Abstract
What is the influence of periodic environmental fluctuations on life-history evolution? We present a general theoretical framework to understand and predict the long-term evolution of lifehistory traits under a broad range of ecological scenarios. Specifically, we investigate how periodic fluctuations affect selection when the population is also structured in distinct classes. This analysis yields time-varying selection gradients that clarify the influence of the fluctuations of the environment on the competitive ability of a specific life-history mutation. We use this framework to analyse the evolution of key life-history traits of pathogens. We examine three different epidemiological scenarios and we show how periodic fluctuations of the environment can affect the evolution of virulence and transmission as well as the preference for different hosts. These examples yield new and testable predictions on pathogen evolution, and illustrate how our approach can provide a better understanding of the evolutionary consequences of time-varying environmental fluctuations in a broad range of scenarios.
Competing Interest Statement
The authors have declared no competing interest.