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Abstract  
 
Links between cognitive deficits and psychiatric disorders have been studied predominantly at the group 

level, leaving unique individual characteristics largely unknown. Here, we applied normative modeling 

to UK Biobank data (N=18,634) and estimated the interplay of large-scale brain networks over time 

(i.e., dynamic brain state) at the individual level. Abnormality in such brain states was linked to 

individual variation in mental health. Specifically, brain state measures including fractional occupancy 

were estimated as a function of general cognitive ability and abnormality scores per participant were 

quantified to represent the degree of deviations relative to the estimated population norm. We found 

significant associations between the abnormality scores of several brain states and individual’s overall 

mental health. Our findings suggest potential impact of mental health on dynamic brain states 

subserving cognitive functions and shed light on the relevant brain mechanisms underlying cognitive 

deficits in mental illness. 
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Introduction  
 

Cognitive functions are a set of mental abilities such as problem solving and decision 

making that are required to perform daily tasks. The ability to execute such functions has been 

shown to vary across the lifespan 1, and from one condition to the other 2. In fact, impairment 

in such ability (i.e., cognitive deficit) is recognized as a common symptom present in the 

majority of psychiatric disorders, including schizophrenia 3, depression 4 and bipolar disorder 
5. The observed behavioral abnormalities in those disorders are often attributed to various 

cognitive functions including learning, attention, emotion regulation and cognitive control 6. 

Aberrant functional connectivity patterns, in addition to other neurobiological measures, have 

been linked to cognitive deficits in psychiatric disease groups 7. A recent meta-analysis study 

revealed that altered functional connectivity (FC) in large-scale neurocognitive networks were 

common across psychiatric diagnoses, suggesting a shared mechanism of brain network 

interactions underlying abnormalities in generalized cognitive ability 8. These findings point to 

the FC of large-scale networks as the mechanistic basis of cognitive ability and suggest that 

the relationship between FC and cognition may vary as a function of mental health.  

Interestingly, recent studies on FC suggest that in contrast to traditional static functional 

connectivity, patterns of large-scale brain networks over time that capture time-varying 

functional connectivity might be of greater relevance to studying individual differences in 

cognitive functions 9–11. Unlike static FC, which averages neural fluctuations over time, 

dynamic connectivity estimates temporal fluctuations in functional connectivity and provides 

additional information about temporal reconfiguration of functional resources 12. Growing 

evidence suggests that dynamic changes in the resting-state FC are involved in various 

cognitive processes, including mind-wandering, fluctuations in arousal, vigilance, and 

perceptual performance 13,14. Recent studies linking temporal dynamics of large-sale brain 

networks to cognitive and behavioral traits further revealed that such network temporal 

properties often had better predictions on cognitive traits than static FC 9, explain unique 

aspects of cognition 11, and that dynamic connectivity can outperform static FC in terms of 

capturing trial-wise behavioral variability in cognitive tests 10. These findings highlight the 

interactions of brain networks over time as a potentially more sensitive marker than the static 

FC to capture inter-individual differences in cognition.  

Brain network dynamics have also been linked to various psychiatric and neurological 

disorders. However, almost all reported studies so far have focused on group-level comparisons 

between patients and healthy controls 15. Similarly, research into the role of mental illness in 
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cognitive functions are also predominantly based on case versus control comparisons or clinical 

subgroup contrasts 16. These studies therefore only provide group-level inference that 

essentially overlook unique individual characteristics. To obtain more representative measures 

of each individual and to eventually identify meaningful biomarkers, we therefore need more 

personalized approaches 16–18.  

In this study, we adopt individualized methods to investigate the interactions of large-

scale brain networks over time (i.e., brain network state with temporal information) that are 

associated with cognitive ability, and their relationships to mental health. Specifically, we 

leverage normative modeling to estimate individual-specific brain state measures from 

cognitive ability. Analogous to normative growth charts used in pediatric medicine, normative 

models locate each individual on the normative range in terms of the estimated variables (e.g., 

brain state measures) and provide statistical inference at the individual subject level 19. 

Deviations from the estimated normative range per individual (i.e., abnormality score) can be 

then quantified and linked to relevant variables (e.g., individual’s mental health). Normative 

modeling has been increasingly applied to study associations between brain functions and 

behavior, particularly for clinically relevant conditions where significant heterogeneity may 

exist that cannot be captured by categorical partitioning of the cohort into traditional patient-

control groups 20–23.  Here, we apply normative modeling to a population cohort to investigate 

whether individual-level abnormality in brain state measures as estimated from cognitive 

ability can be attributed to overall mental health. 

 

  

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435017doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435017
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Methods  

Participants 

The UK Biobank is a population cohort dataset with extensive behavioral and demographic 

assessments, lifestyle, and cognitive measures, as well as high quality imaging data. It recruited 

adults from the general population across Great Britain between 2006 and 2010 

(https://www.ukbiobank.ac.uk). This openly accessible population dataset also aims to obtain 

multimodal brain imaging for 100,000 individuals before 2023 43. We used data from “instance 

2” when the initial neuroimaging data were acquired. Participants were included in the analysis 

if they had resting-state fMRI data and had sufficient data of self-reported mental health 

questionnaires and of cognitive tasks to derive scores for overall mental health and general 

cognitive ability (see below). Consequently, data from N=18,634 were analyzed (Mage=63.65; 

Nfemale=9,913; see sample demographics in Supplemental Materials). All participants provided 

informed consent. UK Biobank has ethical approval from the North West Multi-Centre 

Research Ethics Committee (MREC). Data access was obtained under UK Biobank application 

ID 47267. 

 

General Cognitive Ability  

Several well-established cognitive tasks were performed when UK Biobank participants visited 

the assessment center to measure their cognitive functions including IQ, verbal declarative 

memory, executive function, and non-verbal reasoning. All tests were administered on a touch 

screen computer on the day of scanning. Following the practice from previous studies, PCA 

was used to extract the major component across multiple cognitive tasks that are representative 

of general cognitive ability 44,45. The summary outcome measures (e.g., mean reaction time, 

number of correct puzzles) of each task were entered into the PCA with exclusion of items 

having more than 55% missing values. In case of categorical items, the proportion of each 

category or level was calculated. This resulted in a final list of 16 items that were entered into 

the PCA (see full list of items in SFigure 1). Prior to PCA, imputation was performed to address 

missing variables by a regularized iterative PCA algorithm that first imputes the missing values 

with the initial mean values of variables, followed by a PCA on the completed dataset and then 

imputes the missing values with the regularized reconstruction formulae order. These steps are 

iterated until convergence 46. Just like the g-factor that indicates general intelligence, the first 

PCA component was derived as a measure for general cognitive ability and individual scores 

were used to indicate general cognition levels per participant.  
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Overall Mental Health  

On the same day when neuroimaging and cognitive task data were acquired, participants also 

completed a set of self-report mental health questions on a touch screen. The questionnaire 

items (40 in total) touched upon lifetime mental health with questions about affective disorders, 

neuroticism, subjective well-being indicated by happiness, and satisfaction levels with health, 

family relationships, friends and financial situation (SFigure 1). Individual variables from the 

mental health questionnaire were excluded with more than 55% missing values and categorical 

variables were transformed into percentages, resulting in a final list of 33 items that were 

entered into a PCA after the same imputation procedure as described above (see full item list 

in SFigure 1). For the purpose of inferring an overall state of mental health, we used the 

individual scores for the first PCA component to approximate the p-factor that has been 

proposed to indicate generalized dimensional symptom levels across psychiatric disorders 47,48.  

 

Imaging data acquisition and processing 

Resting-state fMRI was obtained using a multiband sequence with an acceleration factor of 8 

(TR=0.735; voxel size=2.4x2.4x2.4mm3). Preprocessing for the resting-state fMRI data 

included motion correction, grand-mean intensity normalization, high-pass temporal filtering, 

unwarping and denoising 49.  Full details for imaging acquisition and preprocessing steps can 

be found in UK Biobank Brain Imaging Documentation 

(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf).  

Researchers involved in UK Biobank have centrally developed and shared the imaging-

derived phenotypes via the UK Biobank showcase 50, one of which is subject-specific time-

series of 100 resting-state nodes. These time-courses were derived from a dual regression 

analysis using a group-level independent component analyses (ICA) map as the input. Out of 

100 dimensions, 55 were classified as non-noise functional network works, resulting in a 

matrix size of 490 x 55 for each participant’s time-series, where 490 is the number of acquired 

volumes. These data were used in the current study to estimate time-varying functional 

connectivity. 

 

Dynamic Brain States  

We derived brain state measures by fitting a Hidden Markov Model (HMM) to the 

aforementioned fMRI time-series data.  In brief, HMM assumes that brain activity can be 

characterized as a number of discrete brain states. Under this framework, the brain activity at 

each time point can be modeled as a mixture of Gaussian distributions with each distribution 
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corresponding to a different state 10,51. Importantly, each of the estimated brain states is 

described by a distinct timeseries and functional connectivity pattern 52. HMM can be viewed 

as a probabilistic description of the data in which the hidden information (i.e., brain state) is 

captured from observable measures (i.e., fMRI time courses). An increasing number of studies 

have applied HMM to neuroimaging data, demonstrating it as a promising approach for 

understanding the temporal dynamics of brain functions 52–55. 

Similar to previous work applying HMM to fMRI data, we inferred 12 brain states using 

the resting-state fMRI time-series data from all participants 52,56. Measures including fractional 

occupancy (FO) that represents the average state probability across time for each brain state, 

and the switching rate among brain states that indicates the brain state stability of each 

participant were quantified at the individual level. These measures were considered as 

indications of subject-specific brain states (i.e., total of 13 measures from the estimated model 

with 12 brain states).  

 

Normative modeling of brain state measures as a function of cognition 

To obtain statistical inferences at the individual level with respect to the normative range of 

brain state measures, we used a Gaussian Process Regression (GPR) to predict HMM-derived 

measures from the general cognitive ability scores. GPR is a non-parametric probabilistic 

Bayesian method that can provide reliable estimates of uncertainty for the prediction and has 

been widely applied in machine learning field 57. Using GPR, we estimated each individual 

measure of brain states separately and quantified subject-level deviations from the estimated 

normative range of per measure (i.e., abnormality score) for each individual participant. 

Abnormality scores were calculated as the difference between estimated brain state measure 

value from the normative model and the actual value derived from HMM, which was further 

divided by the estimated standard deviation from the normative model (i.e., Z scores) 20.  

To infer the normative range with the current sample size (N>18K), we leveraged local 

approximate GP modeling. In contrast to full GPR that requires to obtain a full set of predictive 

equations, approximate GPR models involves approximating the predictive equations at a 

particular location (i.e., X) via a subset of the data. As the remote elements from the subset to 

the location X have vanishingly small influence on prediction, ignoring these elements in order 

to work with much smaller matrices can be computationally efficient with little impact on 

prediction accuracy 58. A 10-fold cross validation was employed to ensure generalizability of 

the estimates, where data were partitioned into training and testing sets across participants per 

fold (i.e., one out of the total ten subsamples was held for testing per fold).  One-sample t-tests 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435017doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435017
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

were used to examine which of the brain state measures had abnormality scores that on average 

were significantly different from zero, using the adjusted P-value (i.e., p<0.05/13=0.00385). 

Only the brain state measures for which the group mean abnormality was significantly different 

from zero were included in subsequent analyses, linking brain state abnormality to mental 

health.  

  

Linking brain state abnormality to mental health 

In order to examine whether inter-individual differences in the degree of abnormality in brain 

state measures can be attributed to overall mental health, we performed linear regression 

models. Abnormality scores were included as the independent variable and the overall mental 

health scores the dependent variable. We further considered age, sex, education and income 

levels, as well as head motion during resting-state imaging acquisition (i.e., the mean 

framewise displacement) as nuisance covariates and included those in the analyses that showed 

significant correlations with overall mental health scores. Multiple comparisons were 

accounted for the Beta values of abnormality scores (i.e., predictor) in each model using 

Bonferroni correction (i.e., adjusted p<0.05/7=0.007). To examine whether any abnormality 

scores of brain state measures exhibited unique association with mental health over and above 

each other, we further conducted a multiple regression model including all brain state 

abnormality scores that passed the one-sample t-test. 

 
Implementation of statistical analyses  

All statistical analyses were conducted using R version 3.6.1 (R Core Team, 2019). Imputation 

prior to PCA was conducted for missing values using the R function imputePCA from 

missMDA package 46, and function prcomp from basic stats pckage 59 was used for the PCA 

analyses. Local approximate GPR was performed using the laGP package 60.  
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Results  

General cognitive ability and mental health state 

To summarize general cognitive ability and overall mental health, we performed principal 

component analyses across a set of cognitive tests and mental health self-report questions. For 

cognitive tasks, the first principal component derived from all items explained 33.75% of 

variance, and the first principal component derived from mental health questionnaire items 

explained 24.08% of variance. Individual scores for these first components per participant were 

used to indicate general cognitive ability and overall mental health, respectively. This approach 

has been widely applied to approximate general intelligence (i.e., g-factor) and generalized 

dimensional symptom levels across psychiatric disorders (i.e., p-factor). The loadings (i.e., 

eigenvalues) of each individual item on the principal components for cognitive ability and 

mental health are shown in SFigure 1. 

 

 
Brain state measures 

Hidden Markov Modeling (HMM) was performed on individual timeseries data from 55 

components as defined with independent component analysis to estimate the interactive 

patterns of brain networks over time (i.e., brain states). Twelve brain states were inferred from 

the model, each of which is represented by a multivariate Gaussian distribution, as described 

by the mean and covariance. Different brain networks, including the default mode and 

sensorimotor networks were engaged in these inferred brain states (Figure 1; also see full brain 

activation maps in SFigure 2). Per participant, fractional occupancy (FO) of each inferred brain 

state that represents the state probability over time and the switching rate (SR) across these 

brain states that indicates state stability were quantified (Figure 2).  
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Figure 1. Dynamic Brain States Inferred from Hidden Markov Model. A number of brain states 
common to all participants were estimated with participant-specific time-courses per state that indicate 
when each brain state is active. These states are characterized by their mean activation and functional 
matrix. Here, mean activation maps of four example brain states are thresholded to illustrate the top 10% 
voxels engaged in each brain state, along with their functional connectivity matrices (i.e., lower 
triangular portion). Unthreholded mean activation maps for all 12 brain states can be found in 
Supplemental Material. 
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Figure 2. HMM derived brain state measures. Fractional occupancy (FO) per inferred brain state 
(i.e., indicated by numbers after FO as in FO1) and switching rate (SR) across all brain states were 
derived for each individual participant to indicate their brain network interactions over time. Data from 
six randomly selected individual participants were overlaid on the sample mean to illustrate individual 
variation in these measures.  
 

Normative range of and abnormality in brain states  

Normative modeling with Gaussian process regression was performed to predict each of 

thirteen brain state measures separately (i.e., FO for each of the 12 brain states and SR across 

all brain states) from general cognitive ability scores. This approach enabled quantification of 

individual-specific abnormality scores per brain state measure (i.e., deviations from the 

estimated normative range). Tests on the group mean of such abnormality scores revealed that 

the average level of abnormality in FO for seven brain states was significantly different from 

zero (all p’s<0.0006). Importantly, large individual variation was observed in these 

abnormality scores (e.g., some participants deviated much more than the others or in different 

directions), demonstrating unique individual patterns that were not represented by the group 

mean (Figure 3).   
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Figure 3. Abnormality in brain states. As shown in the boxplot, averaged deviations (i.e., red dots) 
in fractional occupancy (FO) for seven brain states were significantly different from zero at the group 
level with substantial individual variation in both magnitude and direction. Boxes here indicate the 
inter-quantile range (i.e., middle 50% of the data) and black horizontal lines inside each box represent 
the median values. Outliers for each FO measure are shown as gray dots beyond the either end of the 
boxes.  
 

 

Individual abnormality in brain states and mental health 

To capture the individual level relationship between the cognition-derived brain state measures 

and mental health, we linked the abnormality scores of each of the seven FOs that were 

significantly different from zero to the overall mental health scores. Four of these FO 

abnormality scores showed significant associations with overall mental health after Bonferroni 

correction for multiple comparisons (tFO1=-5.66; tFO4=-3.26; tFO11=-3.63; tFO12=2.93; all 

p’s<0.0035; Figure 4). We further included all four FO abnormality scores in one regression 

model and the results indicated unique predictive effects of three FO abnormality scores on 

overall mental health (tFO1=-5.01; tFO4=-4.31; tFO11=-2.02; all p’s<0.009).  
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Figure 4. Overall mental health and abnormality in brain states. Individual deviations from the 
normative range (i.e., abnormality) of fractional occupancy for brain state 1 (FO1), 4 (FO4) 11 (FO11) 
and 12 (FO12) were significantly associated with individual’s overall mental health. Brain images are 
mean activation maps of each brain state, thresholded to illustrate the top 10% voxels. 
 

 

As a comparison, we also conducted a more traditional moderator effect analysis to 

assess whether mental health moderates the relationship between cognitive ability and HMM-

derived brain state measures. Importantly, these tests focused on the commonalities across all 

participants, assuming that interactions between mental health and cognitive ability will impact 

brain states in the same way for each individual. However, no significant moderator effects 

were observed (all p’s>0.15). 
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Discussion  

In this study, we adopted a personalized approach to quantify individual brain state measures 

that indicate brain network interactions over time, as a function of cognitive ability.  Our aim 

was to test whether individual’s deviation in brain states from the normative range can be 

explained by their mental health. Applying normative modeling to a population cohort, we 

identified several brain states with significant deviations across all participants from the 

normative range. More importantly, we demonstrated that the degree of abnormality in the 

fractional occupancy of four brain states could be attributed to the inter-individual difference 

in overall mental health. 

While abnormality in cognitive functions and alterations in the relevant neural correlates 

have been implicated in a variety of neuropsychiatric conditions, the vast majority of 

investigations so far has predominantly adopted a case-control approach or divided samples 

into phenotypical subgroups (e.g., based on symptom scores), which essentially overlooks 

unique individual characteristics. In the current study, our approach revealed associations 

between mental health and brain network interaction patterns that were specific to each 

individual participant’s cognitive ability, whereas more traditional moderator effect tests that 

focus on commonalities across participants failed to capture such relationships. These findings 

echo the goal to adopt more personalized approaches in precision psychiatry 24 and are well in 

line with the National Institute of Mental Health’s Research Domain Criteria initiative (RDoC) 

to take into account individual’s variability rather than diagnostic groups 25.  

In our findings, significant deviations across all participants were observed in several brain 

states that involve the default mode and sensorimotor networks (SFigure 1). Interestingly, 

whereas the DMN has been consistently associated to various cognitive processes 26–28 and 

altered connectivity of this network has also been suggested to underly multiple mental illness 

conditions with substantial cognitive deficits 29, sensorimotor networks are predominantly 

involved in motor related processes. However, increasing evidence shows that sensorimotor 

networks can also contribute to disorder symptoms related to cognitive functions via its 

connections with other large-scale brain networks such as the DMN 30–32.  

Our findings further revealed associations between the degree of subject-level abnormality 

in brain state measures (i.e., FO of several brain states) and inter-individual differences in 

overall mental health. Interestingly, these associations were mostly negative. Since the overall 

mental health score was derived from the first principal component over mental health 

questions and it loaded negatively on most of those questions (SFigure 1B), the observed 

negative associations between abnormality in FOs and overall mental health imply that the 
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further away individual’s FO deviate from the population norm, the higher the mental health 

scores they have in general (i.e., more symptoms). These results imply that one’s mental health 

may impact brain network interactions over time that provide support to cognitive functions 

and thus point to potential brain mechanisms likely underlying cognitive deficits across a 

spectrum of major neuropsychiatric disorders. As mental health questions included in UKB 

dataset primarily assess mood disorders and neuroticism 33, our findings here can be 

particularly relevant for understanding the neural mechanisms for these disorders.  

Whereas recent neuroimaging studies have mainly applied normative modeling to clinical 

cohorts and studied extreme deviations in estimated brain traits in relation to symptom levels 
20,34,35, our study extended the application of normative modeling to a large population cohort 

and demonstrated a continuum in the relationship between individual abnormality in brain traits 

and their overall mental health state. Our findings align well with prior evidence that cognition 

can be compromised as a function of mental health and highlights potential mechanisms in the 

brain.  

Our findings should be interpreted in light of several limitations. First, the sample of the 

current study has a specific lifespan (i.e., between 45-81) and is heavily biased towards a 

specific ethnicity (i.e., White), which may limit the generalization of our results to other 

populations with different characteristics. Nevertheless, with careful controls for the potential 

confounding factors including age, sex, education and income levels, as well as head motion 

during the fMRI data acquisition, our results provide evidence that dynamic interplays of large-

scale brain networks may contribute to cognitive deficits due to mental health. Second, HMM 

was utilized in the current study to infer dynamic brain states that reoccur over time. It is 

important to note that HMM-derived measures appear to contain information of both time 

varying and static functional connectivity, and that our implementation of HMM (i.e., model 

estimation based on the mean and covariance) may capture additional network characteristics 

(i.e., node amplitude) 11. Although it is beyond the scope of the current study to tease apart the 

unique contributions of these network properties, previous studies did suggest that temporal 

dynamics of large brain networks are potentially more sensitive to explain inter-individual 

differences in cognitive traits 9–11. Lastly, in our study head motion showed correlations with 

almost all observed abnormalities in brain state measures, as well as with overall mental health. 

This may appear concerning as head motion is typically considered and modeled as artefacts 

particularly in the resting-state fMRI studies. However, increasing studies have observed its 

association with typical functional connectivity networks in the brain 36,37, demonstrated 

different patterns of head motion for patients versus healthy control groups or in different age 
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groups 38–40 and suggested that head motion might have genetic roots 41,42. These findings imply 

that head motion may contain extra information beyond mere noise that is relevant for our 

interpretations of imaging studies and that estimating the tendency of head motion in relation 

to the variables of interest may offer more insight into individual level brain signatures. 

Nevertheless, the reported findings here are carefully controlled for head motion effects in two-

folds: ICA-FIX was performed at the individual subject level during preprocessing, and the 

averaged framewise displacement was further modeled as a between-subject covariate in all 

statistical analyses. Furthermore, we assessed the robustness of the reported associations 

between abnormality in brain state measures and individual’s overall mental health by 

estimating the potential impact of multicollinearity among predictors (i.e., mental health and 

motion). Our results indicate very little influence of head motion (see Supplemental Results). 

Hence, the relationship between brain state abnormality and overall mental health was 

significant while accounting for head motion effects.  

In conclusion, we show in the current study that individualized brain state measures for 

cognitive ability can be quantified and that the degree of abnormality in such brain states can 

be attributed to individual differences in overall mental health. These results shed light on the 

potential brain mechanisms underlying cognitive deficits in mental illness conditions, which 

may be investigated in patient cohorts in the future. 
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