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Abstract

Disentangling the effects of selection and drift is a long-standing problem in
population genetics. Recently, simulations shows that pervasive selection may bias
the inference of demography. Ideally, models for the inference of demography
and selection should account for the interaction between these two forces. With15

simulation-based likelihood-free methods such as Approximate Bayesian Computa-
tion, demography and selection parameters can be jointly estimated (ABC). We pro-
pose a ABC-Random Forests framework to jointly infer demographic and selection
parameters from temporal population genomic data (e.g. experimental evolution,
monitored populations, ancient DNA). Our framework allowed the separation of20

demography (census size, N) from the genetic drift (effective population size, Ne),
and the estimation of genome-wide parameters of selection. Selection parameters
informed us about the adaptive potential of a population (the scale mutation rate of
beneficial mutations, θb), the realized potential, as the number of strong beneficial
under selection, and fitness diversity as the population genetic load. We applied25

this approach to a dataset of feral populations of honey bees (Apis mellifera) col-
lected in California, and we estimated parameters consistent with the biology and
the recent history of this species.

Keywords— Temporal data, Population genomics, Machine learning, Adaptation30
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Introduction
One aim of population genomics is to understand how demography and natural selection

shape the genetic diversity of populations. A classical approach is to assume that demogra-
phy (migration, population subdivision, population size changes) leaves a genome-wide signal,
whereas selection leaves a localizes signal close to where the causal mutation is located. Many35

methods follow this approach to infer demography or selection (reviewed by Beichman et al.,
2018; Casillas and Barbadilla, 2017). Methods for demographic inference assume that most of
the genome evolves without the influence of selection and that any deviation from the mutation-
drift equilibrium observed in the data was caused by demographic events (Beichman et al.,
2018). For selection, the majority of the methods search for locus-specific signals left by the40

beneficial mutation on nearby neutral mutations (Tajima, 1989; Fay and Wu, 2000; Kim and
Nielsen, 2004) (low genetic diversity and high differentiation) to localize the beneficial mutation,
assuming constant population size (Nielsen, 2005; Pool et al., 2010).

Conducting demographic and selection inference separately may have some shortcomings.
First, there is the assumption that the signal left by demography is little affected by selection45

because selection is rare. However, linked selection can affect neutral and weakly selected sites
that are far from the mutation targeted by selection (Sella et al., 2009; Neher, 2013) and selection
can be pervasive (Sella et al., 2009; Lange and Pool, 2018). In addition, some methods for
selection scans are not robust to misspecifications of demographic history. Consequently, an
unspecified bottleneck or population increase, for example, can inflate the type I error rate50

of genome scans (Jensen et al., 2005, 2007; Schrider et al., 2016).These findings highlight the
necessity of inferential methods that jointly accounts for the multiple evolutionary forces that
act on populations (Lin et al., 2011; Li et al., 2012; Bank et al., 2014).

It is difficult to obtain the likelihood of models including demography and selection (but
see Vitalis et al., 2014). Methods that rely on simulations provide alternatives to the use of55

likelihood functions (Csilléry et al., 2010; Schrider and Kern, 2018). One of the first works that
proposed such strategy addressed the inference of local adaptation (Bazin et al., 2010). With
coalescent simulations of an island model, Bazin et al. (2010) estimated demographic parameters
and inferred the number of loci under selection. In their simulations, selection was modeled as
differential locus-specific migration rates in which a selected locus had lower migration rates60

than neutrally-evolved loci. However, locus-specific migration rates or effective population size
(as in Roux et al., 2016; Fraïsse et al., 2021) represent approximations of the selection process.
Forward-in-time simulation allows more realistic models of selection. These were used to make
inferences on Ne in the presence of selection by Sheehan and Song (2016) (for selective sweep and
balancing selection) and Johri et al. (2020) (background selection). However, these works rely65

on simulations of few independent loci-not more than 50Kbp-which prevents the modelling of
genome-wide effects of selection as the reduction of effective population size due to the variance
of reproductive success of individuals (e.g. Santiago and Caballero, 1995). Nevertheless, this
strategy brought new insights into the dynamics of selection. For instance, Laval et al. (2019)
estimated the number of past selective sweeps that occurred in the human genome in the past70

10,000, their intensity, and their age. Besides some limitations, these works exemplify the power
of likelihood-free methods for the inference of the complex interaction between demography and
selection.

Most population genetic studies use samples collected at one time point to infer the neutral
processes (mutation, recombination, random genetic drift) and selection throughout the history75

of populations. Temporal data allows a better understanding of recent evolutionary processes
(Feder et al., 2021; Dehasque et al., 2020) because they contain information about the allele
frequency changes through time. By tracking the allele frequency changes over time, it is possible
to estimate the relative role of selection and drift. Consequently, temporal data has the potential
to give us a better understanding of the interaction between drift and selection (see for example,80
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Buffalo and Coop, 2019, 2020).
Here, we propose the use of ABC to jointly estimate demography and positive selection from

temporal genomic data. In our framework, we use agent-based, forward-in-time simulations
which allowed the modelling of the genome-wide and linked selection effects of beneficial muta-
tions. Until recently, the use of such computationally demanding simulations in ABC inference85

was unrealistic since a great number of simulations are required to achieve accuracy in ABC
(Frazier et al., 2018). However, with the introduction of Random Forests (ABC-RF), it was pos-
sible to reduce the computational burden as fewer simulations are required to achieve reliable
estimates (Pudlo et al., 2016; Raynal et al., 2019). While many methods focus on the detection
of targets of selection, our work addresses the inference of parameters that characterizes the90

genome-wide signal of demography and selection. Our genome-wide estimates showed to be
reasonably accurate for a wide rate of adaptation and strength of selection. We were able to
separate the estimates of Ne, which reflect the short-term drift from the population census size
N . We also estimated the rate of influx of new beneficial mutations as measured by genome-
wide scaled mutation rate of beneficial mutations. The separation between demography and95

drift, and the inference of genome-wide selection were only possible with the use of latent vari-
ables. Latent variables emerged as properties of each simulation and consequently, they better
captured the emerging interaction between demography and selection than model parameters.
We first evaluated the performance of an ABC-RF approach with forward-in-time simulations,
and finally, we applied this framework to the analysis of a real time-series population genomics100

dataset of the feral population of honey bees (Apis mellifera) (Cridland et al., 2018). Our results
were consistent with the biology of the species and with events that occurred recently in the
history of the analyzed populations, taking into account the limitations of our approach.

Methods

Inference model105

We assumed a closed population (no migration) of N diploid individuals that evolved under
a Wright-Fisher model with selection. Selection only acted on de novo beneficial mutations
and that were allowed to arise in the population since the first generation. Every beneficial
mutation had a selection coefficient of s higher than zero and all were co-dominant. The values
of the selection coefficients s were drawn from a gamma distribution with mean γ. Beneficial110

mutations entered the population with a rate of µb per generation that is independent of the
mutation selective strength. Consequetly we defined the scaled mutation rate of the beneficial
mutations per generation θb as the product the population size N , the mutation rate of beneficial
mutation µb and the genome size G, θb = 4NµbG. This rate determines the amount of new
beneficial mutations that arises in the population every generation. It can also be viewed as the115

waiting time for the appearance of a new beneficial mutation in the population. Populations with
high θb receive new beneficial mutations every generation (Karasov et al., 2010), but population
with low θb needs to wait more time for a new beneficial mutation to arise.

We needed to divide the model in two periods: 1) the burn-in period, that is necessary
to remove, from the simulations, any footprint of the initial parameters set; the duration of120

this period was defined as the time necessary to contain all most recent common ancestors
(MRCA) for all genomic regions in the simulation; and 2) the inference period, where we defined
the longitudinal samples of individuals; the sampled genotypes were used to make inference
of demography and selection. This two periods were defined by their time span and by the
population census size with N0 and N as the sample size of the burn-in and the inference125

period.
The first sample of individuals was taken at t1, that was the first generation after the burn-

in period ended, and the second was taken at t2, after τ generations from t1. Individuals were
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sampled following the sample plan II of Nei and Tajima (1981), where individuals were taken
before their reproduction and permanently removed from the population. In this way their130

genotypes did not contribute to the next generation genotypes.
Each individuals genome of size G (in base pairs) consisted of a single linkage group with per

base recombination rate per generation of c0. In this genome, we modeled the act of selection
by dividing it in “neutral” and “non-neutral” regions. Non-neutral regions held both neutral
and beneficial mutations. This division can be interpreted as a genomic architecture in which135

there are genic regions that have a combination of neutral (synonymous intron mutations) and
selected (non-synonymous mutation) sites, and intergenic regions (neutral mutations) but also
other characteristics of the genome that would make the action of selection heterogeneous along
the genome. We chose this simplification because it is general and it was a straightforward way
to define independent priors for the relative number of non-neutral to neutral regions, and for the140

number of beneficial mutations in non-neutral regions. The probability of beneficial mutation
to arise in the simulation, or their mutation rate per generation µb, was determined by the
product of the proportion of non-neutral regions PR, the proportion of beneficial mutation in
a non-neutral region PB and the mutation rate per generation µ. Figure 1 shows a schematic
representation of the model template (and see Table S1 for a summary of the notation).145

burn-in period

Forward-in-time simulation

neutral mutations: 

beneficial mutations:

Neutral region

Non-neutral region

t

N

genome

N0

(A) (B)

sampling period

t1 2t0

Figure 1: A schematic representation of the model used to simulate temporal
population genomic data. (A) the population model that consisted of: 1) the burn-in
period, where the number of generations was determined by the time necessary to contain
the MRCA for all genomic regions. 2) the sampling period between the two time points,
where the inference of demography and selection was made. (B) the genomic architecture
model that consisted of: 1) a diploid genome of one linkage group that was divided in
neutral and non-neutral regions that were composed of neutral and a combination of
neutral and beneficial mutations.

Calculation of summary statistics and latent variables
The above model was used to simulate the dynamic of drift and selection in a closed popu-

lation. In the two sample periods, individuals were sampled and used for the calculation of the
summary statistics for the ABC-RF framework. For each simulation, we calculated summary
statistics that: 1) compared the two samples (e.g. genetic differentiation FST), and 2) quantified150

the diversity within-sample (e.g. expected heterozygosity HE). For the later, calculations were
obtained for each sample and the pooled sample (when the genetic data of populations were
combined in one population). Some summary statistics were calculated genome-wide, for exam-
ple, global FST, global HE and the total number of polymorphic sites S; others were calculated
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SNP-by-SNP as the HE; or they were calculated in windows as S, the nucleotide diversity π,155

and Tajima’s D. For every simulation, we measured the mean, variance, kurtosis, skewness, and
5% and 95% quantiles among all locus-specific or window summary statistics. These statistics
informed about the heterogeneity of genome-wide distribution of locus-specific or window sum-
mary statistics. We set three window sizes for the window summary statistics: 500, 5,000, and
10,000 bp. Those windows overlapped because each window was composed around every single160

SNP which put the targeted variation in the middle of the window with the other SNPs in half
of the window size on each side of the targeted SNP. The site-frequency spectrum was obtained
as a global summary statistics with three different numbers of discrete classes (bin sizes): 10, 15,
and 20 bins (the complete list of summary statistics can be found in Supplementary Methods,
section S2.1 List of summary statistics).165

For every simulation, we combined a vector of summary statistics with the vector of X
model parameters and the vector of five latent variables. Latent variables represents values
that emerged from the simulation or values that emerged by combining a latent variable and a
model parameter. In our inferential framework, for example, the effective population size Ne is
a latent variable and it was calculated within each simulation. The ratio between the effective170

population size Ne and the population census size N , Ne/N , on the other hand, was derived
by combining a latent variable and a model parameter for each simulation. The other three
latent variables were: the number of beneficial mutations under strong selection P , the average
selection coefficient of strongly selected mutations s̄, and the average substitution load L.

The effective population size Ne measures the increase of inbreeding at each generation.175

In this definition, Ne is the size of an ideal population with the same amount of drift as the
population under consideration. Defined in these terms, Ne is the inbreeding effective size
(Santiago and Caballero, 1995; Walsh and Lynch, 2018). It was calculated in every generation
i of the sampling period as:

Ne,i =
4N

σ2
ki
+ 2

σ2
ki

being the variance among parents of the number of gametes produced that contributed to180

offspring in generation i. The Ne for the whole inference period was obtained by calculating
the harmonic mean of Ne,i. The population size of N was kept constant for the whole period
as shown above, and it represents a parameter of the simulation. From the Ne we obtained
the ratio Ne/N (it measures how the census size reflects the actual effective population size: we
expect to have a reduction on Ne compared to N when beneficial mutations are more pervasive).185

We also recorded the selection coefficient of all beneficial mutations that arose in every
generation i from t1 to t2 in each simulation. After, we calculated the fraction of beneficial
mutations that were strongly selected (where s > 1/Ne over all mutations that were segregating
in the period). This fraction represented all beneficial mutations that arose in between t1 and t2,
regardless if they were lost or fixed at any generation of the period, or if their frequency oscillated190

but never reached fixation. We decided for it because any beneficial mutation that arise can
impact the allele frequency trajectories of other mutations (neutral or beneficial). For these
mutations, we also calculated the average across all selection coefficients. We also calculated,
in every generation of this period, the substitution load Li as the difference between the total
fitness of the individual with the highest fitness Wmaxi and mean total fitness of the population195

W̄i (it measures the overall diversity of beneficial mutations present in the inference period),

Li =

{
0, if Wmaxi = 0
Wmaxi−W̄i

Wmaxi
, otherwise

The average substitution load was obtained by averaging all values of Li.
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Implementation
The model was simulated with the software SLiM v3.1 (Haller and Messer, 2017; Haller et al.,

2019). For the calculation of the inbreeding effective size, we needed to activate an optional SLiM200

3.1 behavior to track the pedigrees of each individual in the population. It allowed us to obtain
the number of each parent gamete and the population variance of the number of gametes. For
the calculation of the generation substitution load, we used a SLiM built-in function that allowed
us to obtain the vector of fitness of all individuals in the population. The cached fitness was the
sum of all fitness determined by each beneficial mutation.205

Each simulation was produced by using different combinations of the model’s parameters:
1) the mutation rate per bp per generation µ, 2) the per-base recombination rate per generation
c0, 3) the mean γ of a gamma distribution with the shape parameters equal to the mean, from
which the selection coefficients s of each beneficial mutation in the simulation were sampled, 4)
the number of non-neutral genomic regions PR, 5) the parameter that determines the probability210

of beneficial mutation in non-neutral regions PB, 6) the population census size of the burn-in
period N0, and, finally, 7) the population size of the inferential period N .

We set SLiM to output genotypic data of samples of individuals as single nucleotide poly-
morphisms (SNPs), at t1 and t2, in the VCF file format. Using bcftools (Li, 2011), custom
R function (R Core Team, 2020) and EggLib (De Mita and Siol, 2012), SLiM outputs were215

processed and summary statistics calculated. We implemented a pipeline in an R script that
automates the sampling of the prior values, runs each simulation, manipulates the VCF files,
calculates the summary statistics, and organizes the final reference table. This script was also
produced to facilitate the model test with few simulations and the job submission in a HPC
node(s). The main R and additional scripts are available on Zenodo (Pavinato et al., 2021).220

In this pipeline, for every simulation, a row of the reference table was produced by combining
the model parameters used to launch a SLiM simulation, latent variables, and the summary
statistics.

ABC-RF
In this work, we take advantage of the use of Random Forests (RF) in ABC procedure, where225

the parameter estimation is a machine learning problem (Pudlo et al., 2016; Raynal et al., 2019).
A reference table was generated with the model described above. In each simulation, each

individual had a genome of size 100 Mb that was divided into 2,000 fragments of 50,000 bps.
A number of these fragments were randomly set as either neutral or non-neutral, based on the
parameter PR. In the inference period, 100 individual genotypes were sampled at t1 and t2 after230

τ = 10 generations. For all model parameters, values of each simulation were sampled from a
log-uniform distribution with range: 1 to 2,000 for N0 and N , 10−10 to 10−6 for µ, 5× 10−10 to
5× 10−7 for r, 10−5 to 1 for PB, and 10−3 to 1 for γ. And uniform distribution with range 0 to
1 for PR (Figure S1 shows the prior distribution for all model parameters and latent values).

The raw reference table produced by the pipeline was processed to remove missing data.235

Missing data were present in several summary statistics of simulations with low genetic diversity,
that can be produced, for example, by low mutation rate, by small population size, by selection,
or by the combination of these parameters. Missing data were also present in the entire row of
a simulation if the combination of population size, mutation, and especially recombination rate
produced simulations that were memory intense, which caused the simulation to crash. A final240

reference table containing 55,634 simulations with 405 summary statistics was used to train
the ABC-RFs. Independent RFs were obtained for each parameter and latent variable using
R package abcrf (Pudlo et al., 2016; Raynal et al., 2019). Each RF was obtained by growing
1,000 trees. The RF were grown with the default parameters. Average genetic load, L and P
were logit transformed prior the training. For these latent variables and for s̄, simulations with245

L = 0, P = 0 or s̄ = 0 were also excluded from the training set, which reduced it to 36,026
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simulations for L, and with 29,264 simulations for P and s̄. For the other parameters and latent
variables, we performed log transformation prior training and use the reference table containing
all simulations.

The performance of each trained Random Forest was evaluated with out-of-bag (OOB) esti-250

mates (Breiman, 2001). These estimates were produced by the trained model for the data used
for training. Regression trees that compose the actual RF are grown using part of the data, se-
lected randomly from the initial set of simulations. As a consequence, for each simulation, there
is a subset of trees that were grown without the data from that simulation. The estimate from
that subset of trees is called OOB estimate and with it, cross-validation of the trained model255

is done without splitting the reference table in the training and testing sets. We calculated the
mean squared error (MSE) and the correlation coefficient (R2) between the true and the OOB
estimated values obtained with the function regAbcrf implemented in the R package abcrf.

Alternative estimates of Ne from temporal data
We compared the the ABC-RF Ne estimates with estimates obtained with the global FST260

between temporal genomic samples (Frachon et al., 2017). This estimator is defined as:

N̂e =
τ(1− F̂ST)

4F̂ST

where τ accounts for the time-interval, in generations, between the first and the last samples
used to estimate the FST, and F̂ST is the the Weir and Cockerham’s FST estimator (Weir
and Cockerham, 1984). The Ne from the FST was calculated for all simulations used to train
the random forest. We calculated the mean squared error (MSE) and the squared correlation265

coefficient of linear regression (R2) between the observed (true) and the FST-based Ne estimated
values of all simulations. We also evaluated the performance of each estimator by calculating the
MSE for simulations within a specific range of values of θb (local MSE estimates). By comparing
the changes in MSE values of each estimator as a function of θb we could better understand how
the amount of selection affected each estimator.270

Analysis of temporal genomic data of feral populations of Apis mellifera
To give an example of an application of our framework, we analyzed a subset of whole-

genome sequencing data of feral populations of honey bees from California (Cridland et al.,
2018). Eight out of fourteen sites in this work were composed of samples from museum and
contemporary collections of freely foraging honey bees: 1) Avalon site in Catalina Island, Los275

Angeles county, 2) Arcata and Blue Lake sites in Humboldt county, 3) Placerita Canion Nature
Area in Los Angeles county, 4) Sky Valley and Idyllwild in Riverside County, 5) La Grange,
Stanislaus county, 6) Stebbins Could Canyon Reserve, Solano county and 7) UC Davis Campus,
Yolo county. This dataset contains pairs spanning 104 years (as in the Avalon site, Catalina
Island, Los Angeles county) and pairs spanning only 15 years (as in the Placerita Canyon Nature280

Area, Southern California, and Idyllwild, in Riverside county). For the temporal samples from
Riverside County, we only used the two samples collected in May 1999 in Idyllwild as the first
sample, and combined all samples collected in September 2014 (in Idyllwild and Sky Valley) as
the second sample.

Individual VCF files of each site were combined with bcftools (Li, 2011) and a custom R285

script was used to convert the dataset to an input format required to run an EggLib custom
implementation (in Pavinato et al., 2021). We tagged samples from the same time point with
the same label. For the simulations, we set the genome size of each individual to 250 Mb (similar
to the most recent estimates of A. mellifera genome size (Elsik et al., 2014). For the analysis
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of the Apis mellifera temporal genomic data we measured the amount of missing data, but we290

found a negligible amount (< 1%) in most of populations (except populations from Avalon and
Placerita that had 10% of the total missing genotypes).

The genome was divided into 5,000 fragments of 50,000 bps. These fragments were randomly
set as neutral or non-neutral according to the parameter PR. Dominance coefficients were set
to 0.5 for all beneficial mutations throughout the simulation. In the sampling period, for each295

site, the same number of individuals found in each dataset were sampled in the first (t1) and
second time point (t2). We used a Normal distribution for µ with a mean 3.4 × 10−9 with a
standard deviation of 0.5, to have a prior distribution center around the estimated mutation
rate for Hymenoptera (Liu et al., 2017). The per base recombination rate was set as Uniform,
ranging from 10−8 to 10−4. The genome was represented with a single linkage group. For the300

population sizes N0 and N were taken from a Uniform prior distribution ranging from 1 to 10,000
individuals. Other prior probability distribution of the parameters were set with the same prior
as described above. We used the same summary statistics as described above, except this time,
we only calculated one window size of 10Kbp for summary statistics calculated in windows and
one bin size of 10 bins for the site-frequency spectrum. The raw reference table containing the305

vector of parameters, latent variables, and summary statistics produced by the pipeline was
processed to remove missing data, and a final reference table containing 162 summary statistics
for each population pair, was used to train the ABC-RFs. (see Table 1 for the number of
simulations of each reference table). The RFs were grown as described above.

Table 1: Populations and number of simulations in the reference table.

Location Date N Simulations
Avalon, Catalina Island, Los Angeles county 1910/2014 2,5 13,953
Blue Lake and Arcata, Humboldt county 1966/2015 6,6 14,216
Placerita Canyon Nature Area, Los Angeles county 1999/2014 5,6 14,125
Idyllwild and Sky Valey, Riverside county 1999/2014 2,8 13,930
La Grange, Stanislaus county 1976/2014 2,6 13,956
Stebbins Cold Canyon Reserve, Los Angeles county 1996/2014 5,5 14,121
UC Davis Campus, Yolo county 1968/2015 2,6 13,970

Names highlighted in bold letters corresponds to the population code we used in this work.

Results310

ABC-RF framework for joint inference of adaptive and demographic history
The ABC-RF framework jointly estimated parameters informative about adaptive and de-

mographic history in temporal population genomics settings. Independent random forests es-
timated the population scaled beneficial mutation rate θb, the population census size N , and
the effective population size Ne (Figure 2). Trained RFs performed well in predicting N and315

Ne with small MSE and higher R2 (Figure 2 b and c). But, the trained RF for θb had a lower
performance than the trained RFs for demographic parameters, with high MSE and low R2

(Figure 2a and b). Still, the estimates were robust for intermediate to higher values of θb. For
the results of other model parameters and latent variables informative about demography and
selection, see S3 Supplementary Results.320

The automated selection of informative summary statistics is an important feature of ABC-
RF. For each tree of a random forest, summary statistics were selected given its ability to split
the data. How many times a summary statistics was selected in each RF informs us of their
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Figure 2: Out-of-bag estimates of ABC-RF trained for the joint inference of
demography and selection, and N̂e estimates from the temporal FST to compare
with the ABC-RF -based N̂e estimates. (a) population census size N ; (d) effective
population size Ne; (c) population scaled mutation rate of beneficial mutations θb; and
(d) Ne from temporal FST

importance for the inference of a given parameter. For the prediction of θb values, the RF picked
more frequently the 5% quantile of Tajima’s calculated in the second sample, with the kurtosis325

and skewness of FST and Da calculated globally (Figure S4 e). The population size was trained
with a combination of within and between sample summary statistics: FST and Da, with their
respective derived statistics were frequently selected (Figure S5 c). For Ne, summary statistics
that inform about the cumulative divergence between samples as FST and Da, were frequently
selected (Figure S5 d).330

Comparison with FST method to estimate Ne

We compared our ABC-RF Ne estimates with estimates obtained with the temporal FST
(Frachon et al., 2017). The FST-Ne was more affected by the amount of selection in larger
populations. Consequently, the FST-Ne showed higher overall MSE and lower R2 compared
to the ABC-RF -based estimates (Figure 2c and d). When the beneficial mutations were less335

frequent (either because of the mutation rate of the beneficial mutation, and because of larger
population size), the ABC-RF and the temporal FST performed well and similarly regardless the
strength of selection, with the ABC-RF based estimator with less error than the temporal FST-
based estimator. However, when the frequency of selection started to increase, the Ne estimator
based on the temporal FST had dramatically higher error (Figure 3).340
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Figure 3: Local MSE of Ne estimates as a function of θb. The lines corresponds
to the MSE on Ne estimates from ABC-RF and from temporal FST.

Analysis of temporal genomic data of feral populations of Apis mellifera
For the analysis of feral A. mellifera populations, we first grew independent RF for each

parameter in each population. All populations had the same performance of the ABC-RF
estimator for Ne, as they showed similar values of MSE and R2 (Figure S8). For N , trained
RF for Humboldt, Stebbins and Placerita performed similarly well, and they had the lowest345

MSE and higher R2 (Figure S7). For θb, Riverside had trained RF with the worst performance
(Figure S6). Overall, both MSE and R2 obtained with OOB estimates from simulated data for
Apis mellifera dataset were comparable to these parameters obtained with OOB estimates for
the simulated data for the evaluation of the method.

Trained RF for N and Ne were able to predict these parameters in all populations, as the350

inference of the mean posterior value and the posterior distribution differentiated from the mean
prior value and distribution (Figure 4 b and c). For N , posterior distribution were wider than for
Ne. Trained RF for θb, for all populations had a similar posterior mean, except for the Avalon
population that had a peak at a lower value (Figure 4 a). But, the posterior distributions
were wider and they followed the prior distribution, making it difficult to accurately predict the355

posterior mean and variance in all populations. It is possible to see together with the posterior
mean estimates that the ABC-RF estimates for θb were concentrated in lower values (Table S2)
in all populations. Ne were also lower, and Ne and N were similar. For the results of OOB
estimates of other model parameters and latent variables, and for posterior estimates for these
parameters see S3 Supplementary Results.360

Discussion

Separating demography from drift, and the inference of θb

With temporal population genomics data, we can see the evolution in “action” as opposed
to single time-point population genomics data (Feder et al., 2021). Consequently, temporal
data have more information about the ongoing process, which make them better for the un-365

derstanding of the complex interaction between demography and selection (Buffalo and Coop,
2019; Dehasque et al., 2020; Williams and Pennings, 2020). When samples from more than two
time points are available, the footprints of drift and selection in allele frequencies changes can
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be separated (e.g., Buffalo and Coop, 2020; Feder et al., 2014). Our results showed that two
samples collected in different time points were sufficient for the inference of the genome-wide370

footprint of adaptive evolution and to separate the demography (population census size N) from
drift (effective population size Ne).

It is important to stress that Ne, as a latent variable, captures the feedback dynamics
between drift and linked selection. Selection, either positive or negative, causes a deviation of
Ne from N . The impact of selection on the genome can extend far from the target of selection375

since individuals that carry beneficial mutations have more chance to reproduce, their beneficial
mutations are more likely to be in the next-generation offspring (Walsh and Lynch, 2018). In
this complex dynamic, with many loci under selection which creates a dynamic that cannot
be easily described, latent variables actually summarized the by product of drift and selection
interactions. With our approach, N̂e quantifies the drift due both to demographic and selection380

dynamics.
This genome-wide reduction in Ne is not captured when loci are assumed to evolve inde-

pendently (as in Sheehan and Song, 2016, for example). In contrast, the complexity of linked
selection and the genome-wide effect of selection are taken into account by using individual
based simulations with whole genome in an ABC approach.385

Estimates of genetic load or other genome-wide parameters about selection are obtained
when annotated genomic data is available, (Henn et al., 2015) or by conducting experiments
on crossing populations (for the genetic load Plough (2016)). However, we were able to obtain
estimates of selection parameters only with polymorphism data. A similar approach was used
by Laval et al. (2019) to estimate the number of selective sweeps affecting the human genome390

in the past 10,000 years. But they did not consider the feedback dynamics of selection and
demography. Differently, Buffalo and Coop (2020) measured the genome-wide signature of
selection by estimating the covariance of allele frequencies at consecutive time points. This
allowed the quantification of the genome-wide contribution of selection to the observed allele
frequency changes, even when selection involved many loci of small effect. In this work, we395

estimated the population scale mutation rate of beneficial mutations θb, which informs about
the diversity of beneficial mutations that existed in the population between the two time points,
and the potential speed of adaptation at the genome level (Hermisson and Pennings, 2017).
These estimates reflect the potential number of beneficial mutations present between the two
time points regardless their impact as determined by their selection coefficients.400

The variable importance plot of each parameter shows us the global importance of each
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summary statistics in the trained Random Forests. For Ne, N , and θb summary statistics
calculated from the distribution of locus-specific summary statistics -skewness, kurtosis, mean,
variance, 5% and 95% quantiles were more frequently used. Summary statistics derived from the
distribution of locus-specific calculated from all segregating loci in the genome inform about the405

heterogeneity that selection and drift produce genome-wide. For example, a de novo a beneficial
mutation entered the simulation and was selected, it left a signal of lower diversity around the
region it was located. The genome, after selection, contained spots where diversity was high
and where it was low, and this heterogeneity was captured by the distribution of locus-specific
HE, more specifically the lower tail of the distribution where the values of diversity were lower.410

The use of the covariance matrix of allele frequencies through Buffalo and Coop (2020) can be
considered as a summary statistic for the the genome-wide heterogeneity that selection and drift
left on the genome. It would be interesting to include this matrix as summary statistics for
further development of the method.

Comparison with FST method to estimate Ne415

We compared the Ne obtained with ABC-RF framework to the Ne obtained with FST es-
timator (Skoglund et al., 2014; Frachon et al., 2017). Overall, the FST -based Ne estimator
performed poorly compared to the ABC-RF -based estimator. The lower performance were
caused by Ne values that were underestimated when beneficial mutations were more frequent
(higher θb). Consequently, the Ne estimates from the temporal FST were strongly affected by420

selection. When selection was infrequent or rare, both estimators performed similarly well, but
with the ABC-RF estimator with lower MSE. Positive selection can increase the variance of
allele frequency between samples taken in different time points. When selection is infrequent
or rare, drift determines most of allele frequency changes between samples; but when selection
is pervasive, selection dominates, which cause dramatic and rapid changes in allele frequency,425

increasing the variance between samples. Ne estimator based on the FST depends on the dif-
ferences in allele frequencies between samples, consequently it is naturally biased by strong and
frequent selection. We can assume that the Ne estimator from ABC-RF was insensitive to the
amount of selection since we trained the ABC-RF with Ne values from the simulation. In our
simulations, Ne was a latent variable that captured the deviation that selection imposed on430

the number of individuals able to reproduce (selected for); it was not a biased by unaccounted
factors.

The amount of selection for θb ∼ O(1) could be unrealistic in some organisms, but plausible
in virus (Feder et al., 2014) and many arthropod species, with large Ne, which have larger popu-
lation sizes (except in eusocial insects that have vertebrate-like population sizes Romiguier et al.435

(2014)). In larger populations sizes selection acts also on weaker and milder beneficial muta-
tions. In those organisms, it might be unreasonable to assume mutation-drift equilibrium given
the pervasive role of selection. Consequently, any attempt to estimate demography parameters
as Ne without properly accounting for the pervasive role of selection could be biased.

Analysis of temporal genomic data of feral populations of Apis mellifera440

Overall, the performance of the ABC-RF for selection and demography inference was similar
across populations despite the differences in sample size and age. For θb, Avalon and Humboldt
populations had posterior probability distributions very similar to the prior, indicating that the
analysis provides no additional information on this parameter. These two population also present
low effective population size estimates, which can reduce the signal of selection. For the rest of445

the populations, the posterior probability distribution of θb is tilted toward the higher values
but without a clear peak differentiating the distribution from the prior. Still, lower θb values
could be excluded. This favours an interpretation in which selection was acting during the study
period but without providing a precise estimate of the parameter. The information about the
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presence of selection in these analyses comes mainly from the heterogeneity of the polymorphism450

along the genome, thus, for a thorough interpretation of the results, it is important to discuss
other processes that have not been modelled but that could affect this signal. The studied
bee populations in California show a mixture of Eastern and Western European ancestry, with
some populations presenting African ancestry in the most modern samples Cridland et al. (2018).
Different levels of African admixture along the genome could create some heterogeneity and affect455

the inference. However, Placerita and Riverside, the populations with higher African ancestry
at present, present similar estimates of θb that populations with little or no African admixture.
Also, Humboldt population changes from having predominately Western European ancestry to
having predominately Eastern European ancestry, which means that there was substantial gene
flow into the population. These results suggest that admixture does not dramatically affect the460

inference of selection but also highlights the importance of incorporating admixture in future
development of the approach.

Our ABC-RF approach estimated Ne with the same order of magnitude of other Ne esti-
mates obtained for hymenopterans (Zayed, 2004). Lower values of Ne might reflect the presence
of admixture, either African admixture or admixture that occurred with domesticated lineages465

facilitated by changes in beekeeping practices. Northern populations, especially from Hum-
boldt County, shared similarities with bees from reared colonies (with higher Eastern European
ancestry). Southern populations, as shown by Cridland et al. (2018) showed a higher level
of admixture with African lineages. Populations from the southernmost cites (from Riverside
County, Placerita, and Avalon, Los Angeles county) showed higher genetic diversity, but they470

did not show the highest values of Ne. On the other hand, the population of Stanislaus County
had the highest value of Ne, possibly because it had lower levels of admixture with domesticated
lineages compared to the population from Riverside, Placerita, Avalon, and Los Angeles county.

We observed that Ne and N had similar estimates. We were aware that our simulation model
did not account for key characteristics of eusocial insect reproductive biology: the monopoliza-475

tion of reproduction by the queen and the division of labor. In Honey bees, a queen mates with
more than one male (a process called polyandry) (Estoup et al., 1994), which leads to a biased
breeding sex ratio. Assuming that only queens can reproduce in the colony, polyandry increases
the variance in the number of parents that contribute to the offspring gene pool, which leads to
a decrease in the Ne compared respect to N (Nomura and Takahashi, 2012). In our simulations,480

we only simulated monogamous mating, therefore, the difference between estimates of Ne and
N only reflects the action of selection. Therefore N must be interpreted with caution as it is
probably reflecting more the total number of female breeders per generation rather than the size
of the population. Individual-based forward simulators as SLiM allows setting different mating
schemes. It is possible to simulate the haplodiploidy, the cast system, diocy and sex ratio found485

in honey bees. These modifications in the simulation could potentially allow us to estimate N
and other parameters that could reflect better the biology of the species but it was not the focus
of this work.

One possible explanation for the similarities between Ne and N estimates, thus, relies on
cast specialization and concentration of reproduction to one of few females in the colony. These490

came to a cost of reduced Ne, which reduces the efficacy of selection (either positive or negative).
Bees are the few insect groups that show very small Ne potentially linked with the evolution
of eusociality (Romiguier et al., 2014). Knowing that lower Ne reduces the effectiveness of
selection, it is plausible to think that lower Ne is restricting the effects of mutation affecting
fitness to stronger beneficial mutations. Since these mutations are less frequent than weak or495

mild mutations, their effects on Ne were small, which explains why Ne and N had values in
the same range. Low Ne and low θb pointed to a biological system limited where adaptation is
limited by the influx of adaptive mutations (Rousselle et al., 2020).

Our ABC-RF framework also estimated the per-site mutation rate per generation µ (Sup-
plementary Results, S18). For all populations, the mean posterior µ exceeds the mean µ of500
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the species. The higher estimated values we obtained might reflect the recent admixture events
between these populations. We did not model gene flow and admixture. Modeling admixture
could help us correctly separate the effects of selection and drift since the introgression of African
genes might have biased some estimates of selection parameters.

Perspectives and Limitations505

Our model is very simplistic, as it only considered the impact of beneficial mutations, ne-
glecting the effect of background selection and standing variation. Background selection can
mimic directional selection because they cause a similar pattern of diversity reduction around
the target of selection. However, it was recently shown that background selection only mimics
the classical sweep in simplistic models, where the deleterious mutation is localized in a specific510

region of the genome (Schrider, 2020). For more realistic scenarios, where the concentration of
deleterious mutations varies across the genome, background selection does not behave as a classi-
cal hard sweep. In an attempt to jointly accommodate the effect of demography and selection on
the inference of Ne, Johri et al. (2020) modeled the effect of background selection and developed
an ABC-based approach that jointly estimated the distribution of fitness effects and Ne. In their515

simulations, they modeled deleterious mutations and the classical hard sweep with the inclusion
of beneficial mutations. They showed an unbiased estimate of Ne regardless of the presence of
positive and negative selection. Future developments should include a more realistic genomic
architecture where both negative and positive mutations can co-occur and explore different con-
centrations of deleterious mutations. In addition to that, further developments should explore520

not only scenarios of de novo mutations, but selection acting on standing variation. This can be
easily achieved with our pipeline and allows for a more general treatment of the selection of soft
sweeps. The model can also be expanded to more complex demographic scenarios, including
changes in population size and genetic exchange with external sources (migration). Including
such admixtures will be key in the future development of this approach since it is also a source525

of heterogeneity in the genome and, thus, might influence the performance of the method.

Conclusion
We show that an ABC-RF -based approach is able to jointly infer adaptive and demographic

history from temporal population genomics data. This approach allows the quantification of the
genome-wide footprint of selection expressed in the scaled mutation rate of beneficial mutations.530

The ABC-RF Ne is robust to varying degrees of strength of selection and frequency of beneficial
mutations. Our ABC-RF -based approach can be applied to temporal population genomics
datasets to gain insight about the adaptive and demographic history of natural populations.
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