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Abstract: The ability to recognize familiar visual objects is critical to survival. A central 
assumption of neuroscience is that long-term memories are represented by the same 
brain areas that encode sensory stimuli (1). Neurons in inferotemporal (IT) cortex 
represent the sensory percept of visual objects using a distributed axis code (2-4). 
Whether and how the same IT neural population represents the long-term memory of 
visual objects remains unclear. Here, we examined how familiar faces are encoded in 
face patch AM and perirhinal cortex. We found that familiar faces were represented in a 
distinct subspace from unfamiliar faces. The familiar face subspace was shifted relative 
to the unfamiliar face subspace at short latency and then distorted to increase neural 
distances between familiar faces at long latency. This distortion enabled markedly 
improved discrimination of familiar faces in both AM and PR. Inactivation of PR did not 
affect these memory traces in AM, suggesting that the memory traces arise from intrinsic 
recurrent processes within IT cortex or interactions with downstream regions outside the 
medial temporal lobe (5, 6).  Overall, our results reveal that memories of familiar faces 
are represented in IT and perirhinal cortex by a distinct long-latency code that is optimized 
to distinguish familiar identities. 
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Our experience of the world is profoundly shaped by memory. Whether we are shopping 
for a list of items at the grocery store or talking to friends at a social gathering, our actions 
depend critically on remembering a large number of visual objects. Multiple studies have 
explored the molecular (7, 8) and cellular (9, 10) basis for memory, but the network-level 
code remains elusive. How is a familiar song, place, or face encoded by the activity of 
neurons? 
 
Recent work on the sensory code for visual object identity in IT suggests that objects are 
encoded as points in a continuous low-dimensional object space, with single IT neurons 
linearly projecting objects onto specific preferred axes (2-4) (Fig. 1A, left). These axes 
are defined by weightings of a small set of independent parameters spanning the object 
space. This coding scheme (also referred to as linear mixed selectivity (11, 12), and 
related to disentangled representations in machine learning (13)) is efficient, allowing 
infinitely many different objects to be represented by a small number of neurons. Indeed, 
the axis code carried by macaque face patches allows detailed reconstruction of random 
realistic faces using activity from only a few hundred neurons (3).  
 
Here, we set out to leverage recent insight into the detailed sensory code for facial identity 
in IT cortex (3) in order to explore the population code for face memories. A longstanding 
assumption of neuroscience is that long-term memories are stored by the same cortical 
populations that encode sensory stimuli (1). This suggests that the same neurons that 
carry a continuous axis-based object coding scheme should also support tagging of a 
discrete set of remembered objects as familiar. However, schemes for representing 
discrete familiar items often invoke attractors (14) that would lead to breakdowns in 
continuous representation (Fig. 1A, right). This raises a key question: does familiarity 
alter the IT axis code for facial identity? We surmised that discovering the answer might 
reveal the neural code for face memory.  
 
Previous studies have generally found decreased and sparsened responses to familiar 
stimuli in IT and perirhinal cortex (15-20). The simple view of a generalized decrease in 
response is at odds with the observed increase in the discriminability of familiar stimuli 
(21). A possible reason for this discrepancy is that previous recordings exploring neural 
correlates of visual familiarity were not targeted to specific subregions of IT cortex known 
to play a causal role in discrimination of the visual object class being studied (22). 
 
We targeted two regions: face patch AM, the most anterior face patch in IT cortex (23), 
and face patch PR, a recently reported face patch in perirhinal cortex (24). These two 
regions lie at the apex of the macaque face patch system, an anatomically connected 
network of regions in the temporal lobe dedicated to face processing (23, 25-29). AM 
harbors a strong signal for invariant facial identity (3, 23), while perirhinal cortex plays a 
critical role in visual memory (30-33). We thus hypothesized that a representation of face 
memory should occur in the circuit linking AM to PR.  
 
Our recordings revealed that familiar stimuli are encoded by a unique geometry at long 
latency. This geometry leads to increased distances between and discriminability of 
familiar faces, in agreement with human psychophysics (21). The finding that a major 
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piece of the network code for visual memory is dynamic and only activated at long latency 
sheds light on how we can both veridically perceive visual stimuli and recall past 
experiences from them. 
 
Results 
AM and PR are strongly modulated by familiarity 
We identified face patches AM and PR in five animals using fMRI (25). To characterize 
the role of familiarity in modulating responses of cells in AM and PR, we targeted 
electrodes to these two patches (Fig. S1) and recorded responses to a set of screening 
stimuli consisting of human faces, monkey faces, and objects. The stimuli were personally 
familiar or unfamiliar (Fig. S2A), with 8-9 images/category. Personally familiar images 
depicted people, monkeys, and objects that the animals interacted with on a daily basis; 
a new set of unfamiliar images was presented per cell. Animals showed highly significant 
preferential looking toward the unfamiliar face stimuli and away from familiar face stimuli 
(Fig. 1B), confirming behaviorally that these stimuli were indeed familiar to the monkey 
(34).  
 
Across the population, 93% of cells in AM and 74% of cells in PR were face selective 
(Fig. S3A). Below, we group data from two monkeys for PR and three monkeys for AM, as 
we did not find any marked differences between individuals (Fig. S4 shows the main 
results separately for each animal). Both AM and PR exhibited a significantly stronger 
response across the population to unfamiliar compared to personally familiar stimuli in 
this experiment (Fig. 1C1; full response distributions are shown in Fig. S3B). This is 
consistent with a large number of previous studies reporting suppression of responses to 
familiar stimuli in IT and perirhinal cortex (15-20) (though it is discrepant with a recent 
monkey fMRI study reporting a stronger response to familiar compared to unfamiliar faces 
in all temporal lobe face patches (24)). Individual cells showed a diversity of selectivity 
profiles for face species and familiarity type (Fig. S5A, B). The local field potential in both 
areas was also face-selective and significantly stronger to unfamiliar compared to 
personally familiar faces (Fig. S5C). Representation similarity matrices revealed distinct 
population representations of the six stimulus classes in both AM and PR (Fig. 1D1); this 
was confirmed by multidimensional scaling analysis (Fig. S6).  
 
Mean responses to familiar versus unfamiliar faces diverged over time, with the difference 
becoming significant at 125 ms in AM and 175 ms in PR; the mean visual response to 
faces themselves significantly exceeded baseline earlier, at 85 ms in AM and 100 ms in 
PR (Fig. 1E, S7). The delay in suppression to familiar faces is consistent with previous 
reports of delayed suppression to familiar stimuli in IT (15, 17-19). Interestingly, PR (and 
to a lesser extent, AM) responses were suppressed not only by familiar faces but also 
familiar objects, suggesting a role for these areas in non-face coding, possibly through 
associative memory mechanisms (30). Single-cell response profiles and representation 
similarity matrices computed using a short time window (50 - 125 ms after stimulus onset 
for AM and 50 - 175 ms for PR) showed less distinct responses to familiar versus 
unfamiliar stimuli (Fig. 1C2, D2, S6). Overall, the results so far show that both AM and 
PR exhibit long latency suppression to familiar faces. 
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AM and PR use an axis code to represent unfamiliar facial identity 
Responses of AM and PR cells to familiar stimuli, while lower on average at long 
latencies, remained highly heterogeneous across faces (Fig. 1C1, S5A, B), indicating 
that they were driven by both familiarity and identity. We next asked how familiarity 
interacts with the recently discovered axis code for facial identity.  
 
According to the axis code, face cells in IT compute a linear projection of incoming faces 
formatted in shape and appearance coordinates onto specific preferred axes (3) (Fig. 
S8A); for each cell, the preferred axis is given by the coefficients ܿ⃗ in the equation 𝑟 = ܿ⃗ ∙ 𝑓 + ܿ0, where  𝑟 is the response of the cell, 𝑓 is a vector of shape and appearance 
features, and ܿ0 is a constant offset (see Methods). Together, a population of face cells 
with different preferred axes encodes a face space that is embedded as a linear subspace 
of the neural state space (Fig. S8A). The axis code has so far been examined only for 
unfamiliar faces. By studying whether and how this code is modified by familiarity, we 
reasoned that we could potentially understand the code for face memory.  
 
We first asked whether face cells encode familiar and unfamiliar faces using the same 
axis. To address this, we examined tuning to unfamiliar faces (described in this section) 
and then compared to tuning to familiar faces (described in the next section). We began 
by mapping preferred axes of AM and PR cells using a set of 1000 unfamiliar monkey 
faces (Fig. S2B). We used monkey faces because responses to the screening stimuli 
were stronger to monkey than human faces on average in AM/PR (Fig. 1C1, p < 0.002, 
T-test, N = 323 cells pooled across AM and PR). The 1000 monkey faces were randomly 
drawn from a monkey face space defined by 120 parameters (see Methods), and 
encompassed a large variety of identities, allowing a subset to be chosen that were 
matched in feature distributions to familiar faces (see Fig. S14 below).  
 
As expected, cells in AM showed ramp-shaped tuning along their preferred axes and flat 
tuning along orthogonal axes (Fig. 2A1, S9A, G; additional example cells are shown in 
Fig. S10A; a control experiment with slower timing and dense sampling across two 
dimensions confirmed ramp-shaped tuning, Fig. S11 and Supplementary Text). 
Interestingly, a large proportion of cells in PR also showed ramp-shaped tuning along 
their preferred axes and flat tuning along orthogonal axes (Fig. 2A2-A4, S9A, G; 
additional examples are shown in Fig. S10B). To our knowledge, this is the first time axis 
coding of visual features has been reported for perirhinal cortex. In both AM and PR, 
preferred axes computed using split halves of the data were highly consistent (Fig. S9B). 
Face identification based on feature reconstruction using linear regression revealed high 
performance in PR, similar to that in AM (Fig. S9H). These results suggest that AM and 
PR share a common axis code for representing unfamiliar faces. 
 
In addition to cells with axis tuning, we found a small population of cells that responded 
extremely sparsely to just a few of the stimuli (Fig. S12, Supplementary Text). These cells 
constituted a very small proportion of cells in both AM (5/187) and PR (11/137). In 
contrast, a large proportion of cells in both areas showed significant axis tuning (108/134 
cells in AM and 62/72 cells in PR, see Methods).  
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Familiarity causes AM and PR responses to go off axis 
We next examined how familiarity modulates the axis code. We projected the features of 
personally familiar and a random subset of unfamiliar faces onto the preferred axis of 
each AM/PR cell and plotted responses. Strikingly, responses to unfamiliar faces followed 
the axis (Fig. 2A, S10, green dots), whereas responses to familiar faces departed from 
the axis (Fig. 2A, S10, yellow dots).  
 
This departure was not a simple gain change: the strongest responses to familiar faces 
were often to faces projecting somewhere in the middle of the ramp rather than on the 
end (Fig. 2A). Thus this departure cannot be explained by an attentional increase or 
decrease to familiar faces, which would elicit a gain change (35). Indeed, the effect cannot 
be explained by any monotonic transform in response, such as repetition suppression or 
sparsening (18, 20), as any such transform should preserve the rank ordering of preferred 
stimuli (Fig. S8B). 
 
The surprising finding of off-axis responses to familiar faces was prevalent across the AM 
and PR populations. To quantify this phenomenon at the population level, we first created 
a larger set of familiar faces. To this end, animals were shown face images and movies 
daily for at least one month, resulting in a total of 36 familiar monkey faces, augmenting 
the 9 personally familiar monkey faces in our initial screening set (Fig. S2C; see 
Methods). Preferential looking tests confirmed that the pictorially and cinematically 
familiar faces were treated similarly to the personally familiar faces (Fig. S13). These 36 
familiar faces were presented randomly interleaved with the 1000 unfamiliar monkey 
faces while we recorded from AM and PR. 
 
We computed preferred axes for cells using responses to the 36 familiar faces. We found 
that these familiar axes significantly explained responses to familiar faces for a subset of 
cells (Fig. S9C, D). Because we only had 36 familiar faces, the statistical power for 
computing the preferred axis was much less than we had with 1000 unfamiliar faces, 
leaving open the possibility that a significant part of the familiar response may be driven 
by nonlinear interactions between features rather than linear axis tuning. Nevertheless, 
when familiar and unfamiliar face numbers were matched, familiar axes did as well as 
unfamiliar axes in explaining responses to faces (Fig. S9C). The comparable strength of 
axis tuning for familiar and unfamiliar faces naturally raised the question: are familiar and 
unfamiliar axes the same?  
 
To compare familiar and unfamiliar axes, for each cell, we first computed the preferred 
axis using responses to the large set of unfamiliar parameterized faces (1000-36 faces). 
We then correlated this to a preferred axis computed using responses to (i) the set of 36 
familiar faces (‘unfamiliar-familiar’ condition) or (ii) the left out set of 36 unfamiliar faces 
(‘unfamiliar-unfamiliar’ condition). The distribution of correlation coefficients revealed 
significantly higher similarities for the unfamiliar-unfamiliar compared to the unfamiliar-
familiar condition (Fig. 2B).  
 
As a control, we presented a set of low-contrast faces expected to elicit a simple decrease 
in response gain while preserving rank ordering of preferred stimuli. Confirming 
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expectation, axis similarities computed using these contrast-varied faces were not 
significantly different for high-high versus high-low contrast faces (Fig. 2C). As a second 
control, to ensure that the effects were not due to differences in the feature content of 
familiar versus unfamiliar faces, we identified 30 familiar and 30 unfamiliar faces that were 
precisely feature-matched (see Methods and Fig. S14). We recomputed unfamiliar-
familiar and unfamiliar-unfamiliar correlations and continued to find that familiar faces 
were encoded by a different axis than unfamiliar faces (Fig. S15A).  
 
Earlier, we had observed that the decrease in firing rate for familiar faces occurred at long 
latency (Fig. 1E). We next investigated the time course of the deviation in preferred axis. 
We performed a time-resolved version of the analysis in Fig. 2B, comparing the preferred 
axis computed from 36 unfamiliar or 36 familiar faces with that computed from 1000-36 
unfamiliar faces over a rolling time window (Fig. 2D). Initially, axes for familiar and 
unfamiliar faces were similar. But at longer latency (t > 105 ms in AM, t > 155 ms in PR), 
the preferred axis for familiar faces diverged from that for unfamiliar faces.  
 
The divergence in preferred axis over time for familiar versus unfamiliar faces suggests 
that the brain would need to use a different decoder for familiar versus unfamiliar faces 
at long latencies. Supporting this, in both AM and PR, at short latencies, feature values 
for familiar faces obtained using a decoder trained on unfamiliar faces matched actual 
feature values, and reconstructions were good (Fig. 2E). In contrast, a decoder trained 
on unfamiliar faces at long latency performed poorly on recovering feature values of 
familiar faces (Fig. 2E; note, however, training a decoder using both familiar and 
unfamiliar faces at long latency yielded above-chance feature decoding accuracy for both, 
indicating that preferred axes for familiar and unfamiliar faces were not completely 
orthogonal in all cells at long latency, Fig. S16A).  
 
Axis change increases the neural distance between familiar faces 
What computational purpose could the deviation in preferred axis for familiar versus 
unfamiliar faces serve? We hypothesized that this might allow familiar faces to be better 
distinguished from each other by increasing the distance between them in the neural state 
space. In an extreme case, imagine a pair of twins differing in only a single face feature: 
If preferred axes of cells weighed each feature equally, response vectors to the two faces 
would be almost identical, while aligning cells’ preferred axes to the distinguishing feature 
axis would increase the distance.  
 
Supporting the hypothesis that axis change serves to increase discriminability of familiar 
faces, mean pairwise distances between neural responses to faces were indeed higher 
for familiar compared to unfamiliar face pairs, and the difference was greater at long 
latency (Fig. 2F). Consistent with this, identity decoding for familiar faces using a multi-
class SVM was significantly better than that for unfamiliar faces (Fig. 2G). A linear axis 
model accounting for axis direction and gain changes could explain most of this increase 
in neural distance for familiar faces (Fig. 2H1, Fig. S17) (note, however, nonlinear 
components could still contribute to differences between familiar and unfamiliar 
responses, since such differences might be averaged out when computing mean pairwise 
distance).  
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Is it essential to account for axis change (Fig. 2B, D) in order to explain the increase in 
neural distance between familiar faces (Fig. 2F)? To address this, for each pair of familiar 
faces, we predicted the pairwise distance using (i) the familiar axis, or (ii) the unfamiliar 
axis of each cell, computed using the long-latency response (150-300 ms). Predicted 
pairwise distances were significantly greater for (i) compared to (ii) (Fig. 2H2); if cells 
showed no axis change, then pairwise distances for (i) and (ii) should be the same. This 
confirms that the preferred axes of cells are different for familiar versus unfamiliar faces, 
and accounting for this difference is essential to explain the increase in neural distance 
between familiar faces.  
 
An early shift in coding subspace for familiar versus unfamiliar faces 
So far, we have uncovered a new geometric mechanism to improve discrimination 
between familiar faces. But how is familiarity itself encoded in AM and PR? Previous 
studies suggest that familiarity is encoded by response suppression across cells (15-20). 
Supporting this, our first experiment revealed a decreased average response to familiar 
compared to unfamiliar faces (Fig. 1). However, to our great surprise, data from our 
second experiment (Fig. 2) showed a stronger mean response to familiar compared to 
unfamiliar stimuli (Fig. 3A, B). This was true even when we compared responses to the 
exact same subset of images (Fig. S18A). What could explain this reversal? The two 
experiments had one major difference: in the first experiment, the ratio of familiar to 
unfamiliar faces was 34/16, while in the second experiment the ratio was 36/1000 (in both 
experiments, stimuli were randomly interleaved and presentation times were identical). 
This suggests that mean response magnitude is not a robust indicator of familiarity, as it 
depends on temporal context. Even more challenging to the repetition suppression model 
of familiarity coding, the accuracy for decoding familiarity rose above chance extremely 
early, starting at 95 ms in AM and 105 ms in PR (Fig. 3C), before any significant difference 
in mean firing rates between familiar and unfamiliar faces had even emerged in either AM 
or PR (compare black arrow in Fig. 3C with green arrow in Fig. 3B).  
 
What signal could support this ultra-fast decoding of familiarity, if not mean firing rate 
difference? Recall earlier, we had found that at short latency, familiar faces were encoded 
using the same axes as unfamiliar faces (Fig. 2D), and familiar face features could be 
readily decoded using a decoder trained on unfamiliar faces (Fig. 2E). This means that 
familiar and unfamiliar faces are represented in either identical or parallel manifolds at 
short latency. This suggested to us that their representations might be shifted relative to 
each other, and this shift is what permits early familiarity decoding. A plot of the neural 
distance between familiar and unfamiliar response centroids over time supported this 
hypothesis (Fig. 3D): the familiar-unfamiliar centroid distance increased extremely rapidly 
compared to the unfamiliar-unfamiliar one, and the ݀′ along the unfamiliar-familiar 
centroid axis became significantly higher than a shuffle control at 95 ms in AM and 115 
ms in PR, comparable to the time when familiarity could be decoded significantly above 
chance. Direct inspection of shifts between responses to familiar versus unfamiliar faces 
across cells revealed a distribution of positive and negative values which could be 
exploited by a decoder for familiarity (Fig. 3E).  
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Further supporting the shift hypothesis, we found that the familiarity decoding axis was 
orthogonal to the face feature space at both short and long latency. We computed the 
cosine similarity in the neural state space between the familiarity decoding axis and face 
feature decoding axes, both familiar and unfamiliar, for 20 features capturing the most 
variance. The resulting values were tightly distributed around 0 at both short (50-150 ms) 
and long (150-300 ms) latency, indicating that the shift vector was orthogonal to the 
feature coding subspace at both latencies (Fig. 3F). The orthogonality between the 
familiarity decoding axis and the face feature space argues against familiarity being 
analogous to a contrast/repetition suppression signal that simply changes the gain of 
responses (20), since such a signal would lie within the feature space (note, however, a 
gain change that changes both the gain and offset of responses is compatible with 
familiarity-gated feature space shift). Overall, these results suggest a geometric picture 
in which familiar and unfamiliar stimuli are represented in distinct subspaces, with the 
familiar face subspace shifted relative to the unfamiliar face subspace at short latencies 
and then further distorted at long latencies to increase the distance between distinct 
familiar faces (Fig. 3G).  
 
Localizing the site of face memory within the face patch network 
Is the distinct representation of familiar faces at long latency in AM due to feedback from 
PR? To address this, we silenced PR while recording responses to familiar and unfamiliar 
faces in AM (Fig. 4A). IT cortex is known to receive strong feedback from perirhinal cortex 
(36), and this is true in particular for face patch AM (29). Consistent with this, inactivation 
of PR produced strong changes in AM responses, with some cells showing an increase 
in response and others showing a decrease (Fig. 4B, C, S19A).  
 
We next asked whether feedback modulation from PR specifically affects responses to 
familiar faces, as one might expect if PR were the source of AM memory signals. We 
found, to the contrary, that responses to familiar and unfamiliar faces were similarly 
modulated by PR inactivation across the population (Fig. 4D1). The effect of PR 
inactivation was well modeled by gain change (Fig. 4D2-D4). Preferred axes computed 
using responses to 1036 monkey faces were highly similar before and after PR 
inactivation, for both unfamiliar and familiar faces (Fig. 4E1). The time course for axis 
divergence for familiar versus unfamiliar faces was also highly similar before and after PR 
inactivation (Fig. 4E2). Finally, decoding of both face familiarity and face features from 
AM activity was unaffected by PR inactivation (Fig. 4E3, E4). Overall, these results show 
that inactivation of PR has a strong effect on the gain of AM responses, but no apparent 
effect on face coding (see Supplementary Text and Fig. S19B-D for an interpretation of 
the gain changes within a hierarchical generative inference framework). In particular, the 
signatures of face memory we identified, namely, centroid shift and axis change, do not 
appear to depend on feedback from perirhinal cortex. They must thus either be intrinsic 
to IT cortex or arise from interactions with downstream regions outside the medial 
temporal lobe. 
 
Do these signatures of familiarity exist even earlier in the face patch pathway? We 
mapped responses to familiar and unfamiliar faces in face patch ML, a hierarchically 
earlier patch in the macaque face processing pathway that provides direct input to AM 
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(23, 29). Responses to the screening stimuli in ML exhibited a similar pattern as in AM, 
showing suppression to personally familiar faces at long latency (Fig. S20A, C). However, 
population representation similarity matrices did not show distinct population responses 
to familiar versus unfamiliar faces (Fig. S20B). Furthermore, the population average firing 
rate showed a sustained divergence much later than in AM (160 ms compared to 140 ms 
in AM, Fig. S20C), suggesting ML may receive a familiarity-specific feedback signal from 
AM. Overall, representations of familiar versus unfamiliar faces were much more similar 
in ML compared to AM (Fig. S20D-K). These results suggest ML plays a smaller role than 
AM and PR in storing memories of faces. 
 
Discussion 
In this paper, we investigated the neural code for face memory in face patch AM of IT 
cortex and face patch PR of perirhinal cortex. PR, like AM, contained a high concentration 
of face-selective cells. In both regions, the vast majority of cells showed axis tuning to 
unfamiliar faces. At short latency, responses to familiar faces were well predicted by axes 
computed using unfamiliar faces, modulo a shift in the overall response subspace (Fig. 
2E); this subspace shift enabled early detection of familiarity (Fig. 3C-E). We observed a 
striking change in the preferred axis of cells at long latency for familiar versus unfamiliar 
faces (Fig. 2B, D). The axes of individual cells changed to produce a large increase in 
neural population distance between distinct familiar faces (Fig. 2F-H). Inactivation of PR 
did not affect these memory-related dynamics in AM (Fig. 4). A simple computational 
model could recapitulate all of our main findings (Fig. S21, Supplementary Text).  
 
These results provide the first detailed geometric picture of how visual memories are 
encoded. They supply a neurophysiological correlate for the behavioral finding that 
familiar faces can be identified much more readily than unfamiliar ones (21), namely, 
increase in neural distance between familiar faces.  
 
Our results challenge two previous models for encoding of visual familiarity. First, contrary 
to the repetition suppression model for familiarity encoding (15-20), we found that mean 
response amplitude was not a robust indicator of familiarity in either patch, as it was highly 
sensitive to temporal context (compare Fig. 1C1 vs. Fig. 3A, Fig. 1E vs. Fig. 3B), and 
emerged only after familiarity could already be decoded (Fig. 3C). We also note that the 
repetition suppression model only addresses encoding of familiarity (one bit of 
information) and does not address encoding of features of familiar objects, a central focus 
of the present study. Second, our findings challenge the sparsification model for encoding 
of familiar objects at long latency, which posits that neurons encode only a small number 
of maximally effective familiar stimuli compared to unfamiliar stimuli (18). We found that 
familiar faces triggered axis change, a fundamentally different transformation from 
sparsification that scrambles the rank ordering of preferred stimuli compared to that 
predicted by the unfamiliar axis. Overall, we believe we have identified a fundamentally 
new mechanism for encoding visual memory. While so far we have only characterized 
this mechanism within face patches, the similarity of functional organization and coding 
principles between face patches and other parts of IT (4, 37) suggests the mechanism is 
likely to generalize. 
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Face patch AM lies at the apex of the ventral form representation pathway (23), while 
perirhinal cortex, in which face patch PR is embedded, contributes to both perceptual and 
mnemonic functions, with a special role in visual associative memory (30-33, 38). 
Functional differences between AM and PR observed in the present study were 
surprisingly modest. In both patches, we found a large population of axis-tuned cells; the 
prominence of axis tuning in PR suggests that visual representation in perirhinal cortex is 
still partially feature-based rather than semantic. Furthermore, familiarity produced the 
same pattern of activity changes in both patches. Finally, in both patches we found a 
small population of super-sparse cells that responded most strongly to particular familiar 
individuals (Fig. S12, Supplementary Text), reminiscent of concept cells in the human 
medial temporal lobe (39). How can we reconcile these similarities with the differences 
that have been observed in previous studies (33, 38, 40)? Our experiments specifically 
probed visual familiarity and suggest that both (i) the tagging of stimuli as familiar, and (ii) 
the optimal separation of familiar identities, may largely be accomplished by IT cortex. 
However, it is likely that experiments probing visual association memory (including 
representation of degraded stimuli that require top-down feedback to complete) may 
reveal more prominent differences between AM and PR (24, 30-33, 38).  
 
At present, due to the small number of faces we tested, we do not know if the distorted 
representations of familiar faces lie in an approximately linear subspace, in which case 
this distortion may be merely an affine transformation, or is situated on a more non-linear 
manifold, potentially consisting of distinct attractors for distinct familiar faces. Future 
experiments with a larger number of familiar faces will be needed to disambiguate these 
two scenarios.  
 
Many brain areas across sensory, motor, and association cortex carry a representation 
of behaviorally relevant cognitive and sensory variables that is extremely low-dimensional 
compared to the number of neurons in the area (3, 41, 42). Such findings raise the 
question of why the brain is so large. The present study suggests that one possible reason 
may be to store memories of objects. By lifting representations of face memories into a 
separate subspace from that used to represent unfamiliar faces (Fig. 3G), attractor-like 
dynamics may be built around these memories to allow reconstruction of familiar face 
features from noisy cues (43) without interfering with veridical representation of sensory 
inputs. It is possible that different contexts invoke different memory subspaces (Fig. S22). 
To date, many studies of IT have emphasized the stability of response tuning over months 
(44, 45). Our results suggest such stability for representing unfamiliar stimuli co-exists 
with a precisely-orchestrated plasticity for representing familiar stimuli, through the 
mechanism of familiarity-gated change in axis. 
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Methods 
 
Five male rhesus macaques (Macaca mulatta) of 5-13 years old were used in this study. 
All procedures conformed to local and US National Institutes of Health guidelines, 
including the US National Institutes of Health Guide for Care and Use of Laboratory 
Animals. All experiments were performed with the approval of the Caltech Institutional 
Animal Care and Use Committee. 
 
Visual stimuli 
Face patch localizer. The fMRI localizer stimuli contained 5 types of blocks, consisting of 
images of faces, hands, technological objects, vegetables/fruits, and bodies. Face blocks 
were presented in alternation with non-face blocks. Each block lasted 24 s blocks (each 
image lasted 500 ms). In each run, the face block was repeated four times and each of 
the non-face blocks was shown once. A block of grid-scrambled noise patterns was 
presented between each stimulus block and at the beginning and end of each run. Each 
scan lasted 408 seconds. Additional details can be found in (46). 
 
Monkey face model. To generate a large number of monkey faces, we built an active 
appearance model for monkey faces (47), similar to the method used for human faces in 
(48). Images of frontal views of 165 monkey faces were obtained from the following 
sources: a private database kindly provided by Dr. Katalin Gothard (101 images), the 
PrimFace database (visiome.neuroinf.jp/primface) (22 images), YouTube videos of 
macaques (19 images), and face images of macaques from our lab (23 images). The 
“shape” parameters were obtained by manually labelling 59 landmarks on each of the 
frontal face images (Fig. S23A). A 2D triangulated mesh was defined on these landmarks 
(Fig. S23B). The coordinates of the landmarks of each image were normalized by 
subtracting the mean and scaling to the same width, and a landmark template was 
obtained by averaging corresponding landmarks across faces. The “appearance” 
parameters were obtained by warping each face to the landmark template through affine 
transform of the mesh. To reduce the dimensionality of the model, principal component 
analysis was performed on both the coordinates of the landmarks (shape) and pixels of 
the warped images (appearance) independently. The first 20 PCs of shape and first 100 
PCs of appearance were kept for the final model, capturing 96.1% variance in the shape 
distribution and 98.4% variance in the appearance distribution. We used this model not 
only to generate unfamiliar monkey faces, but also to compute shape-appearance 
features of familiar monkey faces (note: these faces were included in the 165-face 
database). For the latter, we projected the 59 landmarks and projected these onto the 
shape PCs; we then morphed the landmarks to the standard landmark template and 
projected the resulting pixels of the warped images onto the 100 appearance PCs. 
 
Human face model. We built a human face model following the same procedure as for 
the monkey face model. Images of frontal views of 1200 human faces were obtained from 
different databases including: FERET (49, 50), CVL (51) , MR2 (52) , Chicago (53), and 
CelebA (54). Shape parameters used 92 landmarks (Fig. S23C, D).  
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Stimuli for electrophysiology experiments. Ten different sources of images were used to 
generate three different stimulus sets (Fig. S2).  
1) Personally familiar human faces: Frontal views of faces of 9 people in the lab/animal 
facility who interacted with the subject monkeys on a daily basis. 
2) Personally familiar monkey faces: Frontal views of faces of 9 monkeys in our animal 
facility that were current or previous roommates or cagemates of the subject monkeys, 
reconstructed using the monkey face model. 
3) Personally familiar objects: Images of 8 toys the subject monkeys interacted with 
extensively. 
4) Pictorially familiar human faces: Frontal views of faces of 8 people from the FEI 
database. 
5) Pictorially familiar monkey faces: Frontal views of faces of 8 monkeys from the 
PrimFace database (visiome.neuroinf.jp/primface), reconstructed using the monkey face 
model. 
6) Cinematically familiar human faces: Frontal views of faces of 18 main characters from 
5 movies (Friends, The Big Bang Theory, The Mountain Between Us, Hard Candy, The 
Piano). 
7) Cinematically familiar monkey faces: Frontal views of faces of 19 monkeys from 7 
movies clipped from 7 videos from YouTube, reconstructed using the monkey face model. 
8) Unfamiliar human faces: 1840 frontal view of faces from various face databases: 
FERET (49, 50), CVL (51), MR2 (52), Chicago (53), CelebA (54), FEI 
(fei.edu.br/~cet/facedatabase.html), PICS (pics.stir.ac.uk), Caltech faces 1999, Essex 
(Face Recognition Data, University of Essex, UK; 
http://cswww.essex.ac.uk/mv/allfaces/faces95.html), and MUCT (www.milbo.org/muct). 
The background was removed, and all images were aligned, scaled, and cropped so that 
the two eyes were horizontally located at 45% height of the image and the width of the 
two eyes equaled 30% of the image width using an open-source face aligner 
(github.com/jrosebr1/imutils).  
9) Unfamiliar monkey faces: 1840 images were generated using the monkey face model 
described above by randomly drawing from independent Gaussian distributions for shape 
and appearance parameters, following the same standard deviation as real monkey faces 
for each parameter. Faces with any parameter larger than 0.8 * maximum value found in 
a real monkey face were excluded to avoid unrealistic faces.  
10) Unfamiliar objects: Images of objects were randomly picked from a subset of 
categories in the COCO dataset (arXiv:1405.0312). The choice of categories was based 
on two criteria: 1) only categories that our macaque subjects had no experience with (e.g., 
vehicles) were included, 2) categories with highly similar objects were excluded (e.g., stop 
signs). The included super-categories were: 'accessory', 'appliance', 'electronic', 'food', 
'furniture', 'indoor', 'outdoor', 'sports', and 'vehicle'. 1500 images of objects with area larger 
than 2002 pixels were isolated, centered, and scaled to the same width or height, 
whichever was larger.  
 
We emphasize that due to the difficulty of obtaining a large set of high-quality monkey 
face images, we used the monkey face model described above to synthesize unfamiliar 
monkey faces; for consistency, all familiar monkey faces used in this study were also 
reconstructed using the monkey face model. Thus any differences in responses to familiar 
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versus unfamiliar faces cannot be attributed to use of synthetic stimuli. Values of each 
feature dimension were normalized by the standard deviation of the feature dimension for 
analysis purposes. 
 
From these 10 stimulus sources, four different stimulus sets were generated:  
1) Screening set consisting of 8 or 9 images from 6 different categories (human faces, 
monkey faces, and objects, each either personally familiar or unfamiliar) (Fig. S2A). For 
unfamiliar stimuli, 8 novel images were used for each cell or simultaneously recorded 
group of cells. Each image was presented in random order, centered at the fixation spot, 
for 150 ms on 150 ms off (gray screen), repeated 5-10 times. The size of each image was 
7.2° x 7.2°. Data using the screening stimulus set are shown in Fig. 1, 4B, 4C, 4D1-3, 
4E3, S3, S4A, S4B, S5, S6, S7, S18A, S19A, S20A-C.    
2) Thousand monkey face set consisting of 1000 unfamiliar (examples shown in Fig. S2B) 
and 36 familiar faces (personally familiar, pictorially familiar, and cinematically familiar 
faces, Fig. S2A, C), presented using the same parameters as the screening set, except 
for number of repetitions (3-5 times). In addition, the 8 novel unfamiliar faces shown in 
the screen set were shown again. Data using the stimulus set are shown in Fig. 2, 3, 4D4, 
4E1, 4E2, 4E4, S9, S10, S12, S15, S16, S17, S18, S20D-K, S21.   
3) Thousand human face set consisting of 1000 real human faces (examples shown in 
Fig. S2B), 35 familiar human faces, and 8 novel human faces (Fig. S2A, C). Other details 
same as for thousand monkey face set. Data using the stimulus set are shown in Fig. 
S12. 
4) Face plane stimuli. Five stimulus sets each consisting of 10 x 10 human faces evenly 
spanning a 2D plane of face space ranging from -3 SD to 3 SD were generated by the 
human face model. The five face planes were randomly selected, and stimuli from the 
five planes were randomly interleaved during the experiment. Data using the stimulus set 
are shown in Fig. S11. 
  
Behavioral task 
For electrophysiology and behavior experiments, monkeys were head fixed and passively 
viewed a screen in a dark room. Stimuli were presented on an LCD monitor (Acer 
GD235HZ). Screen size covered 26.0° x 43.9°. Gaze position was monitored using an 
infrared camera eye tracking system (ISCAN) sampled at 120 Hz.  
 
Passive fixation task. All monkeys performed this task for both fMRI scanning and 
electrophysiological recording. Juice reward was delivered every 2-4 s in exchange for 
monkeys maintaining fixation on a small spot (0.2° diameter).  
 
Preferential viewing task. Two monkeys were trained to perform this task. In each trial a 
pair of face images (7.2° x 7.2°) were presented on the screen side by side with 14.4° 
center distance (Fig. 1B, S13). Juice reward was given every 2-4 s in exchange for 
monkeys viewing either one of the images. Each pair of images lasted 10 s. Face pairs 
were presented in random order. To avoid side bias, each pair was presented twice with 
side swapped.  
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MRI scanning and analysis 
Subjects were scanned in a 3T TIM (Siemens, Munich, Germany) magnet equipped with 
AC88 gradient insert. 1) Anatomical scans were performed using a single loop coil at 
isotropic 0.5 mm resolution. 2) Functional scans were performed using a custom eight-
channel coil (MGH) at isotropic 1 mm resolution, while subjects performed a passive 
fixation task. Contrast agent (Molday ION) was injected to improve signal/noise ratio. 
Further details about the scanning protocol can be found in (55). 
 
MRI Data Analysis. Analysis of functional volumes was performed using the FreeSurfer 
Functional Analysis Stream (56). Volumes were corrected for motion and undistorted 
based on acquired field map. Runs in which the norm of the residuals of a quadratic fit of 
displacement during the run exceeded 5 mm and the maximum displacement exceeded 
0.55 mm were discarded. The resulting data were analyzed using a standard general 
linear model. The face contrast was computed by the average of all face blocks compared 
to the average of all non-face blocks. 
 
Single-unit recording 
Multiple different types of electrodes were used in this study. Single electrodes (Tungsten, 
1 Mohm at 1 kHz, FHC) were used to collect most of the data. A Neuropixel prototype 
probe (128 channel, HHMI) was used to record ML from subject A. A multi-channel 
stereotrode (64 channel, Plexon S-probe) was used to record AM during muscimol 
silencing of PR in subject E. A chronic implanted microwire brush array (64 channel, 
MicroProbes) (McMahon, et al., 2014) was used to record from face patch AM in subject 
C. The electrode trajectories that could reach the desired targets were planned using 
custom software (57), and custom angled grids that guided the electrodes to the target 
were produced using a 3D printer (3D system). Extracelluar neural signals were amplified 
and recorded using Plexon. Spikes were sampled at 40 kHz. For single channel recorded 
data, spike sorting was performed manually by clustering of waveforms above a threshold 
in PCA space using a custom-made software (Kofiko) in Matlab. Multichannel recorded 
data was automatically sorted by Kilosort2 (github.com/MouseLand/Kilosort2) and 
manually refined in Phy (github.com/cortex-lab/phy).  
 
Muscimol experiment 
To silence face patch PR, 1 µl (5 mg/ml) muscimol (Sigma) was injected into PR at 0.5 
µl/min using G33 needle (Hamilton) connected to a 10 µl micro-syringe controlled by a 
micro-pump (WPI, UltraMicroPump 3). AM cells were recorded both before and 30 min 
after injection. 
 
Data analysis 
All visually-responsive cells were included for analysis. To determine visual 
responsiveness, a two-sided T-test was performed comparing activity at [-50 0] ms to that 
at [50 300] ms after stimulus onset. Cells with p-value < 0.05 were included. 
 
Face selectivity index  
A face selectivity index (FSI) was defined for each cell as: 
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𝐹ܵ𝐼 = 𝑟௙௔௖௘ − 𝑟௡௢௡−௙௔௖௘𝑟௙௔௖௘ + 𝑟௡௢௡−௙௔௖௘ 

where 𝑟 is the average neuronal response in a 50-300 ms window after stimulus onset 
(Fig. S3).  
 
Population average of response time course 
For each cell, responses to the same stimulus category were first averaged in 10 ms time 
bins, then the responses were baseline-subtracted (using the average response in the 
time window 0 to 50 ms), and normalized by the maximum response across different 
stimulus categories after stimulus onset. The normalized responses were finally averaged 
across cells for each category after smoothing by a Gaussian function with 10 ms 
standard deviation (Fig. 1E right, Fig. 3B, S4B, E, S20C, I). 
 
To determine the time point at which responses rose above baseline (e.g., Fig. 1E), we 
compared the response at each time point to the baseline response (average response 
over [-50 0] ms) using a one-tailed T-test, and determined the first time point at which P 
< 0.01. 
 
Preferred axis of cells 
The preferred axis of cells was computed in two different ways: 
 
Spike-triggered average (STA). The average firing rate of a neuron was computed to each 
stimulus, either in a full time window [50-300] ms or sliding 50 ms time window after 
stimulus onset. The STA was defined as: 
 𝑃௦௧௔ = ሺ𝑟 − 𝑟̅ሻ𝐹 
 
where 𝑟 is ͳ × ݊ vector of the firing rate response to a set of ݊ face stimuli, 𝑟̅ is the mean 
firing rate, and 𝐹 is a ݊ × ݀ matrix, where each row consists of the ݀ parameters 
representing each face stimulus in the feature space. 
 
Linear regression/Whitened STA. For a small sample of stimuli, e.g., 36 familiar faces, 
the features are not necessarily white (i.e., uncorrelated). As a control, to ensure that the 
difference in STA observed in Fig. 2B, D was not due to mismatched feature distributions 
between familiar and unfamiliar faces, we repeated our main analysis using a whitened 
STA (Fig. S15B) as follows: 𝑃௟௜௡ = ሺ𝑟 − 𝑟̅ሻ𝐹ሺ𝐹𝑇𝐹ሻ−ଵ 
 
For all figures except Fig. S11, we used 20 dimensions to compute the preferred axis 
(first 10 shape and first 10 appearance dimensions). For Fig. S11, we used two 
dimensions (the two dimensions spanning each of the five face planes).    
 
Principal orthogonal axis 
The principal orthogonal axis was defined as the longest axis orthogonal to its preferred 
axis. First, for each of the 1000 unfamiliar face images represented as ݀-dimensional 
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vector (݂⃗ௗ) in face feature space, its component along the preferred axis (𝑃) of the cell 
was subtracted  ݂⃗ௗ−ଵ = ݂⃗ௗ − ሺ݂⃗ௗ ∙ 𝑃/|𝑃|ଶሻ𝑃. 

Then principal component analysis was performed on the set of 1000 vectors (݂⃗ௗ−ଵ), and 
the principal orthogonal axis was the first principal component. 
 
Quantifying significance of axis tuning 
For each cell, we compared the explained variance by the axis model to a distribution of 
explained variances computed for data in which stimulus identities were shuffled (1000 
repeats). We considered axis tuning significant if the frequency of a higher explained 
variance in the shuffle distribution was less than 5% (Fig. S9A, C, E). 
 
Quantifying consistency of preferred axis 
For each cell, the stimuli were randomly split into two halves, and a preferred axis was 
calculated using responses to each subset. Then, the Pearson correlation (𝑟) was 
calculated between the two. This process was repeated 100 times, and the consistency 
of preferred axis for the cell was defined as the average 𝑟 value across 100 iterations 
(Fig. S9B, D, F). 
 
Face feature decoding and reconstruction 
To decode face features, firing rates after stimulus onset in a chosen time window (see 
Fig. 2E legend) were first averaged across multiple repeats of the same stimulus, then 
linear regression was performed on a training set of 999 unfamiliar faces to compute the 

linear mapping from population response vector 𝑟 to face feature vector ݂⃗: ݂⃗ = 𝑀𝑟 
The decoding was performed on the remaining one unfamiliar and all familiar faces using 
this mapping M. Decoding accuracy was measured by (i) the correlation coefficient 
between decoded and actual face features (Fig. 2E1), (ii) the mean square error between 
decoded and actual face features (Fig. 4E4), or (iii) the rate of correctly choosing the 
actual face shown as the decoded face among a given number of randomly- sampled 
distractor faces (Fig. S9H); for the last method, the decoded face was selected as the 
face with minimum Euclidean distance in feature space to the decoded feature vector. 
For all three methods, the decoding accuracy for unfamiliar faces was computed 1000 
times through leave-one-out cross validation.  
 
To reconstruct faces (Fig. 2E2), we built a face feature decoder using responses to 
unfamiliar faces, computed either in a short ([120 170] ms) or long ([220 270] ms) latency 
window. 
 
Face identity decoding 
To decode face identity (Fig. 2G), firing rates after stimulus onset in a chosen time window 
of each trial were randomly split in half and averaged. Then a multi-class linear SVM 
decoder was trained to classify each face identity for 30 familiar or 30 unfamiliar feature-
matched (Fig. S14) faces separately, using one half for training and testing on the other 
half. This was repeated 20 times.  
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Testing the contribution of axis change to face distance increase 
We compared mean pairwise distances between the 30 familiar faces (Fig. S14) by 
predicting, in a cross-validated way, responses to each familiar face pair using two 
different axes for each cell (Fig. 2H2): (i) the familiar axis, (ii) the unfamiliar axis. 
Specifically, for each cell, the axis direction was computed using long latency (150-300 
ms) responses to the 28 remaining familiar or unfamiliar feature-matched faces, and 
normalized to have unit length; for both familiar and unfamiliar axes, the gain was fit using 
responses to the 28 remaining familiar faces. This yielded four 
vectors, 𝒑𝒓ࢊࢋ௙௔௠௜௟௜௔௥/௨௡௙௔௠௜௟௜௔௥ ௔𝑥௜௦݂𝑎ܿ݁ଵ/ଶ. For each face pair, we then computed the 

Euclidean distances ݀ሺ𝒑𝒓ࢊࢋ௙௔௠௜௟௜௔௥ ௔𝑥௜௦݂𝑎ܿ݁ଵ, 𝒑𝒓ࢊࢋ௙௔௠௜௟௜௔௥ ௔𝑥௜௦݂𝑎ܿ݁ଶሻ, and ݀(𝒑𝒓ࢊࢋ௨௡௙௔௠௜௟௜௔௥ ௔𝑥௜௦݂𝑎ܿ݁ଵ, 𝒑𝒓ࢊࢋ௨௡௙௔௠௜௟௜௔௥ ௔𝑥௜௦݂𝑎ܿ݁ଶ). 

 
Sparseness 
The sparseness of a cell (Fig. S12C) was measured by Gini coefficient defined by: ∑ ∑ |𝑥௜ − 𝑥௝|௡௝=ଵ௡௜=ଵ ʹ݊ଶ𝑥̅  

where 𝑥௜ is the firing rate response to 𝑖th stimulus, ݊ is total number of stimuli, and 𝑥̅ is 
mean firing rate to all stimuli. If responses to all stimuli are equal, the Gini coefficient is 0.  
If the response to one stimulus is 1 and responses to all other stimuli are 0, the Gini 

coefficient is ͳ − ଵ௡.   

 
Response reliability 
The response reliability of a cell (Fig. S16B) was computed as the Pearson correlation 
coefficient between the average firing rate of half the trials (50-300 ms after stimulus 
onset) and that of the other half (randomly split), using responses of the cell to the 
thousand face set.   
 
Familiarity decoding 
Firing rates after stimulus onset in a chosen time window (stated for each particular case 
in the figure legends) were first averaged across multiple repeats of the same stimulus, 
then the decoding accuracy was obtained as the average of leave-one-out cross-
validated linear SVM decoding. For the thousand face set, the training sample was 
balanced by randomly subsampling 36 unfamiliar faces, repeated 10 times (Fig. 3C). 
 
Centroid shift analysis  
To determine the time when the shift of the neural representation centroids for familiar 
and unfamiliar faces provided familiarity discriminability (Fig. 3C), population responses 
(50 ms sliding time window, step size 10 ms) to all 36 familiar faces and randomly 
subsampled 36 unfamiliar faces were first projected to the axis connecting neural 
centroids of familiar and unfamiliar faces. Then d’ was computed for the projected values: ݀′ = 𝜇௙௔௠௜௟௜௔௥ − 𝜇௨௡௙௔௠௜௟௜௔௥√ͳʹ ሺ𝜎௙௔௠௜௟௜௔௥ଶ + 𝜎௨௡௙௔௠௜௟௜௔௥ଶ ሻ 
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Here µ and σ are the mean and variance of the projected values, respectively. The 
computation was repeated 10 times for each random subsampling of 36 unfamiliar faces. 
Chance level d’ was estimated by randomly shuffling the population responses to each 
face 10 times. The time when d’ was significantly higher than chance was determined by 
one-tailed T-test (p<0.01).  
 
Analysis of orthogonality between familiarity and face feature decoding axes 
To determine the cosine similarity between familiarity and face feature decoding axes 
(Fig. 3F), we obtained the familiarity decoding axis as described above in the section on 
“Familiarity decoding.” For unfamiliar faces, we obtained the face feature decoding axis 
as described in the section above on “Face feature decoding and reconstruction.” For 
familiar faces, we obtained the face feature decoding axis by computing the pseudo-
inverse of the face feature encoding axis (necessary due to the small number of familiar 
faces); we obtained the latter as described above in the section on “Preferred axis of cells” 
(using the STA). 
 
Computing normalized firing rate changes 
Normalized firing rate change in Fig. 4D1 was computed as follow: ܴ௔௙௧௘௥ − ܴ௕௘௙௢௥௘ܴ௔௙௧௘௥ + ܴ௕௘௙௢௥௘ 

where ܴ௕௘௙௢௥௘ is the mean firing rate within 50-300 ms after stimulus onset before 

Muscimol injection, and ܴ௔௙௧௘௥ is the same for after muscimol injection. 

 
Matching face feature distributions 
We wanted to ensure that the difference in preferred axis (Fig. 2B, 2D) and the difference 
in pairwise distance in the neural state space (Fig. 2F-H) were not due to mismatched 
feature distributions between familiar and unfamiliar faces. To this end, we identified a 
feature-matched subset of 30 familiar and 30 unfamiliar faces. For the top 20 face 
features, these two face sets were matched in feature variance (Fig. S14A), distribution 
of pairwise face distances in feature space (Fig. S14B), and distribution of each feature 
(Fig. S14C). This was achieved by searching for a subset of faces that minimized the 
following cost function:  𝐶 = 𝐶௩௔௥ + 𝐶௣ 

The first term evaluated the difference of variance:  𝐶௩௔௥ =  ∑ሺ𝑣௙௔௠௜௟௜௔௥ሺ𝑖ሻ − 𝑣௨௡௙௔௠௜௟௜௔௥ሺ𝑖ሻሻଶ௡
௜=ଵ ݊⁄ + |∑ 𝑣௙௔௠௜௟௜௔௥ሺ𝑖ሻ௡

௜=ଵ ݊⁄ − ∑ 𝑣௨௡௙௔௠௜௟௜௔௥ሺ𝑖ሻ௡
௜=ଵ ݊⁄ | 

where v(i) is the variance of the ith feature, n = 20 is the number of features. It is the sum 
of mean square error and absolute value of mean difference between the variance of 
each feature.  
 
The second term ensured the distributions in consideration are not significantly different, 
which was measured by the p values of K-S test being larger than 0.05:  𝐶௣ = ݃ሺ݉𝑖݊ሺ𝑝𝐷 , 𝑝ଵ, … , 𝑝௡ሻሻ ݃ሺ𝑥ሻ = {ͳ/ሺ𝑥 + Ͳ.ͲͲͳሻ 𝑥 < Ͳ.Ͳ5Ͳ 𝑥 ≥ Ͳ.Ͳ5 
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where 𝑝𝐷 is the p value of K-S test between distributions of pairwise face distances for 
familiar vs. unfamiliar, 𝑝௜ is the p value of K-S test between distributions of the ith feature 
for familiar vs. unfamiliar. 
 
The optimization was performed using a gradient-descent-like algorithm: in each iteration ݀𝐶 was estimated by removing or adding each face, and the change that decreased 𝐶 
the most was applied, until 𝐶 did not decrease anymore. To balance the number of familiar 
and unfamiliar faces in the result, we set a minimum number of familiar faces (23-36). 
When the number was chosen to be 30, the resulting number of unfamiliar faces also 
happened to be 30. 
 
Finally, we confirmed that for the resulting set of 30 familiar and 30 unfamiliar faces, the 
faces were indeed feature matched (Fig. S14), and the axis model explained similar 
amounts of variance for both familiar and unfamiliar face responses (Fig. S9E, F). 
 
In Fig. S2B, to demonstrate the diversity of faces in the 1000 face set and the capability 
to match each of our familiar face sets, we used the same matching method with different 
subsets of familiar faces. 
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Supplementary Text 
 
Is the feature tuning of face cells ramp or V-shaped? 
A recent study (58) reports that cells in face patch AM show prominent V-shaped tuning 
around the average face at long latencies (peaking at ~200 ms), and suggests that this 
V-shaped tuning may have been missed by earlier studies (48, 59) because they did not 
use a long enough presentation time (300 ms). In the main experiments of the present 
study, all visual stimuli for electrophysiology experiments were presented for 150 ms ON 
and 150 ms OFF. 
 
To determine the extent to which presentation time affects our results, for a subset of 
cells, we repeated our experiment to map the preferred axis of cells (Fig. 2) using a 
stimulus presentation time of 300 ms ON and 300 ms OFF, exactly matching the 
presentation time used by Koyano et al. (58). We varied faces along two axes within 5 
randomly chosen planes, such that a 10x10 grid was sampled within each plane (Fig. 
S11A). This ensured that the average face was presented as part of our stimulus set, to 
more closely mimic the stimulus used by Koyano et al. (in our main experiment, we 
sampled faces from a 120d face space by sampling each dimension from an independent 
Gaussian distribution; with this approach, the average face has very low probability of 
being presented, as almost all of the stimulus density is on an outer shell of the feature 
space). 
 
We continued to observe exclusively ramp-shaped tuning (Fig. S11B, C). We speculate 
that the V-shaped tuning observed by Koyano et al. may have been due to greater 
familiarity of stimuli closer to the average face due to the stimulus design used in that 
study: 12 morph trajectories were presented, each crossing the same average face, 
resulting in 145 total stimuli; across the 12 trajectories, stimuli near the average all looked 
very similar (~4*12/145 = 33% of stimuli). In contrast, because (i) we sampled over a 2D 
face space, and (ii) our extreme faces were more caricatured (3 S.D. from the average), 
the proportion of faces similar to the average was much smaller in our stimulus set, 
~2*2/100 = 4% (Fig. S11A). This interpretation of Koyano et al.’s finding is consistent with 
the fact that the reduced responses to stimuli at the trough of the V observed by Koyano 
et al. occurred at increased latency, matching the time course of suppression for familiar 
stimuli observed in our first experiment (Fig. 1E). As noted in the main text, this 
suppression to familiar faces depends strongly on temporal context (Fig. 3A, S18A). 
Importantly, it occurs for multiple distinct familiar faces (Fig. 1E), and hence is unlikely to 
be solely a form of predictive normalization of incoming stimuli. 
 
A small subset of AM and PR cells respond extremely sparsely to familiar faces 
In addition to cells with ramp-shaped tuning, we found a small population of cells that 
responded extremely sparsely to just a few of the stimuli (Fig. S12). PR contained 
significantly more such super-sparse cells than AM (Fig. S12; sparsity > 0.7, p < 0.015, 
Chi-square test, degree of freedom = 1). The frequency of preferred stimuli being familiar 
faces was much higher than chance: in PR (AM), for 8/11 (2/5) cells with sparsity > 0.7, 
the most effective stimulus out of 1000 unfamiliar faces and 36 (monkey) or 35 (human) 
familiar faces was a familiar face. The probability that this would happen by chance is 
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~(11 choose 8)(36/1036)8(1000/1036)3 = 3.2*10-10. Thus these super sparse cells are 
clearly specialized for representing familiar faces. Their extraordinary specificity of 
response to specific familiar individuals is reminiscent of “concept cells” found in the 
human temporal lobe. Future work may test whether these cells respond not just to the 
face of a familiar individual but also to sounds and symbols evoking that individual, 
suggesting a representation of abstract concept (60). 
 
The fact that PR contains both axis- and exemplar-tuned cells suggests that it may inherit 
the AM axis representing physical identity and then compute a transformation of this code 
to an exemplar-based code more suitable for representing mnemonic associations 
between specific familiar stimuli (61-63). 
 
A hierarchical generative inference model predicts gain change from PR 
inactivation 
What could be the function of the gain changes induced by PR? A prominent model of 
vision asserts that the visual system implements a hierarchical inference network in which 
stimuli are discriminated in a feedforward pathway and predictively generated in a 
feedback pathway (64-67). In such a network, when the input stimulus is ambiguous, top-
down feedback serves to fill in missing information based on prior knowledge. When the 
input stimulus is unambiguous (as was the case for all of our stimuli, which consisted of 
clear, high resolution faces), then the “feedback receptive field,” namely, the selectivity of 
a cell to stimuli resulting from neural activity in the feedback generative pathway, should 
be identical to the feedforward receptive field (Fig. S19B-D). Thus in a hierarchical 
inference network, inactivating feedback should simply change the gain of responses to 
clearly visible stimuli, matching our experimental results. Further experiments, e.g., with 
ambiguous stimuli, would be needed to prove that PR feedback subserves hierarchical 
inference. 
 
A simple model of face patch representations 
Here we will briefly describe a straightforward network model that recapitulates some of 
the basic features of the neural representations we have described in our paper. We 
formulate this model as a population of firing rate neurons with sigmoidal non-linearities 
which receive inputs that encode the features of the faces presented to the system as 
stimuli. Specifically, we model the input to each face patch neuron as a linear combination 
of the face features with coefficients that are chosen randomly and independently from a 
Gaussian distribution, in addition to bias (offset) and noise terms. If the activations of the 
model face patch neurons in response to the presentation of unfamiliar faces remain 
largely restricted to the linear regime of the sigmoid, then since the input currents are 
confined to a linear subspace (of dimensionality equal to number of encoded face 
parameters) the neural activities will also be located on an approximately linear subspace 
of the firing rate space (modulo noise). In this way we can achieve an approximately linear 
encoding of the face features, by embedding the manifold of face parameters in an almost 
linear fashion in the firing rate space of the neural population. 
 
We would like to qualitatively reproduce the basic coding properties of the recorded neural 
data using this model. At short latency (after stimulus presentation), the main observed 
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difference between unfamiliar and familiar face representations is a relative shift in the 
centroids of their respective coding manifolds. We can easily introduce such a shift by 
adding to the input current of each neuron a bias term (again drawn randomly from a 
Gaussian distribution) whose sign depends on the familiarity of the stimulus. Repeating 
the analysis of the cosine similarity between the preferred axes of cells in response to 
unfamiliar and familiar faces as in Fig. 2B, we find that its distribution is essentially 
identical to the control (Fig. S21B) (which is the cosine similarity between unfamiliar 
preferred axes and those computed on a small subset of unfamiliar faces). This is 
consistent with the time-resolved analysis of Fig. 2D, which shows no significant 
differences at short latency. The shift between familiar and unfamiliar coding manifolds 
allows a linear decoder to discriminate familiar from unfamiliar faces in a way that 
generalizes to held-out stimuli (i.e., faces not used during training), again in agreement 
with Fig. 3. 
 
For the long latency response to face stimuli, we observed in the data that the preferred 
axes corresponding to familiar and unfamiliar stimuli are less correlated (while those in 
response to unfamiliar stimuli are quite consistent, i.e., show a large cosine similarity with 
the axes computed on a subset of unfamiliar faces) (Fig. 2B). To capture this effect, we 
consider that the input to the recorded population of neurons may arrive through two 
different pathways (which can both still be modeled with random, independently chosen 
Gaussian weights) that are modulated by the familiarity signal in different ways (see 
schematic in Fig. 21A). This familiarity signal was already decodable from the neural 
activity at short latency due to the shift discussed above (which is still present at long 
latency). However, while we considered both input pathways to be activated to the same 
extent by familiar and unfamiliar faces at early times, we now let unfamiliar faces activate 
only one of these pathways, and familiar faces exclusively but strongly activate the other 
pathway at longer latency. This procedure reproduces the small correlation between the 
axes for familiar and unfamiliar faces seen in Fig. 2B. 
 
The strong input current for familiar faces leads to responses that have a larger variance 
(Fig. 21C). This larger variance leads to an increased pairwise distance between familiar 
faces as compared to the distance between pairs of unfamiliar faces, consistent with Fig. 
2F. While we do not explicitly model axis change here (as observed in the actual data, 
Fig. 2B, D, E, H), it would provide another mechanism to increase distances between 
pairs of familiar faces, if axis change leads to better alignment with directions of maximum 
feature variance in the familiar faces. Familiarity can still be decoded, as in the earlier 
time interval, but in addition these long latency representations also allow us to 
successfully discriminate particular familiar faces from others with high accuracy. 
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Figure 1. Cells in face patches AM and PR are modulated by familiarity. (A) Two 
alternative schemes for face representation: a low-dimensional continuous feature space 
(left) and a set of discrete attractors (right). (B) View preference test. Pairs of faces, one 
familiar and one unfamiliar, were presented for 10 s, and time spent fixating each was 
recorded. Right: Ratio of time spent fixating personally familiar versus unfamiliar faces for 
two animals. (C1) Responses of cells to stimuli from six stimulus categories (familiar 
human faces, unfamiliar human faces, familiar monkey faces, unfamiliar monkey faces, 
familiar objects, and unfamiliar objects) recorded from two face patches (AM, PR). 
Responses were averaged between 50 to 300 ms after stimulus onset (“full” response 
window). Dashed square, unfamiliar stimuli. P values for two-sided T-test comparing 
familiar vs. unfamiliar for human faces, monkey faces and objects in PR were 6.6×10-18, 
7.7×10-3, 1.5×10-7, respectively, and in AM were 1.8×10-23, 2.7×10-17, 1.1×10-5, 
respectively. (PR: N = 1539 for familiar human/monkey faces, 1368 for unfamiliar human/ 
monkey faces, and 1368 for familiar/unfamiliar objects; AM: N = 1368 for familiar 
human/monkey faces, 1216 for unfamiliar human/monkey faces, and 1216 for 
familiar/unfamiliar objects.) (C2) Same as C1 for “short” response window (PR, 50-175 
ms; AM, 50-125 ms). P values ordered as in (C1) were 0.006, 0.72, 9×10-5 for PR, 0.28, 
0.40, 0.86 for AM. (D1) Similarity (Pearson correlation coefficient) matrix of population 
responses for full response window. (D2) Same as (D1) for short response window. (E) 
Left: Average response time course across AM (top) and PR (bottom) populations to each 
of the screening stimuli. Right: Response time course across AM and PR populations 
averaged across both cells and category exemplars (normalized for each cell, see 
Method). Earlier arrow indicates the mean time when visual responses to faces became 
significantly higher than baseline (AM: 92.5 ms, PR: 105 ms; see Methods). Later arrow 
indicates the mean time when responses to familiar versus unfamiliar faces became 
significantly different (AM: 125 ms and 155 ms for human faces and monkey faces, 
respectively; PR: 155 ms and 205 ms). Shaded areas indicate standard error of the mean 
(SEM) across neurons.  
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Figure 2. AM and PR cells use different axes to represent familiar versus unfamiliar 
faces. (A) Four example cells showing axis tuning. Bottom: Responses to 1000 unfamiliar 
faces, projected onto the cell’s preferred axis and principal (longest) orthogonal axis in 
the face feature space. Response magnitudes are color-coded. Top: Mean response as 
a function of distance along the preferred axis. Green (yellow) dots: projections of 
responses to 8 random unfamiliar (9 personally familiar) faces. Note that the 8 random 
unfamiliar faces indicated by the green dots were excluded from calculation of the 
preferred axis of the cells here. (A1) Axis-tuned cell from AM. (A2-A4) Axis-tuned cells 
from PR. (B) Population analysis comparing preferred axes for familiar versus unfamiliar 
faces. Top: Distribution of cosine similarities between axes computed using 1000-36 
unfamiliar faces and 36 left out unfamiliar faces (orange), and between axes computed 
using 1000-36 unfamiliar faces and 36 familiar faces (blue). Results from 100 repeats of 
random subsets of 36 unfamiliar faces are averaged. Preferred axes were computed 
using the top 10 shape and top 10 appearance features of presented faces. (C) Control 
experiment repeating the analysis of (B) with 36 low contrast faces instead of 36 familiar 
faces. (D) Time course of the cosine similarity between preferred axes for unfamiliar-
unfamiliar (orange) and unfamiliar-familiar (blue) faces; same as (B), but computed using 
a 50 ms sliding time window, step size 10 ms. Arrows indicate when differences became 
significant (AM: 105 ms, PR: 155 ms, one-tailed T-test, p<0.001, AM N=134, PR N=76). 
Shaded area, SEM. (E1) Time course of linear decoding performance for familiar and 
unfamiliar faces measured by the correlation coefficient between actual and decoded face 
feature vectors, computed using a 50 ms sliding time window, step size 10 ms. Shaded 
area, SEM. Light color, same analysis using stimulus identity-shuffled data (10 repeats). 
(E2) Example linearly reconstructed faces from short (120-170 ms) or long (220-270 ms) 
latency responses combining cells from both PR and AM. Reconstructions were 
performed using decoders trained on unfamiliar faces. (F) Time course of mean pairwise 
neural distance (Euclidean distance between population responses) between familiar or 
unfamiliar faces, computed using a 50 ms sliding time window, step size 10 ms, 
normalized by mean baseline (0-50 ms) distance between unfamiliar faces. Distances 
were computed using a subset of 30 familiar and unfamiliar feature-matched faces (see 
Fig. S14). (G) Time course of face identity decoding accuracy for 30 familiar (blue) or 
unfamiliar (orange) feature-matched faces, computed using a 50 ms sliding time window, 
step size 10 ms. Half the trials were used to train a linear classifier and decoding 
performance was tested on the remaining half of trials; chance performance was 1/30. 
The difference between familiar and unfamiliar identity decoding arose before the long-
latency axis change in PR (115 ms in both AM and PR, one-tail paired T-test, p<0.01), 
possibly due to higher response reliability for familiar faces (Fig. S16B). (H1) Time course 
of mean pairwise neural distance between 30 familiar or unfamiliar feature-matched 
faces, normalized by mean baseline (0-50 ms) distance between unfamiliar faces, 
computed using responses predicted by linear model. Same conventions as (F). (H2) 
Mean pairwise distances between 30 familiar faces predicted using familiar axes (x-axis) 
and unfamiliar axes (y-axis) (see Methods).  
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.03.12.435023doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435023


 

 
 
Figure 3. An early shift in response subspace allows familiarity to be decoded. (A) 
Responses of cells to stimuli from 36 familiar and 1000 unfamiliar monkey faces, 
averaged between 50 to 300 ms after stimulus onset. Dashed square, unfamiliar stimuli. 
(B) Response time course across AM and PR populations, averaged across cells and all 
familiar or unfamiliar faces from the 1036 monkey face stimulus set (normalized for each 
cell, see Methods). Shaded area, SEM. Earlier arrow indicates the time when visual 
responses to faces became significantly higher than baseline (AM 95 ms, PR 105 ms, 
one-tailed paired T-test, p<0.001, AM N=134, PR N=76). Later arrow indicates the time 
when responses to familiar versus unfamiliar faces became significantly different (AM 115 
ms, PR 145 ms, two-sided paired T-test, p<0.001, AM N=134, PR N=76). (C) Time course 
of accuracy for decoding familiarity (black line) computed using a 50 ms sliding time 
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window, step size 10 ms. Shaded area, SEM. Chance level was obtained using shuffled 
data (gray line). Arrow indicates the time at which decoding accuracy rose above chance 
(95 ms for AM, 105 ms for PR, one-tailed T-test, p<0.01, N=10). (D) Time course of neural 
distance between centroids of 36 familiar and 1000 unfamiliar face responses (blue) and 
between centroids of responses to a subset of 36 unfamiliar faces and responses to 
remaining 1000-36 unfamiliar faces (orange), computed using a 50 ms sliding time 
window, step size 10 ms. Arrow indicates the time when d’ along the two centroids 
became significantly higher than a shuffle control (AM 95 ms, PR 115 ms, one-tailed T-
test, p<0.01, N=10, see Methods). (E) Distribution of differences between mean firing 
rates to familiar and unfamiliar faces at 3 different time intervals. Gray bars indicate cells 
showing a significant difference (two-sided T-test p<0.05, familiar N=36, unfamiliar 
N=1000). (F) Distribution of cosine similarities between the familiarity decoding axis and 
face feature decoding axes (familiar: blue, unfamiliar: orange) at short (50-150 ms) and 
long (150-300 ms) latency for the first 20 features (10 shape, 10 appearance). (G) 
Schematic illustration of neural representation of familiar (blue) and unfamiliar (orange) 
faces at short and long latency.  
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Figure 4. Identifying the source of the memory signal. (A) Schematic of experiment 
to identify the origin of memory-related signals in AM. Muscimol was injected into face 
patch PR and responses of AM neurons were recorded both before and after PR 
inactivation using a multi-electrode probe. (B) Responses of two example AM cells to 
screening stimuli before and after PR inactivation. Icon conventions as in Fig. 1. (C) 
Response profiles of the AM population to the screening stimuli before and after PR 
inactivation. (D1) Normalized firing rate changes for familiar and unfamiliar faces induced 
by PR inactivation (N = 52 cells). (D2) Responses of one example cell in (B) after versus 
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before PR inactivation, fit to a linear gain function (y = ax). (D3) Distribution of R2 values 
from fitting a linear gain function for all cells. (D4) Responses of each cell to the 1000 face 
set were fit using a gain model and an offset model (N = 50 cells). Residual errors for the 
offset model (ordinate) are plotted against those of the gain model (abscissa). (E1) Mean 
cosine similarity between preferred axes before and after PR inactivation for familiar or 
unfamiliar monkey faces. (E2) Time course of the similarity between preferred axes for 
unfamiliar-unfamiliar and unfamiliar-familiar faces (same as Fig. 2D) before and after PR 
inactivation. (E3) Familiarity decoding accuracy for screening stimuli before and after PR 
inactivation, using response time window 50-300 ms. (E4) Face feature decoding error 
(mean square error) for unfamiliar and familiar faces before and after PR inactivation, 
using response time window 50-300 ms.  
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Figure S1. Coronal slices showing the electrode targeting six recording sites from 5 
monkeys.  (A) Single electrode targeting PR in monkey A. (B) Single electrode targeting 
AM in monkey A. (C) Single electrode targeting PR in monkey B. (D) Brush array 
electrodes targeting AM in monkey C. (E) Single electrode targeting ML in monkey D. (F) 
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Single electrode targeting AM in monkey E. Activations for the contrast faces versus 
objects are shown, at uncorrected p values. 
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Figure S2 
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Figure S2. Visual stimuli. (A) Screening stimuli. Example unfamiliar stimuli are shown 
here; a new set was presented for every recording site, drawn from image sets described 
in the Methods. (B) Examples of unfamiliar faces in the thousand face stimulus set. 
Monkey faces were generated by a 120d shape-appearance model (see Methods). The 
thousand monkey face stimulus set was extremely diverse, allowing subsets of faces to 
be chosen that were matched in feature distributions to familiar faces (see Methods). 
Shown here are examples from two subsets, one matched to the personally familiar faces, 
and one matched to all familiar faces. Human faces (used for analysis in Supplementary 
Text) were from online databases. (C) Additional familiar faces (pictorially and 
cinematically familiar). [Note: all human faces in this figure have been replaced by 
synthetically generated faces due to biorxiv policy on displaying human faces.] 
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Figure S3 
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Figure S3. (A) Histograms of face selectivity indices computed using screening stimuli 
from AM and PR (see Methods). (B) Response distributions from AM and PR to screening 
stimuli for familiar or unfamiliar faces at three different time windows. Icon conventions as 
in Fig. 1C. 
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Figure S4 
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Figure S4. Main results computed separately for each animal individually. (A) Responses 
of cells to stimuli from six stimulus categories (same as Fig. 1C1). (B) Response time 
course averaged across cells and exemplars within each screening category (same as 
Fig. 1E, right). (C) Population analysis comparing preferred axes for familiar versus 
unfamiliar faces (same as Fig. 2B). (D) Time course of the similarity between preferred 
axes for unfamiliar-unfamiliar (orange) and unfamiliar-familiar (blue) faces (same as Fig. 
2D). (E) Average response time course for 1000 monkey face stimulus set (same as Fig. 
3B). 
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Figure S5. Responses of example neurons to familiar and unfamiliar screening stimuli. 
(A) Seven example cells from AM. Icon conventions as in Fig. 1. (B) Seven example cells 
from PR. (C) Local field potentials from an example site in AM and one in PR. 
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Figure S6. MDS analysis for AM and PR. Top: full time window, bottom: short time 
window. Time windows as in Fig. 1C. The percentage of total variance captured by the 
two dimensions was 50.7% (AM, full), 46.4% (AM, short), 35.5% (PR full), 41.9% (PR 
short). 
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Figure S7. Response time courses from AM and PR. (A) Top: response time courses of 
individual neurons from face patch AM. Bottom: response time course averaged across 
neurons. Icon conventions as in Fig. 1C. (B) Same as (A) for PR.  
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Figure S8. Geometry of axis coding. (A) Schematic of axis code used by face patches to 
represent facial identity. Top: Response of an example axis-tuned cell along its preferred 
axis. Left bottom: Response of the cell as a function of location in the face feature space. 
Colors indicate response magnitude; red arrow indicates preferred axis. Right bottom: the 
face feature space is embedded in the neural state space as a linear subspace. Circles 
indicate responses to a specific subset of faces. The axis code implies that responses to 
unfamiliar faces are confined to this subspace. (B) Familiarity has previously been 
proposed to produce a monotonic transform of responses such as scaling (top) or 
sparsening (bottom).  
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Figure S9 
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Figure S9. Quantification of axis tuning in AM and PR. (A) Distribution of explained 
variance by the linear axis model for responses to 1000 unfamiliar faces; shaded bars 
indicate the subset of cells for which the explained variance was significantly higher than 
for stimulus-shuffled data (1000 repeats). (B) Distributions of mean cosine similarity of 
preferred axes across repeated split halves (100 repeats) of responses to 1000 unfamiliar 
faces for AM and PR. Same conventions as in (A). (C, D) Same as (A) and (B) but for 36 
familiar faces or 36 randomly-sampled unfamiliar faces (20 repeats). (E, F) Same as (A) 
and (B) but for 30 familiar or 30 unfamiliar feature-matched faces. (G) Red lines show the 
average modulation along the preferred axis across the population of AM and PR cells. 
Blue lines show the average modulation along the longest axis orthogonal to the preferred 
axis in the 50d face space that accounts for the most variability. Shaded area, SEM. (H) 
Comparison of face decoding performance for AM versus PR using a leave-one-out cross 
validated linear decoder as a function of number of random distractor faces (see 
Methods). 
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Figure S10. Examples of additional axis-tuned cells. (A) 8 cells from AM (same format 
as Fig. 2A). (B) 8 cells from PR.   
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Figure S11 
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Figure S11. Feature tuning of AM cells measured with a longer stimulus presentation 
time (300 ms ON, 300 ms OFF), demonstrating robust axis tuning. (A) Example stimulus 
set consisting of 10 x 10 faces evenly spanning a 2D plane of face space ranging from -
3 SD to 3 SD. Five randomly sampled face planes were presented. (B) Responses of six 
example cells to the 2D face plane eliciting maximum modulation. (Left) Responses 
averaged between 50 - 300 ms. (Right) Average responses along preferred axis over 
time. (C) Response tuning curves of all cells along each cell’s preferred axis for three 
different time windows; firing rate was normalized by dividing by the mean firing rate. 
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Figure S12. Sparsely responding AM and PR cells. (A) An example sparse cell from AM. 

(B) Three example sparse cells from PR. (C) Distributions of sparseness indices (Gini 

coefficient) of reliably responsive cells (reliability>0.2, see Methods). The data for this 

analysis included not only the 134 AM and 72 PR cells that were presented with the 

thousand monkey face stimulus set but an additional 53 AM and 65 PR cells that were 

presented with a thousand human face stimulus set (Fig. S2B, C) after initial screening 

identified them as being more responsive to human faces. We wanted to maximize our 

chances of identifying cells selective for specific familiar individuals, and our monkeys 

had personal familiarity with both humans and monkeys. (D) Left: Raster plots of 

responses of 4 example cells to 9 stimuli (five most preferred stimuli and four regularly 

sampled stimuli); the 4 cells from top to bottom correspond to the 4 cells in (A, B) from 

left to right. Right: Histograms of mean responses of each cell to the full set of 1000 
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stimuli; red bars indicate stimuli shown on left. [Note: the human faces in the bottom row 

of (D) have been replaced by synthetically generated faces due to biorxiv policy on 

displaying human faces.] 
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Figure S13. Preferential looking test. Comparing looking time to personally familiar faces 
versus novel unfamiliar faces, unfamiliar faces (from 1000 face set), personally familiar 
faces (two distinct personally familiar faces were presented on each trial), pictorially 
familiar faces, and cinematically familiar faces (same icon conventions as Fig. S2). 
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Figure S14. Matching the face features of familiar and unfamiliar faces. (A) Distribution 

of variances of first 20 features for 30 familiar and 30 unfamiliar feature-matched faces 

(K-S test, p = 0.96, N = 20). (B) Distribution of pairwise distances in face feature space 

(first 20 features) for the 30 familiar and 30 unfamiliar feature-matched faces (K-S test, p 

= 0.51, N = 435). (C) Distribution of top 20 feature values for the 30 familiar and 30 

unfamiliar feature-matched faces; the number above each plot gives the p value of K-S 

test (N = 30) between the two feature distributions. (D) Images of the 30 familiar and 30 

unfamiliar feature-matched faces. 
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Figure S15.  Control analyses confirming that axis change for familiar vs. unfamiliar faces 
was not due to stimulus differences or method of computing preferred axis. (A) Top: 
population analysis of preferred axes for familiar versus unfamiliar faces; same 
conventions as in Fig. 2B except 30 familiar and 30 unfamiliar feature-matched faces 
were used (see Methods and Fig S14). Bottom: time course from the same analysis; 
same conventions as in Fig. 2D. (B) Top: population analysis of preferred axes for familiar 
versus unfamiliar faces, same conventions as in Fig. 2B except the preferred axes were 
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computed using linear regression rather than spike-triggered averaging (see Methods). 
Bottom: time course from the same analysis, same conventions as in Fig. 2D. 
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Figure S16. Control analyses analyzing face decoding performance and response 
reliability for familiar and unfamiliar faces. (A) Time course of linear decoding 
performance for familiar and unfamiliar faces measured by the correlation coefficient 
between actual and decoded face feature vectors, as in Fig. 2E1, except here, the 
decoder was trained using both familiar and unfamiliar faces. To match performance of 
familiar and unfamiliar decoding, in AM (PR), 36 (36) familiar and 150 (300) unfamiliar 
faces were used, sampled 10 times from the set of 1000. (B) Response reliability of 
responses to familiar versus unfamiliar faces. Each circle represents one cell. The familiar 
reliability was computed using 36 familiar faces, the unfamiliar one was the mean 
reliability of 100 repeats of 36 randomly-sampled unfamiliar faces. 
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Figure S17. Distance increase for familiar faces using linear-model-predicted or actual 
response during full time window (50-300 ms). Distance increase was quantified by 
(Dfamiliar – Dunfamiliar) / (Dunfamiliar - Dbaseline), where Dbaseline is the mean distance between 
unfamiliar faces during 0-50 ms.  
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Figure S18. Analysis of familiar face responses separated by familiarity subtype. (A) 
Comparison of average response time courses in AM and PR to the exact same set of 
familiar and unfamiliar stimuli, presented in two different temporal contexts. Bar graphs: 
average over time window [100 300] ms. Top: Responses to 9 personally familiar and 8 
unfamiliar monkey faces presented as part of screening stimulus experiment. Bottom: 
responses to the same set of stimuli presented as part of thousand face stimulus 
experiment. Shaded area, SEM. (B) Response time courses to faces from AM and PR 
populations, separated by familiarity subtype. Responses were averaged across cells and 
across each subtype of face from the 1000 monkey face experiment. The differences 
between response time courses to the three familiarity subtypes further underscores that 
relative magnitude of mean response to familiar faces is highly context-dependent. 
Shaded area, SEM.  
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Figure S19. Effects of PR inactivation on AM responses are consistent with a generative 

model. (A) Responses of six additional AM example cells to screening stimuli before and 

after muscimol injection (same conventions as Fig. 4B). (B) Schematic illustration 

showing that feedback input from PR to AM should be proportional to the feedforward 

input to AM, under the empirical observation that silencing PR simply scales the response 

in AM (i.e., z’ = bz). (C) Schematic illustration of stacked convolutional auto-encoder (67), 

with an example image and resulting reconstruction. The auto-encoder embeds an input 

image in two sequential stages, first into 60 channels of 15 x 15 features, then into 10 

channels of 6 x 6 features. The process is then reversed, and the reconstructed image is 

generated from the embedding of the final stage. (D) Activation of 3 example channels in 

the middle stage during feedforward pass (upper row) and feedback pass (bottom row) 

of the auto-encoder processing. The input image is the same as in (C). Note the high 

similarity between the feedforward and feedback signals. (E) Feedforward and feedback 

activation of all units of the middle stage to the example image in (C). [Note: the human 

face in (C) is synthetic and conforms to biorxiv policy.] 
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Figure S20. Representation of familiar stimuli in face patch ML. (A) Responses of cells 
to screening stimuli from six stimulus categories (familiar human faces, unfamiliar human 
faces, familiar monkey faces, unfamiliar monkey faces, familiar objects, and unfamiliar 
objects), recorded the face patch ML. Left, responses were averaged between 50 to 300 
ms after stimulus onset (“full” response window). Right, same for a “short” window 50 to 
125 ms. (B) Similarity matrix of population responses for full response window (left) and 
short response window (right). (C) Left: Average response time course across the ML 
population to each of the screening stimuli. Right: Response time course averaged across 
cells and category exemplars. Earlier arrow indicates the mean time when visual 
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responses to faces became significantly higher than baseline (77.5 ms). Later arrow 
indicates the mean time when responses to familiar versus unfamiliar faces became 
significantly different (175 ms and 145 ms for human and monkey faces, respectively). 
Responses also diverged briefly at very short latency (95 ms and 105 ms for human and 
monkey faces, respectively). (D) Population analysis comparing preferred axes for 
familiar versus unfamiliar faces. Same conventions as Fig 2B. (E-K) Same analyses for 
the ML population (N = 154 cells) as in Fig. 2D-G, Fig. 3B-D.  
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Figure S21. A simple network model of joint representations of face features and 
familiarity. (A) Schematic of the neural network. Populations of firing rate neurons that 
linearly encode face features (top) project via random (i.i.d. Gaussian) synaptic weights 
to the face patch neurons (bottom), which are modeled using sigmoidal activation 
functions. As long as the firing rates of the face patch neurons remain approximately 
within the linear regime of the sigmoidal non-linearity, they will inherit from their inputs a 
representation of the face features that lies in an approximately linear subspace of their 
firing rate space. (B) Short latency representations and their properties. The strength of 
the inputs from the feature coding units at short latency are independent of the familiarity 
of the stimulus (gray arrows in A). However, each face patch neuron also receives a 
feature-independent input (bias) whose sign is modulated by the familiarity of the currently 
presented face. This introduces a relative shift of the coding manifolds for familiar and 
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unfamiliar faces. Because some neurons increase their firing rate with familiarity while 
others decrease their firing rate, this shift need not be correlated with the overall firing 
rate of the population. In the top panel we repeat the analysis of Fig. 2B, comparing the 
preferred axes in response to familiar faces to those for unfamiliar faces (blue), which 
yields a very similar distribution of cosine similarities as the control using a subset of the 
unfamiliar faces (orange). In the middle panel we show the distances in firing rate space 
between the centroids of the familiar and unfamiliar coding space, as well as the mean 
pairwise distances between two familiar face representations and two unfamiliar ones, as 
in Fig. 2F. These mean pairwise distance are very similar in magnitude. The bottom panel 
shows the decoding performance for familiarity of a linear classifier (cross-validated on 
faces not used for training), as well as the decoding performance of a multi-class support 
vector machine for the identity of a particular familiar face (out of all 36, cross-validated 
on held-out trials). The former is large due to the shift between familiar and unfamiliar 
coding spaces that enables generalization of familiarity across faces, while the latter, 
though above the chance level of 1/36, is relatively small (compare to Fig. 3C, Fig. 2G). 
(C) Long latency representations and their properties. Same as panel (B), except that 
here we model the late responses of the face patch neurons using separate input 
pathways from the feature-coding units (with different sets of random weights) that are 
active either for familiar faces (blue arrow in panel A), or for unfamiliar faces (orange 
arrow in A), while for panel B those pathways were activated in a familiarity-independent 
fashion. The relative shift of the familiar and unfamiliar coding manifolds is still present, 
and in addition we introduce a small constant bias of familiar face responses to model the 
increased average firing rate for familiar faces at long latency (see Fig. 3A, B). Due to 
the separate input pathways, the cosine similarities of the preferred axes in response to 
familiar and unfamiliar faces (top panel, blue) are now centered around zero, and 
substantially smaller than for the control (orange). The distances in firing rate space 
between pairs of familiar faces (middle panel) are substantially larger than for pairs of 
unfamiliar faces. This increased distance supports a much better decoding performance 
for the identity of individual familiar faces (bottom panel). 
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Figure S22. Different contexts may invoke representations in different subspaces. Each 
context shifted from that for representing unfamiliar stimuli. In the current study, we 
examined representation of familiar faces in a highly impoverished context in which the 
familiar stimuli were presented on a gray background during passive fixation. It is possible 
that under more naturalistic presentation conditions, distinct behavioral contexts (e.g., 
different environments) may each invoke distinct memory-gated subspaces.  
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Figure S23. Face landmarks and shape meshes. (A) Example monkey face showing 
landmarks used as the “shape” parameters in monkey face model. (B) Example monkey 
face showing the shape mesh used for morph the face to the landmark template in the 
face model (see Methods). (C) Landmarks for an example human face. (D) Shape mesh 
for an example human face. [Note: the human face in (C, D) is synthetic to conform to 
biorxiv policy and was not one of the human faces actually used in the experiments.] 
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