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Abstract 

The neurophysiological bases of mind wandering (MW) – an experiential state wherein attention is 

disengaged from the external environment in favour of internal thoughts, and state meta-awareness 

are poorly understood. In parallel, the relationship between introspection confidence in experiential 

state judgements and neural representations remains unclear. Here, we recorded EEG whilst 

participants completed a listening task within which they made experiential state judgments and 

rated their confidence. Alpha power was reliably greater during MW episodes, with unaware MW 

further associated with greater delta and theta power. Multivariate pattern classification analysis 

revealed that MW, and meta-awareness can be decoded from the distribution of power in these 

three frequency bands. Critically, we show that individual decoding accuracies positively correlate 

with introspection confidence. Our results reaffirm the role of alpha oscillations in MW, implicate 

lower frequencies in meta-awareness, and are consistent with the proposal that introspection 

confidence indexes neurophysiological discriminability of representational states. 
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1 Introduction 

Our brains are constantly bombarded by dynamic sensory input, yet we frequently shift away from 

the external environment towards thoughts, emotions and images that do not emerge from ongoing 

perceptual processes, are self-generated and unrelated to one’s current task (mind wandering; 

Antrobus et al. 1970; Christoff et al. 2016; Smallwood and Schooler 2015). Research suggests that 

mind wandering (MW) occurs in ~30-50% of our waking hours 3,4, has deleterious effects on 

sensory and cognitive processing with corresponding reductions in event-related potentials (ERP) 

in response to external stimuli (Smallwood et al. 2008; Barron et al. 2011; Kam et al. 2011; Baird 

et al. 2014). These effects produce concomitant negative effects in a variety of tasks from driving 7 

to reading 8–10.  

Converging findings implicate default mode network (DMN; 11,12 in mind wandering 13 and its 

associated cognitive operations such as self-related processing 14, autobiographical memory, theory 

of mind, and future planning 15–17. Mind wandering episodes can occur with (tuning-out) and 

without (zoning-out) meta-awareness (Schooler et al. 2004, 2011; Smallwood, McSpadden, et al. 

2007) with the latter suggested to reflect a more pronounced form of mind wandering characterized 

by poorer performance (Smallwood, McSpadden, and Schooler 2007) and greater recruitment of 

DMN and executive control network 13.  

Despite advances in its network architecture, the patterns of oscillatory activity underpinning 

mind wandering are poorly understood 20. Multiple studies indicate that mind wandering states 21–

24, and particularly zoning-out (unaware mind wandering) (Boudewyn and Carter 2018), are 

characterized by elevated alpha (~8-12Hz) power. Alpha oscillations are suggested to support 

inhibition-related processes 25,26, and attentional suppression 27 and are further implicated during 

working memory and mental imagery tasks 28, internally-oriented brain states 29,30, and inner speech 

31, all of which figure prominently in the experience of mind wandering. However, at least two 

studies failed to replicate these effects 32,33 and observed greater delta (~2-3Hz) and theta (~4-7Hz) 
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power during mind wandering. Slow-wave brain oscillations are typically associated with 

decreased sustained task-related attention 34. Delta frequency contributions have also been shown 

during increased focus on internal processing and pertinent inhibition of interference 35 whereas 

theta activity has been consistently shown to relate to maintenance of information in working 

memory 34,36. Discrepancies in the observed association between alpha and mind wandering are 

plausibly attributed to the tasks and methods used in the aforementioned studies 32,33. That is, lower 

alpha activity during mind wandering episodes in some studies might be due to the concurrent task 

(breath-counting) involving internally-focused attention and counting (Palva et al. 2005; Sauseng et 

al. 2005). In parallel, it is difficult to compare findings between self-reports that are prompted 

(probe-caught) and the above studies due to the latter using self-caught measures (participants are 

asked to indicate when they catch themselves mind wandering) of mind wandering, which likely 

capture shifts from internal to external focus that probably involve different mechanisms to the 

occurrence of mind wandering.  

Measuring the neurophysiology of self-generated thoughts requires experience sampling 

methods in which participants report on aspects of their experience, thereby affording a prominent 

role to introspective abilities in the assessment of mind wandering 39. A neglected feature of these 

abilities within the context of mind wandering is confidence in these introspective reports. 

Emerging evidence suggests that confidence reflects variability in access to experiential states 

(Fleming & Lau 2014; Seli et al. 2015) and thus is likely to be highly informative in elucidating 

variability in the phenomenology and neurophysiology of mind wandering episodes. Confidence in 

perceptual judgements 40, positively correlates with decision accuracy 41–43, and reliably tracks ERP 

dynamics related to error 44 and sensory processing (e.g. Zakrzewski et al. 2019). Confidence in 

mind wandering reports has to date been neglected but preliminary work has shown that it varies 

greatly within and between individuals and moderates the relationship between response time 

variability and self-reports of mind wandering (Seli et al. 2015) (but see Meier 2018). Nevertheless, 

the neurophysiology of these effects is unknown.  
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One possibility is that if confidence reflects superior access to experiential states, high 

confidence would be associated with more clearly dissociable neural representations. Multivariate 

pattern classification analysis (MVPC) has been successfully used to identify the mapping between 

distributed patterns of neural activity and corresponding mental states (Haxby et al. 2001; Haynes 

and Rees 2006; Jin, Borst, and van Vugt 2019; Mittner et al. 2014). An advantage of MVPC allows 

researchers to assess whether shared information across multiple features (e.g., channels, 

frequency, time points) encodes class-related information (Haxby et al. 2001). Using these 

methods, recent research has revealed associations between decoding accuracy and individual 

differences in perceptual discrimination (Kim et al. 2015) and intra-individual variability in 

confidence 53. The extent to which experiential states can be decoded, reflecting multivariate 

dissimilarity of neural representations, may thus underlie confidence in the corresponding mental 

representations.  

The present study investigated the oscillatory dynamics of experiential states using an 

ecological task lacking performance indicators 54 in order to examine the neurophysiological basis 

of mind wandering, dissociate meta-awareness of mind wandering (henceforth state meta-

awareness) and investigate the neurophysiological implications of participants’ confidence in self-

reports. During concurrent EEG recording, participants listened to an audiobook and were 

intermittently probed regarding their experiential state and state meta-awareness, and rated their 

confidence in both judgements. We expected that mind wandering would be characterized by 

elevated alpha power (Compton et al. 2019) whereas unaware mind wandering would additionally 

be associated with greater power in slow oscillatory bands (delta, theta) 32,33. Motivated by previous 

research showing that joint activity patterns across different features (e.g. frequency bands) can be 

more informative of mental representations than univariate information (Allefeld and Haynes 

2015), we then assessed whether distributed information across patterns of EEG spectral features 

could be used to decode different experiential states using MVPC. These analyses were further 
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guided by our aim to evaluate the hypothesis that introspection confidence in experiential states 

reflects higher dissimilarity of the underlying neural representations. 

 

2 Results 

2.1 Characteristics of mind wandering, state meta-awareness and introspection confidence 

During the audiobook listening task, participants (N=39) reported mind wandering (M%±SD) on 

39.7±17.9 of the probes, with stable rates across blocks (block 1: 41.2±20.6; block 2: 40.9±21.6; 

block 3: 36.9±19.0). Among mind wandering states, participants reported tuning-out (56.6±19.0) 

more often than zoning-out (43.4±19.0). Participants varied (range, M%±SD) in their confidence for 

ES judgements (14.8-91.4, 61.7±7.7), and displayed less confidence in mind wandering reports 

(11.3-90.0, 53.2±19.9), than in on-task reports (8.6-94.2, 64.4±19.0), t(38)=4.78, p<.001, g=.57, 

[0.32 0.90]. Specifically, on-task reports were rated with significantly higher confidence than both 

tune-out (t(38)=2.39, p=.02, g=.34, [0.08 0.67]) and zone-out reports (t(38)=3.80, p<.001, g=.58, 

[0.28 0.96]). Participants were moderately confident in their MA judgments during mind wandering 

states (16.7-92.0, 58.1±6.3), with numerically, albeit non-significantly, greater confidence in tune-

out (17.2-92.3, 58.0±18.8) than in zone-out (6.9-90.5, 52.3±21.8) reports, t(38)=1.55, p=.13, g=.27, 

[-0.06 0.64]. These rates are similar to previous research (Christoff et al. 2009; Seli et al. 2015; 

Varao Sousa et al. 2013) and demonstrate variability in experiential states, state meta-awareness, 

and introspection confidence during the task. 

 

2.2 Audiobook listening assessment and mind wandering frequency 

Accuracy on the assessment averaged across blocks (M%±SD: 74.5±10.0) and was above chance 

performance (50%, one sample t-test: t(38)=15.3, p<.001, g=2.44, [1.84, 3.59]). Performance was 

comparable across blocks (block 1: 72.3±12.0, block 2: 74.6±14.4, block 3: 76.5±12.1), suggesting 

stable motivation throughout the task. Mind wandering frequency reliably significantly correlated 
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negatively with assessment accuracy in the last two blocks (block 1: r=-.29 [95% CI: -.53, .02], 

p=.079 (p=.017, with outliers), block 2: rs=-.43 [-.68, -.10], p=.009 (p<.001, with outliers), block 3: 

r=-.41 [-.68, -.11], p=.011 (p=.011, with outliers), thereby providing an indirect behavioural 

validation of participants’ self-reports and corroborating previous research (Schooler et al. 2004; 

Boudewyn and Carter 2018).  

 

2.3 Oscillatory characteristics of mind wandering and state meta-awareness 

As expected, the cluster-based permutation test revealed greater alpha power during mind 

wandering than on-task states (Figure 1). The analysis revealed two temporally-adjacent clusters 

just prior to probe onset, p=.004, g=0.56 [0.32, 0.92]; p=.024, g=0.50 [0.29, 0.80]. Both effects 

were topographically diffuse and most pronounced over bilateral frontocentral and right posterior 

sites. Similarly, we observed greater alpha power during tuning-out than on-task states in a single 

cluster, p=.008, g=0.66 [0.37, 1.05] (Supplementary Figure 1). This effect was also close to probe 

onset and was primarily observed over fronto-central and parieto-occipital regions. There were no 

other significant differences between states in the other frequency bands.  
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Figure 1. Oscillatory differences between states (MW – on-task, N=39) as a function of time 

relative to probe onset (0s). a) Time-frequency decomposition averaged across electrode sites. 

Broken black rectangles denote spectrotemporal clusters reflecting significant state differences 

(p<.025, two-sided cluster-based permutation test). b) Alpha (8-13Hz) spectral power averaged 

over the electrode sites of the two clusters (significance denoted by black bars on the x-axis). c) 

Topography of the clusters at different 500/550ms sub-windows (black markers denote electrodes 

that were present on at least 50% of samples in each time window). MW = Mind Wandering. 

 

In line with the foregoing results, zoning-out (unaware mind wandering) states were 

characterized by greater power than on-task states in delta, theta, and alpha bands in two distinct 

time windows (Figure 2). Alpha power was greater for zoning-out than on-task states in a short 

interval early in the epoch, p=.004, g=0.75 [0.51, 1.06], and a long interval just prior to probe onset, 

p=.002, g=0.86 [0.57, 1.28]. Both effects were larger in magnitude than the comparisons between 

on-task and mind wandering and tune-out states and topographically diffuse but strongest over 

bilateral frontal and posterior sites. Similarly, theta power was greater in zoning-out than on-task 

states in a single window overlapping with the late alpha effect, p=.010, g=0.83 [0.54, 1.24]; this 

effect was larger in right frontal electrodes but over time shifted to left temporo-parietal sites. A 
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second theta band cluster overlapped in time with the early alpha cluster but did not achieve 

significance despite a large effect size, p=.028, g=0.76 [0.50, 1.14]. Zoning-out states were also 

associated with greater delta power than on-task states in two clusters that were temporally 

coincident with the foregoing effects but with substantially larger effect sizes, p=.018, g=1.43 

[1.04, 2.16]; p=.018, g=1.16 [0.74 1.73]. These effects were topographically more focal and largely 

restricted to midline central electrodes. 
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Figure 2. Oscillatory differences between states (zoning-out – on-task, N=25) as a function of time 

relative to probe onset (0s). a) Time-frequency decomposition averaged across electrode sites. 

Broken black rectangles indicate spectrotemporal clusters reflecting a significant difference 

(p<.025, two-sided cluster-based permutation test) and the grey rectangle indicates a trend-level 

(.025<p<.05) cluster. b, c, d) Alpha (8-13Hz), theta (4-7Hz) and delta (2-3Hz) spectral power 

averaged over the electrode sites of the clusters (black bars=significant, grey bar=trend). e) 

Topography of the clusters at different sub-windows within the cluster (black markers denote 
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electrodes that were present on at least 50% of samples in each time window, white electrodes 

mark topography of the trend-level effect).  

 

Zoning-out states were also characterized by greater theta power than tuning-out states in a 

single cluster close to probe onset similar to previous effects at a trend-level of significance, 

p=.026, g=0.86 [0.45 1.41] (Supplementary Figure 2). This effect was most pronounced in 

parieto-central electrodes. Failure to reach significance is plausibly due to the reduced sample for 

this analysis (N=21) due to MW trial partitioning. There were no other significant effects in the 

other frequency bands. 

 

2.4 Multivariate pattern classification analyses 

The univariate analyses of the EEG signals managed to identify spectral and spatio-temporal 

differences between states. This analysis, however, failed to demonstrate a robust and significant 

difference between aware and unaware mind wandering. In the following, we present the results for 

two sets of analyses: the time-varying MVPC analyses performed in the epoch before probe onset 

(-10 to 0s; 21 bins of 500ms) and the time-averaged MVPC analyses performed after collapsing 

temporal information for decoding across the entire epoch. 

 

2.4.1 Time-varying MVPC 

For each two-class (state) comparison, we tested four models that used as features the spectral 

power in the 64 channels in the delta, theta and alpha frequency bands (multi-frequency model) and 

in these three bands separately (single-frequency band models). At the participant-level, we report 

the percentage of participants for which significant decoding was obtained in at least one bin.  
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The multi-frequency model (trials per class: 23.36±9.01) significantly decoded mind wandering 

from on-task states in 26% of participants, with similar proportions in single-frequency models: 

delta: 23%; theta: 15%; and alpha: 26% (Supplementary Figure 3a). At the group level, both the 

multi-frequency and the single-frequency models were able to decode mind wandering and on-task 

states with significant accuracies observed at various bins in the window (Figure 3a). Similarly, the 

multi-frequency model (trials per class: 18.78±8.20) significantly decoded on-task from tuning-out 

states in 22% of participants although the single-frequency models displayed superior decoding: 

delta: 44%; theta: 30%; alpha: 33% (Supplementary Figure 3b). Group-level classification was 

significant in four bins in the multi-frequency model with similar results for theta and alpha, but not 

delta (Figure 3b). Significant decoding accuracy between zoning-out and on-task states (trials per 

class: 13.88±5.12) was observed in 24% of participants for the multi-frequency model, with 

comparable or superior accuracy in the single-frequency models (delta: 44%; theta: 36%; alpha: 

24%; Supplementary Figure 3c). Group-level significant decoding was found for the multi-

frequency model and the single-frequency models (Figure 3c). The theta and delta effects were 

spread throughout the window with the delta model exhibiting decoding accuracy across the full 

window. Tuning-out and zoning-out states (trials per class: 12.57±3.63) were decoded in 14% of 

participants in the multi-frequency model, with superior decoding in the single-frequency models 

(delta: 24%; theta: 19%; alpha: 29%, Supplementary Figure 3d). At the group-level, the multi-

frequency and single-frequency models showed significant decoding although this was restricted to 

one bin in the former and generalized throughout the window in the latter (Figure 3d). These 

results indicate that decoding for all two-class comparisons was significant in several time bins for 

models using both the multi-frequency model and the reduced feature space (single-frequency) 

models suggesting that the individual frequency bands alone are sufficient to decode experiential 

states and state meta-awareness.  
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Figure 3. Time-varying MVPC (Multivariate Pattern Classification analysis): Group decoding 

accuracy across participants in multi-frequency (top panels) and single-frequency (bottom panels) 

models for four different state contrasts. The null distribution was obtained by 5000 random 

permutations after shuffling the labels (black lines). Above chance decoding (relative to the 

permutation distribution) is denoted by horizontal x-axis coloured markers (based on an FDR 

correction; see Supplementary Table 1). MW = Mind Wandering. 

 

2.4.2 Time-averaged MVPC 

For time-averaged MVPC, the multi-frequency model significantly decoded mind wandering from 

on-task states in 28% of participants (Figure 4a). Individual-frequency models decoded states in 

similar proportions of participants: delta: 21%; theta: 26%; alpha: 23% (Supplementary Figure 

4e), and did not significantly differ, p>pth (multi-frequency model vs. single-frequency models). At 

the group-level (Supplementary Figure 4a), the multi-frequency model displayed significant 

decoding accuracy (range, M%±SE: 37.4-86.9, 57.25±1.99, p=0), as did single-frequency models: 

delta (22.22-83.33, 56.75±1.85, p<.001), theta (16.66-95.83, 56.68±2.35, p<.001), and alpha 

(35.55-81.35, 56.96±1.53, p=0).  

The multi-frequency model decoded tuning-out from on-task states in 19% of participants (delta: 

11%; theta: 15%; alpha: 19%, Supplementary Figure 4f), with no significant differences between 
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models, p>pth. At the group-level (Supplementary Figure 4b), the multi-frequency model 

displayed significant decoding accuracy (36.66-87.5, 57.20±2.12, p<.001), as did the single-

frequency models (delta: 28.33-86.66; 54.91±2.54, p=.011; theta: 33.33-95.83, 58.68±2.26, p=0; 

alpha: 36.11-79.16, 55.26±2.21, p=.003).  

The multi-frequency model also significantly decoded zoning-out from on-task states in 44% of 

participants. The single-frequency models (Supplementary Figure 4g) significantly decoded these 

states in fewer participants (delta: 32%; theta: 28% [Figure 4b]; alpha: 32%), but these differences 

were not significant, p>pth. At the group-level (Supplementary Figure 4c), the multi-frequency 

model showed the greatest decoding accuracy (33.88-47.37, 63.70±2.79, p=0), albeit with 

comparable accuracies in the single-frequency models (delta: 34.44-90.28, 60.32±3.09, p<.001; 

theta: 15.28-94.44, 59.11±3.18, p=.002; alpha: 31.94-88.88, 61.39±2.66, p<.001).  

Meta-awareness of mind wandering (zoning-out [unaware] vs. tuning-out [aware]) was 

significantly decoded in 29% of participants by the multi-frequency model (Supplementary 

Figure 4h). Performance varied across single-frequency models (delta: 19% [Figure 4c]; theta: 

10%; alpha: 38%), but did not significantly differ, p>pth. At the group-level (Supplementary 

Figure 4d) the multi-frequency model displayed significant decoding (23.33-89.17, 55.50±3.43, 

p=.027), as did the alpha model (19.17-90.00, 59.50±3.88, p=.005), and delta model (34.72-100, 

56.64±3.22, p=.007) but not the theta model (6.67-94.44, 53.35±3.76, p=.154). Owing to the 

fluctuating nature of mind wandering states, we expected that time-varying MVPC would reveal 

less consistent individual and group-level effects than time-averaged MVPC. However, the results 

did not suggest any substantial differences between the two approaches. Both performed similarly 

for all contrasts, albeit the time-averaged MVPC using theta frequency information was poor in 

decoding state meta-awareness. 
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Figure 4.  Time-averaged MVPC (Multivariate Pattern Classification analysis): (a-c) Decoding 

accuracy in individual participants relative to permutation distributions: chance level obtained by 

500 random permutations after shuffling the class labels (upper panel). (d-f) Scatterplots of 

participant-level mean decoding accuracies and mean judgment confidence ratings. Red markers 

denote bivariate outliers; square brackets denote Bootstrap 95% CIs. MW = Mind Wandering. 

* p<.05 

 

2.4.3. Association between decoding accuracy and introspection confidence 

Our final set of analyses were motivated by the hypothesis that introspection confidence reflects 

conscious accessibility to experiential states. Toward this end, we evaluated the predictions that 

individual decoding accuracies in select frequency bands would positively correlate with 

confidence in experiential state judgments. We computed correlations between decoding accuracies 
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(multi-frequency model) and ES judgement confidence for on-task vs. mind wandering and tuning-

out states, and decoding accuracies (theta and delta models) with MW and MA judgement 

confidence for zoning-out vs. on-task and tuning-out, respectively.  

In support of our overarching prediction, decoding accuracies for MW vs. on-task (multi-

frequency model) positively correlated with ES judgement confidence ratings, p=.036 (Figure 4d, 

[p=.08, with outliers]). By contrast, decoding accuracies for tuning-out vs. on-task (multi-frequency 

model) did not significantly correlate with ES judgement confidence, r=-.003, p=.99 [-0.36, 0.47]. 

Decoding accuracies for zoning-out vs. on-task (theta model) correlated positively with MW 

judgment confidence, p=.029 (Figure 4e, [p=.71, with outliers]), but was non-significant for the 

delta model, r=-.26, p=.22 [-.50, .06]. Finally, confidence in meta-awareness judgments positively 

correlated with decoding accuracies (delta model) for zoning-out vs. tuning-out, p=.018 (Figure 4f, 

[p=.32, with outliers]), but did not significantly correlate with decoding accuracies for the theta 

model, r=.27, p=.27 [-0.04, 0.57]. These results collectively suggest that experiential states rated 

with higher confidence are also more dissimilar at the neurophysiological level. 

 

3 Discussion  

Using EEG and an ecological listening task, this study investigated the neural oscillatory dynamics 

of mind wandering and meta-awareness states. Mind wandering was reliably characterized by 

greater alpha power than on-task states with more prominent effects in this band and both delta and 

theta bands for unaware mind wandering. Consistent with the notion that mind wandering is more 

pronounced when one lacks meta-awareness (Christoff et al. 2009), moment-to-moment variations 

between unaware mind wandering and on-task states were the most reliably decoded via 

multivariate pattern classification. Critically, we found that decoding accuracy in the classification 

of different experiential states predicted confidence in the corresponding state judgments. This is 

consistent with the proposal that confidence indexes metacognitive access to experiential states.   
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Mind wandering as external inattention and internal focus 

As in previous research demonstrating the impact of mind wandering on comprehension (e.g. 

Boudewyn and Carter 2018), self-reported mind wandering was associated with poorer recall in the 

listening task. One of the principal results of this study was that power in the alpha frequency band 

was greater during mind wandering than on-task states, replicating previous work (Macdonald et al. 

2011; Baldwin et al. 2017; Boudewyn and Carter 2018; Compton et al. 2019). This effect was 

specific to the alpha band and generalized across meta-awareness states suggesting that elevated 

alpha power is a frequency-specific but generalized neurophysiological characteristic of mind 

wandering. Our findings are in line with studies showing elevated alpha power at posterior sites 

when attention is focused internally (Cooper et al. 2003) as well as multiple lines of evidence 

suggesting that mind wandering is associated with decay of perceptual processing (Smallwood et 

al. 2008; Barron et al. 2011). These results suggest that greater alpha power reflects detachment 

from the external world and a shift towards internal processing (Smallwood and Schooler 2015). 

Our findings suggest that unaware mind wandering is more divergent from on-task states than 

episodes of mind wandering with awareness 13. Although both were characterized by higher alpha 

power compared to on-task states (Boudewyn and Carter, 2018), unaware mind wandering was 

additionally associated with greater delta and theta power, particularly in right frontal and parieto-

central sites, respectively. Aware and unaware mind wandering had suggestively distinct oscillatory 

features thereby implying that state meta-awareness represents a dimension of attention that is 

orthogonal to the direction of attention. These findings may help to explain previous reports of 

elevated delta and theta during mind wandering in self-caught paradigms 32,33, which in our view 

almost exclusively index unaware mind wandering.  

The observation of elevated theta and delta power during unaware mind wandering aligns with 

previous research on the cognitive correlates of oscillatory activity in these bands. Theta 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.03.12.435068doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435068
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
Electrophysiology of mind wandering 

oscillations are suggested to be involved in cognitive control 61, working memory 34,36 and conflict 

detection 62, processes that could be implicated in appropriate selection between multiple 

simultaneous thoughts related to the processing of current concerns during unaware mind 

wandering. This aligns with hypothesised parallels between mind wandering and meditative states 

related to moment-to-moment navigation through mental objects 63. In particular, our finding of 

higher theta power during unaware than aware mind wandering states is potentially congruent with 

higher frontal midline and temporo-parietal theta during meditative states characterised by deeper 

absorption 64 and thus suggest potential links between absorption and zone-outs. Delta frequency 

contributions have been revealed during increased focus on internal processing and pertinent 

inhibition of interference 35. Delta and theta activity could thus reflect the involvement of memory 

in self-related processing during self-generated thoughts in the context of unaware mind wandering 

episodes. The complementary role of delta activity might be to preserve internal processing during 

unaware mind wandering by inhibiting external interference 35,65. Accordingly, our findings may 

align with the proposal that mind wandering recruits processes to ensure that one’s internal train of 

thought is maintained 66,67.  

 

Decoding of experiential states  

Although our data were not event-related, our time-varying multivariate classifier was able to trace 

mind wandering in several temporal segments within the 10 second time window preceding 

experiential state probes. Moreover, MVPC allowed us to decode experiential states from 

oscillatory activity at both participant- and group-levels, highlighting the utility of spectral 

measures coupled with machine learning in decoding mind wandering (Groot et al. 2021; Jin et al. 

2019) and state meta-awareness. The time-varying and time-averaged analyses did not reveal 

substantially different results. In both analyses, all models decoded mind wandering from on-task 

states, including in approximately one-quarter of participants (except for the time-varying theta 

model) and with comparable classification accuracies. Similarly, aware mind wandering was 
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decoded from on-task states in both analyses, with models using power in the delta band for 

classification showing the weakest classification performance. Time-varying analysis yielded 

significant decoding between unaware mind wandering and on-task states in multiple time 

windows, especially for delta and theta models, which decoded the two experiential states across 

almost the entire epoch. Comparably, the time-averaged MVPC achieved significance in more 

participants than any other classification, and also achieved the highest decoding accuracy (group-

level). Finally, the time-averaged multi-frequency MVPC decoded aware from unaware mind 

wandering states in 29% of participants and the alpha model achieved the highest single-participant 

decoding (38%) for this classification.  

Taken together, these results suggest that information pertaining to meta-awareness might be 

distributed across different frequency bands including slow oscillations – as shown in the higher 

prevalence of significant decoding in the sample. However, our analyses did not reveal any robust 

evidence for frequency specificity and thus it seems that there is not a specific oscillatory pattern 

that contains more information about mind wandering and state meta-awareness. We further 

corroborate that unaware mind wandering is more dissimilar at the neural level to external attention 

(on-task states) (Christoff et al. 2009). Combined with our MVPC results decoding aware from 

unaware mind wandering, we confirm that state meta-awareness should be considered as an 

important dimension of mind wandering in future studies, with evidence for disparate neural 

substrates for aware and unaware mind wandering. Collectively, MVPC trained on EEG-extracted 

features reliably decoded different experiential states both at participant and group levels. 

Discrepancies between group-level and participant-level classification is in line with research 

showing the utility of using individualized markers in decoding mind wandering 68.   

 

Introspection confidence  

Previous research investigating confidence suggests that self-reports of mind wandering 

characterised by higher confidence constitute more accurate evaluations of one’s experiential states 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.03.12.435068doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435068
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
Electrophysiology of mind wandering 

(Seli et al. 2015). Our results build upon this, showing that confidence in experiential state 

judgments tended to map onto state meta-awareness: participants reported the greatest certainty for 

on-task episodes, were less confident in aware mind wandering, and the least for mind wandering 

episodes without awareness, although confidence ratings between the latter two were not 

significantly different. Future work could investigate how confidence relates to other prominent 

dimensions of mind wandering, such as intentionality 69,70. Participant-level decoding of 

experiential states allowed us to evaluate the prediction that introspection confidence would be 

positively associated with decoding accuracy. Indeed, confidence in different experiential state 

judgments reliably correlated with individual differences in MVPC decoding accuracies. In 

particular, confidence correlated with cross-frequency decoding accuracy in classifying mind 

wandering from on-task states. In addition, consistent with findings implicating theta activity in 

metacognition 71, we also found that confidence in mind wandering judgments was associated with 

decoding of unaware mind wandering from on-task states accuracy in the theta model. Finally, 

confidence in meta-awareness judgements was positively associated with delta model accuracy in 

the decoding of aware versus unaware mind wandering. Collectively, these results demonstrate that 

confidence in one’s experiential states is positively related to the multivariate decodability of these 

states with implications for the neural bases of experiential state confidence. 

Our results align with previous findings 47 suggesting that high confidence levels reflect a more 

accurate assessment of one’s experiential state reflected in stronger coupling between mind 

wandering reports and well-established impacts on behaviour. We extend this notion and provide 

evidence that higher confidence may reflect greater dissociation of experiential states at the 

neurophysiological level. In MVPC, higher decoding accuracy denotes better discriminability or 

separation between EEG patterns associated with each experiential state class. Although this 

discriminability refers only to pattern analysis, it is possible that more dissociable or distinct neural 

patterns are metacognitively represented and therefore reflected in individuals’ confidence ratings. 

One interpretation of these findings thus is that states accompanied by high confidence are 
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quantitatively more intense or salient and thus characterized by superior conscious access that is 

grounded in or related to underlying neurophysiological discriminability. Alternatively, this 

relationship might be attributable to participants with low confidence displaying weak experiential 

state discriminability, i.e., they have relatively poor metacognitive access in their experiential states 

resulting in lower multivariate decoding. However, whether and to what extent confidence 

judgements about internal states reflect a readout of discriminability between neural patterns 

remains an unresolved issue. Recent work demonstrated that confidence judgements and 

behavioural accuracy are dissociated during decision making and these dissociations can be 

explained by differences in neural computations 72. One limitation in this study is that due to the 

small number of trials per certain classes in certain participants, our analyses were limited to mean 

confidence ratings. Future research on mind wandering could utilize confidence ratings on a trial-

by-trial basis to provide a more precise estimate of the relationship between decoding accuracy and 

classification accuracy (Weaver et al. 2019).  

 

Conclusions 

Our findings expand upon research linking elevated alpha power with mind wandering episodes 

and reveal distinct electrophysiological characteristics of state meta-awareness. Unaware mind 

wandering was consistently more dissimilar from on-task states than aware mind wandering, as 

evidenced by superior decoding and greater neurophysiological differences. These results highlight 

a clear distinction between unaware and aware mind wandering states and confirm the utility of 

introspective methods in the study of transient fluctuations in conscious experience. The observed 

effects demonstrate the potential of using EEG machine learning classifiers to capture mind 

wandering and state meta-awareness during an ecological task without performance indicators. We 

found that confidence in experiential state reports correlated with the decoding of the respective 

states, suggesting that introspection confidence scales with neurophysiological dissimilarity. These 
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effects suggest that introspection confidence taps into variability in metacognitive access to, and 

differential phenomenological characteristics, of experiential states.  

 

4 Materials and Methods 

4.1 Participants 

Forty-six right-handed participants (28 females, age range: 18-43, MAge=25.9, SD=5.7; years of 

education [post-secondary school]: MYoe=4.3, SD=2.2) with normal or corrected-to-normal vision 

provided written informed consent to volunteer in the study and were compensated £10 per hour. A 

sample size of 40 allowed us to detect paired-samples effects of d≥.45 (a=.05, 1-b=.80, two-tailed). 

We recruited 46 participants due to potential attrition and loss of participants because of 

insufficient numbers of trials for the different state responses. All participants self-reported 

proficiency in English (1=no proficiency, to 10=native speaker; M=9.2, SD=1.04). Seven 

participants were excluded due to technical issues during EEG data recording (n=1), or insufficient 

number of response types in the task (n=6; see section 4.5), resulting in a final sample of 39 

participants (25 females, age range: 18-43, MAge=25.6, SD=5.8, English language skills: [M=9.2%, 

SD=1.0]). The study was approved by the Research Ethics Committee of the Department of 

Psychology at Goldsmiths, University of London. 

 

4.2 Materials 

Audiobook listening task. This task consisted of participants listening to an audio version of Bill 

Bryson’s A Short History of Nearly Everything (2004), a general science book that has previously 

been used in mind wandering research (e.g. Smallwood, Nind, et al. 2009). Participants focused on 

a central white fixation cross on a grey background at a distance of approximately 90cm and 

listened (through speakers) to the audiobook in three 20min blocks (corresponding to chapters 7, 
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24, and 30 in counterbalanced order). During the task, participants were prompted via on-screen 

thought probes at pseudorandom intervals (30, 40, or 50s) to report on their experiential state: “Just 

before the probe, were you mind wandering?” (ES Judgement, response options: yes, no). If a 

participant responded in the affirmative, they were next prompted regarding state meta-awareness: 

“Just before the probe, were you zoning-out or tuning out?” (MA Judgement, response options: 

tuning-out, zoning-out). Participants responded to both probes using a continuous visual analogue 

scale in which they made their binary judgement combined with an estimate of confidence in their 

response (ranging from completely not confident to completely confident). Response options for 

both probes alternated sides randomly to control for response biases.  

Audiobook listening assessment. A sequence of 20 true/false questions (corresponding to the 

content of the preceding block) were administered to participants after each block. Question order 

followed the presentation order of the information in the audiobook with each question 

corresponding to approximately 1 minute of content. 

 

4.3 Procedure 

After EEG preparation and general instructions, participants completed a battery of psychometric 

measures (to be reported elsewhere). Participants sat in a dimly lit room and first underwent a 5-

min eyes-open resting state condition in which they focused on a central white fixation cross 

(1cm2) whilst their EEG was recorded and subsequently completed a self-report resting state 

measure (to be reported elsewhere).  

Prior to completing the task, mind wandering was defined to participants as any thoughts that 

are not related to the material being presented 13,74, and are usually internally focused. Participants 

were provided with examples of mind wandering, such as thoughts about past events, friends or 

significant others or concerns about an upcoming exam 57. Tuning out was defined as a state in 

which one mind wanders and is aware whilst they are doing so whereas zoning out was defined as a 
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state in which one mind wanders and is unaware that they are doing so until they “catch” 

themselves. 

 The experimenter introduced the audiobook listening task and defined the response options in 

the mind wandering task and ensured that participants understood these options. Participants 

completed a 3min training block followed by three 20min experimental blocks (30 probes per 

block), resulting in 90 probes in total. After each block, participants completed the audiobook 

listening assessment. Blocks took approximately 25 mins to complete with the entire experiment 

lasting approximately 2.5 hours. The experiment was programmed and implemented in 

MATLAB® (2018a, The MathWorks, Inc., MA), using the Psychophysics Toolbox extensions 75. 

All data are available upon request. 

 

4.4 Behavioural analyses 

Participants’ data were segregated at the probe-level according to self-report in two ways for 

separate analyses: dichotomously (on-task vs. mind wandering) and trichotomously (on-task vs. 

tuning-out vs. zoning-out). Frequency (%) of each state report and performance on the audiobook 

listening assessment (accuracy [%]) were additionally computed at the block-level.  

 

4.5 Electrophysiological data acquisition and analyses 

EEG signals were recorded using a 64-Ag-AgCl electrode Biosemi ActiveTwo system. Electrodes 

were placed according to the International 10-20 system. Two electrodes placed on the participants’ 

earlobes were used as reference. Additional electrodes recorded right side vertical (VEOG) and 

bilateral horizontal (HEOG) electro-oculogram signals to be used for artefact detection and 

rejection. The recording was sampled at 512Hz for all participants.  
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Data pre-processing was implemented using the EEGlab toolbox in MATLAB 76. The average 

of the two earlobe electrodes was used as reference; the data were subsequently filtered with a 

high-pass filter at 0.5Hz and a notch-filter between 48-52Hz. We used the pop_eegfiltnew function 

in EEGlab, which applies a finite impulse response (FIR) filter to the data using an automatic filter 

order (3380 and 846, respectively). Bad electrodes (range: 0-2 across participants) detected during 

the recording, or via visual inspection of the raw data, were removed. Next, independent 

component analysis (ICA) was performed on the continuous data to detect eye-movement artefacts. 

IC scalp maps, spectra and raw activity were visually inspected to reject further artefacts such as 

eye movements, further channel noise, and prominent muscle movements. Next, data from removed 

electrodes were replaced using spherical interpolation and all data were re-referenced using the 

average of the 64 channels.  

For each participant, continuous data were next segmented into 14s epochs: -12 to 2s relative to 

probe onset. The time window of interest extended from -10 to 0s, but an additional 2s was 

included on each side to avoid edge artefacts in subsequent analyses; these data were omitted after 

time-frequency transformation. Further epoch exclusion was conducted via manual rejection based 

on visual inspection. Data were subsequently segregated into two conditions corresponding to the 

experiential states reported by the participants: on-task vs. mind wandering. Mind wandering states 

were further partitioned into two meta-awareness states: tuning-out vs. zoning-out. A time-

frequency transformation of the data was implemented by applying a Hanning window at 50ms 

steps to each 14s-long epoch and corresponding baseline segment for frequencies of 1 to 45Hz. 

Window length varied along the frequency dimension, with 7000ms at the lowest frequency (1Hz) 

decreasing linearly (time window=7/frequency) at each frequency bin, and 150ms for 45Hz. Trial-

wise spectral power was averaged and then normalised by division of a baseline level (gain model; 

Grandchamp and Delorme 2011). We used as baseline a 700ms epoch during the inter-stimulus 

interval after the probe response phase and start of the next trial. 
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Participants varied in their mind wandering and meta-awareness reports, resulting in different 

sample sizes and respective numbers of trials per state for each comparison. State-specific data that 

included fewer than 10% of probes (9 trials) were excluded from any analyses involving the 

respective state. Four main contrasts were implemented with variable trials (M±SD) and sample 

sizes [N]: (i) on-task (39.7±15.0) vs. mind wandering (27.4±12.0) [N=39]; (ii) on-task (36.0±13.0) 

vs. tuning-out (20.5±9.8) [N=27]; (iii) on-task (35.5±13.7) vs. zoning-out (14.1±5.4) [N=25]; and 

(iv) tuning-out (22.0±13.4) vs. zoning-out (13.3±4.0) [N=21]. 

 

4.6 Multivariate pattern classification analysis (MVPC) 

Complementing the univariate analysis of spectral power differences, we implemented a two-class 

MVPC for the four aforementioned two-state contrasts. Here, we hypothesized that information 

about the different experiential states would be shared across different frequency bands and 

electrodes. Insofar as this information could unfold over time, we used time-varying MVPC to 

investigate whether subjective reports about experiential states could be decoded from trial-wise 

EEG patterns of oscillatory activity across different frequency bands, and separately for different 

time points.  

Our analyses were based on trial-wise measures of spectral power for delta, theta and alpha 

frequency bands and for each of the 64 EEG channels. These measures were averaged in bins of 

500ms within 10s epochs, resulting in 21 time bins. A support vector machine (SVM library for 

MATLAB; Lotte et al. 2007; Chang and Lin 2011) was trained to distinguish between classes 

(states) at each time bin. Each of the implemented two-class MVPC analyses were balanced by 

matching the number of trials in each class using semi-random trial selection. We used 3-fold 

cross-validation to obtain estimates of decoding accuracy at the participant-level. In order to 

examine whether single-frequency classification was superior or comparable to cross-frequency 
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classification (multi-frequency model), we performed control MVPC analyses separately for each 

frequency band (reduced feature space). 

An important consideration is that, although mind wandering processes could unfold over time, 

they are inherently not time-locked, and indeed our experimental design was not event-related. To 

account for the case that there would not be a reliable temporal representation of mind wandering 

states across trials, we further complemented the time-varying MVPC with a time-averaged MVPC 

approach. We collapsed the spectral power measures across time to assess whether we could still 

decode classes from the same spectral and spatial features. An additional advantage of this second 

approach is that using time-averaged measures of spectral power in MVPC reduces the number of 

multiple comparisons. Spectral power at each time point was averaged across the whole epoch (−10 

to 0s before probe onset). Similar to the time-varying analyses, the time-averaged MVPC was 

performed for the multi-frequency model and separately for each frequency band of interest 

(single-frequency models). Finally, we conducted correlation analyses between decoding 

accuracies derived from our time-averaged models and participants’ confidence in their respective 

reports. Correlation analyses were performed exclusively in a subset of the models, based on our 

EEG findings and previous research (see section 4.7.3).  

 

4.7 Statistical analyses   

4.7.1 Behavioural data 

Confidence ratings between states were compared with paired-samples t-tests (two-tailed) and 

assessment performance was compared to 50% using a one-sample t-test. Associations between 

task-level mind wandering frequency and assessment accuracy were assessed by correlational 

analyses following automatic bivariate outlier (boxplot method) removal using the Robust 

Correlation toolbox in MATLAB 80 in the computation of skipped correlations 81–83. We report 

Spearman’s rs for data that violated parametric test assumptions. 
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4.7.2 Spectral analysis 

Significant differences in the spectral power between different states were assessed by means of 

cluster-based paired permutation tests across participants 84. Non-parametric cluster permutation 

tests were used separately for pre-specified oscillatory frequency bins (delta [2-3Hz], theta [4-7Hz], 

alpha [8-13Hz]). These analyses were undertaken in two phases. First, we calculated the observed 

test statistic for the respective contrast by: (i) conducting paired-samples t-tests comparing the two 

states at each data sample (frequency x channel x time); (ii) samples whose t-values were below 

threshold (α<.05) were selected and clustered in sets based on feature adjacency (spectral, spatial, 

and temporal); and (iii) t-values were summed to compute cluster-level statistics whose maximum 

served as the test statistic to evaluate state differences. The second phase entailed the same steps 

but this time the test statistic was computed for 500 permutations of randomly partitioned data in 

two subsets (Monte Carlo permutation test). These test statistics were compared to the observed test 

statistic 84. The cluster-level significance value was set at two-tailed α<.025 with a minimum of 2 

neighbouring channels constituting a cluster. This method controls for multiple comparisons by 

controlling the family wise error rate at α=.05 We interpret multiple effects in the range of 

.025<p<.030 as reflecting trends. The analyses were conducted with the Fieldtrip toolbox in 

MATLAB 84. Effect sizes were estimated using Hedges’s g and bootstrap 95% confidence intervals 

(CI, bias-corrected and accelerated method, 10000 samples [Efron 1987]), on power averages 

across frequency, time window, and electrode sites identified by cluster analyses, using the 

Measures of Effect Size Toolbox in MATLAB (Hentschke 2021).  

 

4.7.3 MVPC analyses 

For the time-varying MVPC analyses, we initially performed participant-level classification and 

later estimated group-level decoding accuracy averaged across participants. At the participant level, 
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the null distribution for accuracy was computed by performing the analysis 500 times after 

randomly shuffling the class labels in the data. P-values were computed at each time bin as the 

proportions (%) of permutation accuracies that are greater than or equal to the observed decoding 

accuracy (mean accuracy of 3-fold cross-validation), yielding one p-value per time bin. We report 

the proportion of participants for which we observed significant decoding in at least one time bin. 

Next, statistical assessment with a permutation test was performed at the group-level; we compared 

group mean accuracies from cross-validation and the estimated null distribution (Monte Carlo 

permutation test, 5000 permutations) to identify the time bins showing statistically significant 

decoding accuracy across participants. Both at the participant and group-levels, we corrected for 

multiple comparisons by controlling the false discovery rate (FDR) at .05 by using an adaptive two-

stage linear step-up procedure 86. At the group-level, the corrected threshold p-value obtained from 

this procedure, pth, is given when multiple comparisons were performed.  

Time-averaged MVPC analyses were performed in the same manner but were limited to a 

single averaged time bin. At the participant level, the null distribution for accuracy was computed 

by performing the analysis 500 times after randomly shuffling the class labels in the data. P-values 

were computed as the proportions (%) of permutation accuracies that are greater than or equal to 

the observed decoding accuracy (mean accuracy of 3-fold cross-validation), yielding one p-value 

per participant. We report the percentage of participants for which we observed significant (p<.05) 

decoding for each model (multifrequency, single-frequency), in addition to the mean observed 

accuracies at the group-level. Different models were compared using the Monte Carlo approach 

described above (paired permutation test). Finally, we assessed associations between mean 

participant-level decoding accuracies for each comparison and participants’ corresponding mean 

confidence ratings. To minimize the family-wise error rate, we selected a small number of models 

for this analysis based on the previous literature and our EEG data. We examined the relationship 

between decoding accuracies in the multi-frequency model and ES judgement confidence for on-

task vs. mind wandering and tuning-out states, and theta and delta models’ decoding accuracies 
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with ES and MA judgement confidence for zoning-out vs. on-task and tuning-out respectively. As 

described above, bivariate outliers were removed in the computation of skipped Pearson 

correlations 81–83.  

Data Availability: The data that support the findings of this study are available from the 

corresponding author upon request.  

Code Availability: Custom code used for MVPC analyses is available from the corresponding 

author upon request.  
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 2 

Supplementary Results 

 

Supplementary Figure 1. Oscillatory differences between states (on-task – tuning-out, N=27) as a 

function of time relative to probe onset (0s). a) Time frequency decomposition averaged across all 

electrode sites. The broken black rectangle indicates the spectrotemporal cluster reflecting 

significant state differences (p<.025, two-sided cluster-based permutation test). b) Alpha (8-13Hz) 

spectral power averaged over the electrode sites of the cluster (significance denoted by a black bar 

on the x-axis). c) Topography of the cluster at different 400/450ms sub-windows (black markers 

denote electrodes that were present in at least 50% of samples in each time window).  
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 3 

 

Supplementary Figure 2. Oscillatory differences between states (zoning-out - tuning-out, N=21) as 

a function of time relative to probe onset (0s). a) Time frequency decomposition averaged across 

electrode sites. The broken grey rectangle denotes a spectrotemporal cluster reflecting the largest 

identified state differences (p=.026, two-sided cluster-based permutation test). b) Theta (4-7Hz) 

spectral power averaged over the electrode sites of the cluster (trend effect denoted by grey bar on 

the x-axis). c) Topography of the cluster at two 600ms sub-windows (white markers denote 

electrodes that were present at least 50% of samples in time window). 
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Supplementary Figure 3. Time-varying MVPC (Multivariate Pattern Classification analysis): 

Participants (count and percentage) with significant (p<pth) decoding in at least one time bin. MW 

= Mind Wandering. 
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Supplementary Table 1 

Time-varying MVPC (Multivariate Pattern Classification analysis) – Group-level analyses FDR 

(False Discovery Rate) threshold p-values 

 Multi-

frequency 

Delta Theta Alpha 

MW vs. on-task (N=39) p≤pth=.002 p≤pth=.026 p≤ pth =.018 p≤ pth =.008 

Tuning-out vs. on-task (N=27) p≤ pth =.016 ns, p> pth p≤ pth =.017 p≤ pth =.005 

Zoning-out vs. on-task (N=25) p≤pth=.003 p≤ pth =.300 p≤pth=.037 p≤ pth <.001 

Zoning-out vs. tuning-out (N=21) p≤pth<.001 p≤pth=.016 p≤pth=.021 p≤pth =.006 

 

* These correspond to Figure 3 of the main text.  

* MW = Mind Wandering. 
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 6 

 

Supplementary Figure 4. Time-averaged MVPC (Multivariate Pattern Classification analysis): (a-

d) Group decoding accuracy across participants in multi-frequency and single-frequency models for 

four different state contrasts. (d-f) Participants (count and percentage) with significant (p<.05) 

decoding. MW = Mind wandering. 
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