct memory engrams of
200 neurons per memory with a pairwise overlap of 8 neurons in a network of 100,000 neurons, i.e.,
γ = 0.2% and c = 4% (Fig. 6B). When we embed subgroups of 16 engrams with identical numbers of
pairwise shared neurons, then an iterative overlap-generating model needs about 2400 neurons out of the
100,000 available neurons, whereas two different hierarchically organized algorithms need about 2400 or
3000 neurons, respectively. In order to understand which of the three algorithms explains experimental
data best, we quantify the predictions of the three algorithms under the assumption that not just one,
but several subgroups of patterns are embedded in the same network and compare the predictions with
experimental data using a previously published dataset of human concept cells [6].

The dataset contains the activity of 4066 neurons recorded from the human MTL during the presenta-
tion of several visual stimuli. We can extract the experimental probability that a single neuron responds
to exactly k different concepts (Fig. 6A, black stars). From the probability distribution, we observe the
existence of neurons responding to a large number of concepts (10 or more), but also a sizable fraction
of neurons that respond to 5 or 6 different concepts. We will refer to those neurons as multi-responsive
neurons.

To describe the data, we take into account the size and number of subgroups used in the experimental
stimulation paradigm (SI). We find that only the iterative overlap-generating model fits the data (Fig.
5.C), i.e., it is the only one that predicts the correct probability of multi-responsive neurons. Since the
iterative overlap-generating model is not based on a hierarchical generation of patterns, this suggests
that the MTL encodes large subgroups of memory engrams in a non-hierarchical way, in agreement with
earlier papers [6].

Robustness to heterogeneity

Because biological neural networks present different forms of heterogeneity, we have checked our model’s
robustness to (i) the heterogeneity of frequency-current curves and (ii) dilution of the number of synaptic
connections.

In the experimental data set, each neuron is characterized by different baseline firing rates and
maximal rates in response to the preferred stimulus. We therefore introduce in our model heterogeneous
frequency-current curves characterised by a minimum and a maximum firing rates (rmin)i and (rmax)i
respectively and renormalize the network dynamics appropriately (Methods). Despite the heterogeneity,
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simulations indicate that memory recall with heterogeneity is nearly indistinguishable from that without
(compare Figs 7A and 2C and 7B and 4B).

Secondly, we allow the weight matrix to be diluted. Whereas so far we have assumed an “all-to-all”
connectivity, we now introduce the dilution coefficient d, which indicates the fraction of actual synaptic
connections compared to the N2 potential ones. Importantly, for sparsely connected networks, the theory
still contains the parameter α for memory load, except that α is redefined to α = P/M where M is the
mean number of connections per neuron (see SI for details). Simulations in Fig. 7C show that the model
is robust for d = 0.8, i.e. after dropping 20% of all possible synaptic connections and an appropriate
rescaling of the average connection strength.

Discussion

Our results bridge observations and theories from four different fields: first, experimental observations
in the human MTL [1, 3, 6, 27, 28]; second, experimental observations of memory engrams [18, 19];
third, the theory of association chains used to explain free memory recall [9–12]; and fourth the classic
theory of attractor neural networks [13, 25]. Our main result is that, in networks were concepts are
encoded by sparse assemblies, the number of shared concept cells must be above chance level but below
a maximal number in order to enable a reliable encoding of associations. With 4-5% overlap between
memory assemblies as reported in the human MTL [6], association chains are possible for a range of
parameters of frequency-current curves. Our work extends the classical mean-field formalism [15] to
memory engrams that exhibit pairwise overlap, both in a static and chain-like retrieval setting.

While sparsity limits the number of concept cells shared by chance, Hebbian learning could induce
sharing of concept cells between a small number of specific memories engrams [6]. The existence of a
maximal fraction of shared neurons implies that Hebbian learning must work with an intrinsic control
mechanism so as to avoid unwanted merging of separate concepts.

Association chains could form the basis of a “stream of thought” where the direction of transitions
from one concept to the next is based on learned associations. Our oscillatory network dynamics is
inspired by the model of Romani, Tsodyks and collaborators [9–12]. Even though in the Romani-
Tsodyks model memory engrams are independent, finite size effects make some pairs of engrams share
neurons above chance level which enables sequential recall in the presence of a periodic background
input. We find that in large networks with sparse coding level (γ ≈ 0.23%), neurons shared by chance
are not enough to reliably induce the retrieval of a chain of concepts. Sequential memory retrieval is
possible only for overlaps larger than chance, potentially representing associations learned during real-
life episodes. Instead of transitions triggered by oscillations, transitions could also triggered by two
adaptation mechanisms that act on different time scales without the need of periodic inhibition [29–31].

Attractor networks with sparse patterns [17] and random connectivity [32] are suitable candidate
models for biological memory because they present two features: (i) memory retrieval after stimulation
with a partial cue and (ii) sustained activity after a stimulus has been removed. One of the points of
critique of attractor networks, traditionally analyzed with the replica [33] or cavity [34, 35] method, has
been the unrealistic assumption of symmetric connections. However, the derivation used here, based on
dynamical systems arguments [36], can easily be generalized to the case of asymmetric connectivity.

The maximal number of patterns that can be stored in an attractor neural networks has attracted
a lot of research [15, 17, 37]. However, does the hippocampus actually operate in the regime of high
memory load? Even though we do not believe that hippocampus stores words, we may estimate a rough
upper bound for the load α = P/M in the area CA3 of the hippocampus from the number of words
a native English speaker knows (which is about P=30’000 according to The Economist, Lexical Facts)
and the number of input connections per neuron (which is about M =30’000 [38]). Hence we estimate
an upper bound of α about 1 if concepts are stored in area CA3 – and our theory captures such a high
load.

The maximal fraction of neurons which two concepts can share before they effectively merge into a
single concept mainly depends on two dimensionless parameters: the rescaled threshold ĥ0 = h0/(Armax)

and the rescaled steepness b̂ = Armaxb. Since these parameters have so far not been estimated for the
human CA3 area of the hippocampus or for the MTL in general, we checked parameters of the frequency-
current curve of Macaque inferotemporal cortex [24], for which we find cmax = 34%.

Finally, by comparing the experimental measured number of concepts a neurons responds to and
model predictions we find that the iterative overlap-generating model can predict the number of multi-
responsive neurons quite accurately. The algorithm of how to build overlapping engrams plays a key role
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in fitting the experimental data and confirms the idea that memory engrams in the hippocampus are not
hierarchically organised.

Methods

We consider an attractor neural network of N rate units with firing rates ri, in which P memory engrams
are stored. Each engram µ, 1 ≤ µ ≤ P , is given by a binary random pattern ~xµ = [ξµ1 , . . . , ξ

µ
N ]T , where

ξµi ∈ {0, 1} are Bernoulli random variables with mean 〈ξµi 〉 = γ. Here and in the following, 〈 . 〉 indicates
expectation over the random numbers ξµi that make up the patterns. Each neuron follows the rate
dynamics of Eq. (1), where the synaptic weight from neurons j to neurons i is defined as [17, 24]

wij =
A

Nγ(1− γ)

P∑
µ=1

(
ξµj − γ

)
(ξµi − γ) . (5)

Here, the constant A can be interpret as the global scale of “connection strength”. For independent
patterns, the synaptic weight wij has mean zero, 〈wij〉 = 0, and variance 〈w2

ij〉 = A2P/N2.

Model without adaptation and global feedback

For deriving the results in Figs. 1 - 2, the total input driving neuron i is

hi(t) =
N∑
j=1

wijrj(t) + Ii(t) =
P∑
µ=1

(ξµi − γ)mµ(t) + Ii(t) (6)

where Ii is the external input. The similarity measure (also called “overlap” in the attractor network
literature) mµ measures the similarity (correlation) of the current network state with pattern µ; cf. Eq.
(2). In Figs. 1C,2C and 6 the external input Ii = Iextξ1i is positive during stimulation for all neurons
that belong to the assembly of pattern µ = 1.

Model with adaptation and global inhibitory feedback

For Fig. 4 of Results, we added adaptation and a global inhibitory feedback to the model as described
in previous studies [9–12]. Specifically, we add two negative feedback terms to the input potential:

hi(t) =
N∑
j=1

wijrj(t)− θi(t)−
J0(t)

γN

N∑
j=1

rj(t) + Ii, (7)

First, the variable θi(t) models neuron-specific firing-rate adaptation via the first-order kinetics

τθ
dθi
dt

= −θi +Dθri. (8)

Here, τθ is the adaptation time constant and Dθ determines the strength of adaptation. Note that this
adaptation model with a hyperpolarizing feedback current is equivalent to a model in which adaptation
is implemented as an increase in the threshold h0 + θi(t).

Second, the global inhibitory feedback term proportional to J0(t) (third term in (7)) provides a
clock signal that triggers transitions betweeen attractors. Importantly, inhibition proportional to the
summed activity of the network units penalizes network configurations with many active neurons and
therefore reduces stability of the double-retrieval state where two memories are recalled together. Here,
the strength J0(t) of the global feedback is modulated periodically between values 0.7 and 1.2 with a
sinusoidal time course of period TJ0 that sets the time scale of transitions between memories. Note that
the model without adaptation and global feedback is a special case of the full model by setting Dθ = 0
and J0(t) ≡ 0. For the results of Fig. 3, J0 is a constant parameter and Dθ = 0.

Mean-field equations for two overlapping patterns

Overlap between two engrams is implemented as two patterns with a non-zero Pearson correlation co-
efficient. Without loss of generality, we take patterns ~ξ1 and ~ξ2 to be correlated, while all other P − 2

8

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.434964doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.434964
http://creativecommons.org/licenses/by/4.0/


patterns are independent. We define the correlation C between the two patterns as the Pearson correla-
tion coefficient (covariance/variance):

C =
Cov(ξ1i , ξ

2
i )

Var(ξµi )
=
P11 − γ2

γ(1− γ)
, (9)

where P11 = P (ξ1i = 1, ξ2i = 1) = 〈ξ1i · ξ2i 〉 is the joint probability of a neuron to be selective to
both patterns. We generate correlated patterns with mean activity

〈
ξ1i
〉
i

=
〈
ξ2i
〉
i

= γ and correlation
coefficient C, using the procedure described in SI. The fraction c of shared neurons is related to C by
the identity c = C(1− γ) + γ.

We are interested in the retrieval dynamics of the correlated patterns ~ξ1 and ~ξ2. In the limit of large
network size, N →∞, this dynamics is given by the mean-field equations for m1 and m2 in Eq. 3. For
the general case, where the load α = P/N does not necessarily vanish in the limit N →∞, the functions
Fµ, µ = 1, 2, are given by

Fµ(m1,m2) =
∑
x1=0,1

∑
x2=0,1

xµ − γ
γ(1− γ)

Px1x2

∫
dz√
2π
e−

z2

2
φ(hx1x2(m1,m2, z))

rmax
(10a)

hx1x2(m1,m2, z) = Armax

(∑
ν=1,2

(xν − γ)mν +
√
αRh(m1,m2)z

)
+ Iextx1. (10b)

Rh(m1,m2) =
p

(1− q)2
(10c)

q = A
∑
x1=0,1

∑
x2=0,1

Px1,x2

∫
φ′(hx1x2(m1,m2, z))e−

z2

2
dz√
2π

(10d)

p =
∑
x1=0,1

∑
x2=0,1

Px1,x2

∫
φ2(hx1x2(m1,m2, z))

r2max

e−
z2

2
dz√
2π
. (10e)

Note that for vanishing load, α = P/N → 0 in the limit N → ∞, we can set α = 0 in Eq. (10b)
and hx1x2(m1,m2, z) = hx1x2(m1,m2) in Eq. (10a), which drastically simplifies the expression for Fµ in
closed analytical form (no integral). For details see SI.

A completely analogous procedure can be used to generate more than two correlated binary patterns.
In Fig. 2B we generate a subgroup of p = 2, 3, 4 correlated patterns and compute their maximal corre-
lation by solving the system of equations that is analogous to (10). To generate Fig. 4C-D we use the
mean-field dynamics in the presence of adaptation and global feedback, analogously to Eq. (10). All
details are provided in the SI.

Excluding self-interaction

In order to make the network more biolocally plausible, we can consider that a neuron does not send
direct input to itself. The effect of excluding the self-interaction term in Eq. (6) is captured by a
correction term to be included on the right-hand-side of Eq. (10b) [36]:

hx1x2(m1,m2, z) = Armax

(∑
ν=1,2

(xν − γ)mν +
√
αRh(m1,m2)z

)
+ Iextx1 +

qαAφ(hx1x2(m1,m2, z))

(1− q)
.

(11)

Overlapping background patterns

In Fig. 2B we explore the possibility that the maximal fraction of shared neurons cmax might be influenced
by the presence of Pearson’s correlation between pairs of background patterns. Moreover, the assumption
that there are many subgroups of overlapping memory engrams seems more biologically plausible. If we
let the background patterns to be overlapping in subgroups of 2 patterns each, the variable R in the
mean-field equations of Eq. (10) needs to be replaced by

R′ =
p

[D2 − (qC)]
2

[
(1− q)2 + q2C2 + 4(1− q)qC2 + (1− q)2C4

]
. (12)

The detailed derivation is provided in the SI.
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Furthermore, Eq. (12) can be extended to the case in which background patterns share correlation
C between non-overlapping subgroups of exactly p patterns (the complete derivation is provided in the
SI).

Algorithms to generate overlapping patterns

In this section we describe how a single subgroup of K overlapping patterns with sparseness γ and overlap
cis created according to three different algorithms. Details and the theoretical probability distribution
associated to the algorithms are given in the SI.

Hierarchical generative model. We start by creating a “parent” pattern which is not part of the
subgroup. The parent pattern has sparseness λ = γ/c, i.e., prob(ξparenti = 1) = λ. We proceed to create
the actual patterns by copying the ones of the parent pattern with probability c, while the zeros stay
untouched: prob(ξµi = 1|ξparenti = 1) = c, prob(ξµi = 1|ξparenti = 0) = 0.

Indicator neuron model. We generate with probability λ a small subset of indicator neurons.

This subset gives a parent pattern of indicator neurons: prob(ξparenti = 1) = λ = c−γ2

1+c−2γ . In a network
of N neurons, we select nind = λN neurons as indicator neurons. To create a pattern µ, we flip the
bits of the parent pattern with probability ε (i.e. a bit is flipped either from 0 to 1 or from 1 to 0 with
probability ε.) The desired values of λ and ε are obtained by expressing the correlation coefficient C and
the sparseness γ as a function of them and reversing the formula.

Iterative model. We start by generating the first pattern with γN active neurons. Neurons that
have not been selected for constructing any pattern are classified as “untouched neurons”. For the
construction of each of the following patterns, from 2 to p (where p is the number of correlated patterns),
we select randomly cN neurons from each of the already created patterns. While building pattern from
2 to p, we count the amount of already shared neurons between the pattern under construction and the
one we are picking the shared units from. Therefore and take this into account, by picking cN minus
the number of already shared neurons. Finally we pick the remaining neurons to reach the target of γN
active neurons from the untouched ones.

Experimental data

The experimental dataset of Fig. 6 comes from a previous publication [6]. The data was recorded from
patients implanted with chronic depth electrodes in the MTL for the monitoring of epileptic seizures.
Micro-wires recorded the localized neural activity; spike detection and sorting allowed to identify the
activity of 4066 single neurons. During recordings, patients were shown different pictures of known people
and places repeated several times. For each neuron, the stimuli eliciting a response were identified using
a statistical criterion based on the modulations of firing rate during stimulus presentation compared
to baseline epochs. For additional details on the dataset and data processing we refer to the original
publication.

Heterogeneous frequency-current curves

The frequency-current function of model neurons is neuron-specific and re-written as

φi(x) =
(rmax)i − (rmin)i

1 + e−b̂(x−(ĥ0)i)
+ (rmin)i, (13)

where the values of (rmin)i and (rmax)i are randomly sampled for each neuron from a Gaussian distribu-

tion with mean and standard deviation µmin, σmin and µmax, σmax respectively. The parameter (ĥ0)i is
then defined as h0((rmax)i − (rmin)i), where h0 is a global constant. Finally in the firing rate equation,
we re-scale the firing rates as follows:

ri → Max

[
0,

ri − (rmin)i
(rmax)i − (rmin)i

]
µmax. (14)

In Fig. 7 we choose the parameters µmin = 0 Hz, µmax = 1 = 40 Hz , and σmin = σmax = 4 Hz.
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Figure 1: Overlapping concepts can be retrieved separately and jointly. A) Activation of concepts
(schematic). Black filled circles = inactive neurons. Yellow filled circles = active neurons. Colored halos
(red, green) represents assignment to a specific concept. When the fraction of shared neurons is small
(top row, c < cmax) the two concepts can be recalled separately or together. If the number of shared
concept cells is too large (bottom row, c > cmax), the recall of a first concept (red) leads inevitably to the
activation of the second associated concept (green). B) Similarity measure. If only a subset of neurons
belonging to the first memory engram is activated (top), the configuration exhibits similarities m1 < 1
and m2 = 0. If the first memory is fully recalled, while memory 2 is not (bottom), the similarity measures
are m1 = 1 and m2 << 1. C) Dynamics of the similarities for different fractions of shared neurons. The
similarities m1 (green) and m2 (red) as a function of time in a full network simulation (solid lines) are
compared to predictions of mean-field theory (dashed lines). Strong external stimulation I1 = 0.3 is given
to the units belonging to concept µ = 1 during a first stimulation period and a weak external stimulation
I2 = 0.1 is given to the units belonging to concept µ = 2 during the second stimulation period (in grey).
If c > cmax, the concept 2 gets activated without receiving any stimulation. D) Three phase-planes
of the dynamics of similarity variables m1 and m2 for different values of fraction of shared neurons c.
Arrows indicate direction and speed of increase or decrease of the similarity variables. Intersections of
blue and orange lines (the “nullclines” of the two variables m1,m2) indicate fixed points, with a stability
encoded by color (legend). E) Minimum amplitude of the external stimulation I2 needed to activate the
memory of the second concept if the first one is activated (as a function of the fraction of shared neurons

c). Parameters: ĥ0 = 0.25, b̂ = 100, rmax = 40 Hz, τ = 25 ms, α = 0, γ = 0.2%. For simulations:
N = 10000, P = 2.
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Figure 2: The maximal fraction cmax of shared neurons depends on the neuronal frequency-current curve
but not on the memory load. A) Maximal fraction (cmax, color code) as a function of the parameters

b̂ = bArmax (steepness) and ĥ0 = h0/(Armax) (firing threshold) of the frequency-current curve. Niveau
lines added for indicated values of cmax. In the black area the resting state is the only stable solution.
Vertical white dashed lines indicate the theoretical upper bound c0max, for different values of ĥ0. The
green square indicates the parameter choice used in Fig. 1 and 2B-C. The green star indicates the
parameters extracted for the Macaque inferotemporal cortex [24]. B) Maximal fraction cmax of shared
neurons as a function of the memory load α = P/N (left graph) without (solid grey line) or with overlaps
in pairs of two of the P −2 background patters (dashed green line); and as a function of the number p of
correlated patterns (histogram, right graph). C) As in Fig. 1C, but with a large number of background
patterns (α = 0.2). Network activity exhibits only small similarity with background patterns (diversely
colored lines) but large similarity with the stimulated pattern µ = 1. Parameters (unless specified):

γ = 0.2%, b̂ = 100, ĥ0 = 0.25, rmax = 40 Hz, τ = 25ms; α = 0 in A-B. For simulations in C: N = 10000,
p = 2, γ = 0.2%.
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Figure 3: The existence of a symmetric double-retrieval state requires a fraction of shared neurons above
chance level in the presence of global inhibition. Four phase-planes showing the stable fixed points in
presence of global inhibition, for a fractions of shared neurons A c = γ, B c = 5%, C c = 20%, D
c = 50%. On the diagonal, nullclines lie nearly on top of each other (dashed line). Parameters: ĥ0 = 0,

b̂ = 500, rmax = 1, α = 0, γ = 0.2%, J0 = 0.5.
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Figure 4: Chain of associations requires shared concepts cells. A) Schematic of a chain of association
cycling between two concepts. Assignment of cells to assemblies is indicated by halos’ color. Filled
black circles indicate inactive neurons and filled yellow circles indicate active neurons. The schematics
corresponds to the top plot of panel B. B) Full network simulation for engrams overlapping above chance
level (c = 20% > γ) with low sparsity (γ = 0.2%). Each line corresponds to the similarity mµ with one
of the stored memory engrams as a function of time. A subgroup of p engrams is overlapping (top to
bottom: p =2,4,16. If the network state is initialized to retrieve one of the overlapping concepts, other
concepts within the subgroup are retrieved later. C) Same as in B, but memory engrams are independent
(c = γ) and only share cells by chance. By decreasing their mean activity γ, the retrieval dynamics of a
chain of memories is disrupted. The match between mean-field theory and simulations is shown in Fig.
S5. Parameters: N = 10 000, P = 16, b̂ → ∞, τθ = 1.125 s, T = 3.75 ms, TJ0 = 625 ms , τ = 25 ms,
rmax = 40 Hz.
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Figure 5: Dependence of association chains on sparsity and neuronal parameters. A) Dynamical mean-
field solutions for m1 and m2 in the case of two correlated patterns. The grey dashed line shows the
modulation of J0(t). B) Phase planes corresponding to the minimum (J0 = 0.7) and maximum (J0 = 1.2)
value of inhibition in the case of two associated patterns. C) Minimal and maximal fraction of shared
concept cells as a function of the sparsity γ and D) of the steepness b. E) Table with the values of C and

D. Parameters (unless specified): γ = 0.2%, b̂ = 100, c = 20%, τθ = 1.125 s, T = 3.75 ms, TJ0 = 625 ms,
θi = 0 for every i.

Figure 6: A single neuron responds to several concepts. A) Probability that a neuron responds to a given
number of concepts: comparison between data and 3 different algorithms: the hierarchical generative
model and the indicator neuron model, which both build overlapping engrams in a hierarchical way,
and the iterative overlap-generating model which is a non-hierarchical algorithm. Each algorithm was
run 40 times to generate the mean and error bars (only upward bars are displayed, corresponding to
one standard deviation). B) For each of the three algorithms, we generated three subgroups of patterns
containing p = 16, p = 4, or p = 2 patterns, respectivley, as well as an isolated pattern (p = 1). The
table gives the expected total number of active neurons in each subgroup in a neural network of 100 000
neurons if patterns have sparsity γ = 0.2% and a pairwise fraction of shared neurons c = 4%.
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Figure 7: The model is robust to heterogeneity of frequency-current curves. Full network simulations A)
in absence of adaptation, equivalent to Fig. 2C, and B) in presence of adaptation and periodic inhibition.
C) The model is robust to the dilutions of the synaptic connections. Full network simulations equivalent
to Fig. 2C
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