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Abstract 
 
The SARS-CoV-2 nsp16/nsp10 enzyme complex modifies the 2’-OH of the first transcribed 

nucleotide of the viral mRNA by covalently attaching a methyl group to it. The 2’-O methylation 

of the first nucleotide converts the status of mRNA cap from Cap-0 to Cap-1, and thus, helps the 

virus evade immune surveillance in the host cell. Here, we report two structures of nsp16/nsp10 

representing pre- and post-release states of the RNA product (Cap-1). We observe overall 

widening of the enzyme upon product formation, and an inward twisting motion in the substrate 

binding region upon product release. These conformational changes reset the enzyme for the next 

round of catalysis. The structures also identify a unique binding mode and the importance of a 

divalent metal ion for 2’-O methylation. We also describe underlying structural basis for the 

perturbed enzymatic activity of a clinical variant of SARS-CoV-2, and a previous SARS-CoV 

outbreak strain. 
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Main 
 

RNA viruses employ a diverse set of protein assemblies to enzymatically modify the 5’-end of 

their genomes. This process, termed RNA capping is essential for efficient a) production of viral 

proteins, b) protection of viral (v)RNA from host degradation, and c) subversion of the host innate 

immune responses – all of which enable viruses to thrive inside the host body1. In coronaviruses 

(CoVs), the nonstructural protein 16 (nsp16), and its non-catalytic stimulator nsp10, assemble on 

the 5’-end of nascent mRNA to perform the last step of RNA cap modification – S-adenosyl-L-

methionine (SAM)-dependent methylation of the 2’-OH on the first transcribed nucleotide base 

(N1), usually an adenine. This converts the status of RNA from Cap-0 (me7GpppA) to Cap-1 

(me7GpppAm)2,3. Suppression of innate host antiviral response by Cap-1 through IFIT (interferon 

signaling-induced proteins with tricopeptide repeat) proteins4 is thought to be a consequence of 

diminished binding of IFIT to Cap-15. Genetic ablation of nsp16 enzymatic activity also leads to 

induction of type I interferon (IFN) via the RNA sensor melanoma differentiation-associated 

protein 5 (MDA5)6. Emerging evidence suggests that COVID-19 patients have elevated innate 

immune responses, causing hypercytokinemia7. Thus, structural elucidation of different stages of 

Cap-1 formation and modification will further our understanding of the 5’-RNA biology of CoVs, 

and may inform the path to rational drug design. 

 

We and others have previously resolved the structures of the SARS-CoV-2 nsp16/nsp10 enzyme 

complex in the presence of a Cap-0 analogue (me7GpppA) and methyl donor SAM (S-adenosyl-L-

methionine) (Fig. 1a)8,9. Here we report two structures of the nsp16/nsp10 heterodimer complex 

in the presence of a cognate RNA product (Cap-1) that consists of N1 and an adjoining N2 base 

(me7GpppAmU), and a byproduct of the methylation, SAH (S-adenosyl-L-homocysteine), resolved 
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to 2.3 and 2.5Å, respectively (Fig. 1b-c, S. Table 1). These structures were solved by a molecular 

replacement method using the previously determined Cap-0 (me7GpppA)/SAM structure (PDB ID: 

6WKS, hereafter referred to as the “substrate structure”) as a search model8. Cap-1 RNA and SAH 

were unambiguously identified in the difference omit maps (S. Fig. 1 a-c). nsp16 adopts a 

canonical methyltransferase fold with a central β-sheet flanked by two α-helices on one side and 

three on the other, similar to the substrate Cap (Cap-0)-bound structure8 but with a notable 

difference as described below. 

 

nsp16/nsp10 undergoes breathing motion during 2’-O methyl transfer 

 

A structural comparison of nsp16/nsp10 in substrate, product (m7GpppAmU and SAH), and 

byproduct (SAH only) bound structures revealed notable conformational changes in three 

complexes (Fig. 1). Most strikingly, we observed an overall expansion of the nsp16/nsp10 complex 

in the product structure as compared to the substrate-bound enzyme (~ 6.8 Å in one dimension and 

~ 5.4 Å in the other) although the central β-sheet remains largely unperturbed (Fig. 1d-e, S. Fig. 

1i). A positional shift in the Cap-1 analogue also occurs, so that the 2’-O-me group on the A1 base 

now pushes the SAH outward, so that the sulfur atom points away from the 2’-O-me moiety, and 

the carboxy tail of SAH rotates 180º around Cβ of the SAH (Fig. 1e, S. Fig. 1a-h, j). A comparison 

of product and byproduct structures reveals no major changes in protein conformations except for 

an inward shift in gate loop 2 (Fig. 1f). The position of SAH in the product and byproduct structures 

remains essentially the same, except for the carboxy tail, which rotates back in byproduct structure 

to assume the original orientation as in the substrate structure (Fig. 1b-d, S. Fig. 1g-h). These 
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changes suggest that the conformation of the SAH-bound enzyme represents a resetting for the 

next round of catalysis. 

 

The surface area buried (BSA) at the nsp16/nsp10 interface is significantly smaller (843 Å2) in the 

product complex than the substrate structure (930 Å2) (Fig. 1d, g). This reduction is less 

pronounced (BSA=878 Å2) in the byproduct structure (Fig. 1f). As a result, the heterodimeric 

interface in the product structure (and to some extent the byproduct structure) is widened by ~1.5Å 

at one end, ~ 0.9Å at the other, and ~1.35Å in the center (Fig. 1g-i). Thus, the much-relaxed 

heterodimeric interface in the product structure appears to be a result of overall widening of the 

enzyme, which is triggered by a single 2’-O methylation event. The enzyme appears to go into a 

“breathing motion” during catalysis, wherein the substrate, product, and byproduct bound states 

represent fully closed, open, and partially open (product released/enzyme reset) states, respectively 

(Fig. 1). The product RNA Cap, Cap-1 with adjoining uracil as N2 base at 3’-end, is accommodated 

within a deep pocket constituted by one side of the central β-sheet and the two gate loops (gate 

loop 1 [amino acids 20-40] and gate loop 2 [amino acids 133-143]). The byproduct SAH in both 

structures binds similarly in a cavity at the C-terminal side of the parallel β-strands except for 

different orientations of their carboxy tails (S. Fig. 1a-b, g-h). 

 

Metal dependency for 2’-O-methylation by SARS-CoV-2 and its clinical variants 
 

We also observed unambiguous electron density in omit maps at the interface of gate loop 1, a 

loop between the β8 and β9 strands, and the phosphate moiety of uracil (U2), the N2 base 

downstream to the RNA Cap (Fig. 1e and S. Fig. 1a, c). The features of this density suggested a 

divalent metal ion coordinating with water molecules. Metal ions stabilize nucleic acid substrates 
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in addition to acting as catalytic agents in enzymatic reactions. In other positive single-stranded 

RNA viruses (e.g., 2’-O MTase such as dengue NS5), a magnesium ion stabilizes the RNA cap by 

coordinating with the inverted triphosphate moiety from the solvent-exposed side of the RNA cap 

(Fig 2f). A magnesium ion in nsp16 of the previous CoV outbreak strain (PDB ID: 2XYR) binds 

to a remote site constituted by T58 and S188 located at the opposite face of the catalytic pocket10. 

A direct binding of metals in the substrate/catalytic pocket and their role in 2’-O MTase activity 

of the CoVs nsp16, including SARS-CoV-2, has not been previously suspected. 

 

Since our protein purification buffers and crystallization solutions contain magnesium and calcium 

salts, respectively, we fit these metals into the additional electron density, but could refine the 

product structure with better statistics when Mg2+ was modeled along with its coordinating water 

molecules (B factor = 52.5 Å2 and 73.3 Å2 for Mg2+ and Ca2+, respectively) in this density. As 

modeled, Mg2+ is further stabilized by direct interaction with the side chain of an invariant N198 

and assumes a near-ideal octahedral geometry with coordinating water molecules (Fig. 2a-b, S. 

Fig. 1d-e, j). Consistently, the wild-type (WT), but not the N198A mutant of nsp16/nsp10 binds 

Mg2+ with high affinity (Fig. 2d). A direct interaction of protein to Mg2+ and its orientation in the 

Cap binding pocket is unique to SARS-CoV-2 (Fig. 2c). For example, in dengue NS5, Mg2+ is 

exposed to solvent and cross-links the phosphate groups of the RNA cap without ligating to the 

protein, whereas it directly binds to nsp16 (through N198) and the phosphate of the U2 base (water-

mediated) in SARS-CoV-2 (Fig. 2f). 

 

Our previous work revealed the basis of target specificity of nsp16 for adenine nucleotide at the 

N1 position8. We and others postulated that K170 (the second lysine of the KDKE catalytic tetrad) 
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acts as a general base to facilitate methyl transfer from SAM to 2’-OH of the A1 nucleotide in 

SARS-CoV-28 and other CoVs3,10. The product structure allowed us to examine the roles of K170 

and K46 (first lysine of the KDKE catalytic tetrad) in detail. The side chains of K170 and K46 

form hydrogen bonds with the 2’-O of the product (i.e., methylated ribosyl of A1) and phosphoryl 

oxygen of U2 base, respectively (Fig. 2b, S. Fig. 1d-f)). The phosphoryl oxygens of U2 also interact 

with water molecules that coordinate with Mg2+. Mutation of K46 and N198 to alanine completely 

abolished Mg2+ binding and catalytic activity of nsp16/nsp10 (Fig. 2d-e). This is consistent with 

the network of side chains of K46, K170, and N198 that we identify here as important for catalysis. 

Such an arrangement correctly positions the RNA cap in the catalytic pocket to both ensure 

efficient 2’-O methylation of A1 base and prevent unintended methylation of the adjoining U2 base 

by restricting its movement or misalignment during catalysis of the A1 base. The U2 nucleotide is 

largely exposed to solvent and showed some deviation in the geometry (S. Fig. 1d). 

 

Previously, we mapped the acquired mutations that have been identified in SARS-CoV-2 nsp16 

on its structure and postulated their potential roles in RNA binding and/or catalysis8. Among these, 

the S33 residue in gate loop 1 is particularly noteworthy given the high occurrence of the S33R 

(20755:A>C) mutation in SARS-CoV-2 strain associated in the New York City outbreak11, and its 

mutation to an asparagine (S33N) in a previous CoV outbreak strain (Fig. 2a, S. Fig. 1a). The side 

chain of S33 resides 6.3Å and 9.6Å away from Mg2+ and phosphoryl oxygens of the U2 base in 

the product structure, respectively. The side chain of the arginine in S33R, as we modeled in Fig. 

2c, may intrude into this pocket to reduce these distances by ~ 4.18Å, thus disrupting the 

coordination of Mg2+, which would in turn disorient the target base (A1) in the catalytic pocket. A 
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shorter side chain of asparagine would be less intrusive and may provide additional contacts to a 

divalent metal ion, strengthen RNA binding, and therefore enhance 2’-O-methylation. 

 

To further probe these models, we employed LC/MS to measure Cap-1 formation by nsp16/nsp10 

WT and variant enzymes, and their dependence on various metal ions. Consistent to magnesium-

binding affinity, where mutants N198A, K46A and S33R exhibited negligible Mg2+ binding (Fig. 

2d), N198 (which directly interacts with magnesium), and K46 (which stabilizes the phosphate of 

U2) when mutated to alanine, completely abolished the enzymatic activity of nsp16/nsp10 (Fig. 

2e). Strikingly, the activity of S33R mutant decreased by ~ 80%, further validating our structural 

interpretation about this clinical variant (Fig. 2c-e). In contrast, the S33N mutation resulted in 30% 

increased activity, suggesting that the SARS-CoV nsp16, which has N at this position, has superior 

2’-O methylation capability compared to SARS-CoV-2 nsp16 (Fig. 2e). Moreover, the SARS-

CoV-2 nsp16 shows indistinguishable 2’-O methyltransferase activity in the presence of 

magnesium and manganese, but a 20% loss in the presence of calcium. The S33N mutant showed 

no preference for any of the three divalent ions tested (Mg2+, Ca2+, Mn2+). However, S33R showed 

comparable activity in the presence of Mg2+ and Mn2+ (although 80% less than the WT), but 

residual enzymatic activity in the presence of Ca2+ (Fig. 2e). 

 

The unique role of a divalent metal ion in SARS-CoV-2 nsp16 appears to be architectural (Fig. 

2f), yet it is essential for accurate and efficient 2’-O methylation of the first transcribed base of the 

SARS-CoV-2 genome. Thus, allowing the virus to evade host innate immune responses. Such 

reliance and preference for metals also suggests that an imbalance in cellular metal concentrations 

could differentially alter the RNA capping and thus, host innate immune response to infections by 
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various CoVs. In support of this concept, hypocalcemia is considered as a strong predictor of in-

hospital COVID-19 deaths12,13, and severely ill COVID-19 patients had significantly lower 

magnesium levels in whole blood14. One possibility is that the sub-optimal RNA capping by 

nsp16/nsp10 variants, together with altered levels of divalent metals, could trigger excessive 

immune response and cause hypercytokinemia in a subpopulation of COVID-19 positive patients. 

Future studies should determine the direct correlations between RNA capping, metal levels in the 

host cellular milieu, and innate immune response. 
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METHODS 

Protein expression and purification 

The nsp16 (NCBI reference sequence YP_009725311.1) and nsp10 (NCBI reference sequence: 

YP_0009725306.1) of the seafood market pneumonia SARS-CoV-2 isolate Wuhan-Hu-1 

(NC_045512) were cloned into a duet vector, co-expressed in E. coli, and purified using the 

method we previously described 8. Briefly, the clarified E. coli lysates were loaded on to a metal 

affinity column and proteins were eluted by running a concentration gradient of imidazole. The N-

terminal His6 tag from nsp16 was then proteolytically removed. The tag-free fractions were 

purified by successive passage through affinity, ion-exchange, and size-exclusion chromatography 

columns. The purified enzymes were concentrated to 5 mg/mL and used immediately for 

subsequent biochemical and/or crystallographic studies. We used the same method for all mutant 

nsp16/nsp10 enzymes reported in this study. 

 

Crystallization, X-ray diffraction data collection and structure determination 

The initial nsp16/nsp10 complex was grown by the sitting drop vapor diffusion in a crystallization 

solution 10% (v/v) of 2-propanol, 0.1 M MES/NaOH pH 6.0, 0.2 M calcium acetate. After 3-4 

rounds of optimization by varying pH, precipitant, and salt concentrations, we grew larger crystals 

amenable to synchrotron radiation. We soaked these crystals with an RNA analog representative 

of the Cap-1 structure (me7GpppA(2’-O-me)U). The crystals were cryo-protected by serial soaks in a 

solution containing the original mother liquor and increasing concentrations (0 to 20% v/v) of 

ethylene glycol, and then flash-frozen in liquid nitrogen. Crystals of the nsp16/nsp10/Cap-1/SAH 

and nsp16/nsp10/SAH complexes diffracted X-rays to 2.3 and 2.5 Å resolution with synchrotron 

radiation, respectively (S. Table 1). Both crystals belong to the space group P3121 with similar 
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unit cell dimensions a=b=184Å, c = 57Å, α = β = 90°, and γ = 120°, and with one nsp16/nsp10 

heterodimer per asymmetric unit. All data (measured at wavelength 1.07 Å) were indexed, 

integrated, and scaled using XDS, aimless, and various ccp4 suite programs integrated into the 

RAPD pipeline at the NECAT 24ID beamline15. The structure was solved by molecular 

replacement using a Cap-0 ternary complex of nsp16/nsp10/SAM (PDB ID: 6WKS)8 structure as 

a template in Phaser16. The resulting maps indicated unambiguous electron densities for RNA Cap-

1 and SAH. Ligand topologies and geometrical restraints were generated using PRODRG 

(http://prodrg1.dyndns.org), GRADE (http://grade.globalphasing.org), and eLBOW (Phenix)16 

programs. We iteratively rebuilt and refined the model with good stereochemistry using the 

programs Coot17 and Phenix15 (Supplementary Table 1). All figures of structural models were 

generated using Pymol (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC). 

 

Determining affinities of WT and mutant nsp16/nsp10 binding to magnesium 

We used microscale thermophoresis (MST) to derive equilibrium dissociation constants (KD) for 

protein-metal interactions. A detailed protocol has been published8. Briefly, 20 µM of each enzyme 

complex was labeled by incubating with dye solution (60 µM) in the labeling buffer at room 

temperature for 30 min. The magnesium stock was prepared in the MST reaction buffer (20 mM 

HEPES pH 7.5, 150 mM NaCl, 0.5% glycerol, and 0.05% Tween 20), and two-fold serial dilutions 

(from 2 mM stock) were made in 12 steps. The labeled protein (20 nM) was equally mixed into 

each ligand reaction (ligand concentration ranges 500 nM to 1 mM). The final reaction mixtures 

were loaded and measured on a Monolith NT.115 instrument (NanoTemper Technologies) at 25 

°C. The results shown here are from three independent experiments. Data were fitted by a single-

site binding model in GraphPad Prism (GraphPad Software, San Diego, CA). 
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Enzyme activity assay 

We used a LC/MS-based method (reported earlier)8 for quantitative measurement of Cap-1 

formation by nsp16/nsp10 enzymes in the presence of various metals. Briefly, 0.1 µM of enzymes 

were allowed to react with 1 µM me7GpppA-capped 25 nt RNA in a buffer (50 mM Tris-HCl, pH 

8.0, 5 mM KCl, 1 mM DTT, 0.2 mM SAM) supplemented with 1 mM MgCl2 or MnCl2 or CaCl2 

or 5 mM EDTA. The reactions were incubated at 37°C for 30 min, stopped by heating at 75°C for 

5 min in the presence of 5 mM EDTA, and were subjected to LC/MS intact mass analysis. Nucleic 

acids in the samples were separated using a Thermo DNAPac™ RP Column on a Vanquish 

Horizon UHPLC System, followed by mass determination using a Thermo Q-Exactive Plus mass 

spectrometer. The raw data were deconvoluted using Promass HR (Novatia, LLC). The 

deconvoluted mass peak ratios between reactants and the expected products was used to estimate 

the percentage of 2’-O methylation. Results shown in Fig. 2e are average of three independent 

experiments (n=3) normalized to a WT dataset consisted of seven data points. Source data are 

provided as a Source Data File. The RNA substrate used in this assay is 

me7GpppAUAGAACUUCGUCGAGUACGCUCAA-[6-FAM]. 

 

DATA AVAILABILITY 

The information about coding sequences of nsp16 (NCBI reference sequence YP_009725311.1) 

and nsp10 (NCBI reference sequence: YP_0009725306.1) of the seafood market pneumonia 

SARS-CoV-2 isolate Wuhan-Hu-1 (NC_045512) used in this study is available at NCBI  

(https://www.ncbi.nlm.nih.gov/nuccore/NC_045512). Files for atomic coordinates and structure 

factors were deposited in the Protein Data Bank under accession codes 7LW3 (product bound) and 
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7LW4 (SAH bound). Correspondence and requests for material should be addressed to Y.K.G. 

(guptay@uthscsa.edu). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435174doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435174
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

REFERENCES 

 
1. Decroly, E., Ferron, F., Lescar, J. & Canard, B. Conventional and unconventional 

mechanisms for capping viral mRNA. Nat Rev Microbiol 10, 51-65 (2011). 
2. Bouvet, M. et al. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. 

PLoS Pathog 6, e1000863 (2010). 
3. Chen, Y. et al. Biochemical and structural insights into the mechanisms of SARS 

coronavirus RNA ribose 2'-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog 
7, e1002294 (2011). 

4. Daffis, S. et al. 2'-O methylation of the viral mRNA cap evades host restriction by IFIT 
family members. Nature 468, 452-6 (2010). 

5. Habjan, M. et al. Sequestration by IFIT1 impairs translation of 2'O-unmethylated capped 
RNA. PLoS Pathog 9, e1003663 (2013). 

6. Zust, R. et al. Ribose 2'-O-methylation provides a molecular signature for the distinction 
of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12, 137-43 
(2011). 

7. Zhou, Z. et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-
19 Patients. Cell Host Microbe 27, 883-890 e2 (2020). 

8. Viswanathan, T. et al. Structural basis of RNA cap modification by SARS-CoV-2. Nat 
Commun 11, 3718 (2020). 

9. Rosas-Lemus, M. et al. High-resolution structures of the SARS-CoV-2 2'-O-
methyltransferase reveal strategies for structure-based inhibitor design. Sci Signal 
13(2020). 

10. Decroly, E. et al. Crystal structure and functional analysis of the SARS-coronavirus RNA 
cap 2'-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 7, e1002059 (2011). 

11. Butler, D.J. et al. Shotgun Transcriptome and Isothermal Profiling of SARS-CoV-2 
Infection Reveals Unique Host Responses, Viral Diversification, and Drug Interactions. 
bioRxiv (2020). 

12. Di Filippo, L. et al. Hypocalcemia is highly prevalent and predicts hospitalization in 
patients with COVID-19. Endocrine 68, 475-478 (2020). 

13. Cheungpasitporn, W. et al. Impact of admission serum calcium levels on mortality in 
hospitalized patients. Endocr Res 43, 116-123 (2018). 

14. Zeng, H.L., Yang, Q., Yuan, P., Wang, X. & Cheng, L. Associations of essential and toxic 
metals/metalloids in whole blood with both disease severity and mortality in patients with 
COVID-19. FASEB J 35, e21392 (2021). 

15. Collaborative Computational Project, N. The CCP4 suite: programs for protein 
crystallography. Acta Crystallogr D Biol Crystallogr 50, 760-3 (1994). 

16. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular 
structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-21 (2010). 

17. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta 
Crystallogr D Biol Crystallogr 60, 2126-32 (2004). 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435174doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435174
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

Acknowledgments 

 

This work was partially supported by funding from the San Antonio Partnership for Precision 

Therapeutics (SA-PPT), pilot awards from the Institute for Integration of Medicine and Science 

(IIMS) and UT Health San Antonio (UTHSA), and the Max and Minnie Tomerlin Voelcker 

Foundation to Y.K.G. T.V. is supported by a research training award (RP170345) from the Cancer 

Prevention Research Institute of Texas (CPRIT). Y.K.G. is also supported by a high impact/high 

risk award from the CPRIT, and a Rising STARs award from the UT System. We are grateful to 

beamline scientists at NECAT-24ID sector, APS, Chicago for provision of synchrotron beamtime 

and data collection. This work is based on research conducted at the Northeastern Collaborative 

Access Team beamlines (NIH P30GM124165, and DOE DE-AC02-06CH11357 grants). We also 

thank the X-ray Core of UTHSA. 

 

Author contributions 

Y.K.G. conceived, designed, and supervised the overall study, and performed crystallographic 

studies; T.V., A.M., S.A. purified proteins, T.V. performed crystallization, S.Q. and T.V. 

performed biochemical assays. S.-H.C. performed the LC/MS-based assays with assistance from 

N.D. L.M.-S. provided reagents. Y.K.G. wrote the manuscript, and all authors have read and 

approved this version. 

 

Competing interests 

Y.K.G is founder of Atomic Therapeutics. S-H. C. and N.D. are employees of New England 

Biolabs, a manufacturer and vendor of molecular biology reagents, including vaccinia RNA 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435174doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435174
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

capping enzyme and cap 2’-O methyltransferase. None of these affiliations affect the authors’ 

impartiality, adherence to journal standards and policies, or availability of data. 

 

Materials and correspondence 

Files for atomic coordinates and structure factors were deposited in the Protein Data Bank under 

accession codes 7LW3 (product bound) and 7LW4 (SAH bound). Correspondence and requests 

for material should be addressed to Y.K.G. (guptay@uthscsa.edu). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435174doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435174
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

FIGURE LEGENDS 

Fig. 1. Structures of SARS-CoV-2 nsp16/nsp10 complexes. a, The substrate (me7GpppA, blue 

stick) and methyl donor (SAM, yellow stick)-bound nsp16 (cyan)/nsp10 (orange) complex (PDB 

ID, 6WKS)8 represents a closed form. b, The product (me7GpppAmU, red stick; byproduct SAH 

[grey stick])-bound nsp16 (blue)/nsp10 (magenta) in an open state. A yellow circle shows the 

methylated ribose (2’-O-me) of N1 (A) base. c, The SAH (grey) bound nsp16 (grey)/nsp10 (pink) 

represents a partially open or enzyme reset state. d, Secondary structure-based overlay of nsp16 in 

substrate- and product-bound states clearly shows the universal expansion of the enzyme upon 2’-

O methylation. e, A close up view of Cap-binding and catalytic pocket of the product structure 

shows nsp16 residues (cyan sticks) interacting with Cap-1 (red). A positional change in orientation 

of the substrate (Cap-0, blue) from the “closed” structure determined previously8 is shown. f, An 

overlay of the product (Cap-1) and byproduct (SAH)-bound structures shows change in the 

orientation of gate loop 2. Reduction in buried surface area between nsp16/nsp10 in fully and 

partially open structures (compared to substrate-bound closed state) is shown (g-i). 

 

Fig. 2. Metal dependency of nsp16/nsp10 and its clinical variant for 2’-O methylation. 

a, Alignment of nsp16 from different CoV representing all three sub-classes (α, β, 𝛾). Blue sphere 

denotes S33R, which locates in gate loop 1; S33 is an asparagine (N) in SARS-CoV; S33R is a 

clinical nsp16 variant of SARS-CoV-2; Cyan triangle, N198 that coordinates Mg2+; black sphere, 

catalytic lysine (K46 of KDKE tetrad). b, A close-up view of coordination of Mg2+ ion (green 

sphere). Mg2+ coordinates with five water molecules (black spheres) at the nucleic acid face and 

the side chain of N198 on the opposite face. Two of these water molecules hold the phosphoryl 

oxygens of the U2. Red arrow; 2’-O-methylated ribosyl of A1 base. c, The side chain of arginine 
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(magenta, modeled) at the S33 (cyan) position intrudes into the Mg2+ pocket and thus, may displace 

Mg2+ or disrupt the Mg2+/water network. d, Binding isotherms of Mg2+ nsp16/nsp10 (WT and 

mutants) interaction derived from the MST data. (N.D., not determined). e, Quantitative 

measurement of Cap-1 formation by nsp16/nsp10 enzymes experiments (+/- metals, EDTA) as 

derived from the LC/MS data. Results are averages of three independent experiments (n=3) 

normalized to a WT dataset consisted of seven datapoints with one standard deviation (s.d.) for 

each metal or EDTA shown as error bars. Source data are provided as a Source Data File. no_enz, 

reaction devoid of nsp16/nsp10 enzyme. f, An overlay of the N1 and N2 bases and SAH of SARS-

CoV-2 nsp16/nsp10 (red) and dengue NS5 (blue; PDB ID: 5DTO) RNA caps shows entirely 

different orientations of the terminal base of the cap (me7G), two phosphates (β and 𝛾) and Mg2+ 

ions. Mg2+ (in dengue, yellow sphere) stabilizes the three phosphates whereas in SARS-CoV-2 

(green sphere) it indirectly (water-mediated) stabilizes the phosphate of the N2 base on one side 

and engages N198 of nsp16 on the opposite side. Red arrow; 2’-O methyl of ribose of N1. 
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Figure 2 
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Supplementary Figure 1 
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S. Fig. 1. a, A close-up view of the product (m7GpppAmU, red stick), SAH (grey stick), magnesium 
(green sphere), water (W, black spheres), and N198 binding. The Fo-Fc electron density omit map 
for these ligands contoured at 2.7σ is shown as a grey mesh. To minimize the possibility of bias 
introduced by ligands, all ligands were excluded from refinement and phase calculations. Positions 
of the methyl group attached to the acceptor moiety (2’-O in ribose of the target nucleotide A1m) 
is depicted by red arrow. b, The Fo-Fc electron density omit map for SAH (red stick) in 
nsp16/nsp10/SAH structure contoured at 2.7σ is shown as a grey mesh. c, Final structure of nsp16 
(cyan)/nsp10(orange)/me7GopppAmU (red)/SAH (grey)/ Mg2+ (green)/Mg2+-coordinating waters 
showing 2Fo-Fc map (blue mesh) contoured at 1.0σ. d, An overlay of an A in an ideal AU (green) 
dinucleotide over Am base in the product structure shows deviated geometry (outward motion, 
blue arrows) of the U2 base, suggestive of a state preceding the product’s release. e, nsp16 residues 
(cyan) that directly interact with Cap-1 RNA (red) and Mg2+ (green sphere) and water (black 
sphere). f, Protein-ligand interaction network of nsp16/nsp10/Cap-1 (m7GpppAmU) and SAH in 
product (g), and SAH-bound (h) nsp16/nsp10 structures. The green dashed lines represent 
hydrogen bonding, and the cyan spheres represent water molecules. These figures were generated 
using the LigPlot+ program1. i, A secondary structure-based superposition of nsp16 in all three 
structures show good overlay of the central β-sheet in all three structures. The regions flanking the 
central core in nsp16 and the entire nsp10 universally expands (relative to substrate/SAM-bound 
form, cyan) to assume a more relaxed (or fully open state) in the product-bound form (blue). The 
structures of product plus SAH and only SAH-bound enzymes do not deviate except in the gate 
loop region. j, An overlay of the substrate (light cyan) and product (blue) structure is shown with 
their respective Caps (Cap1U as red stick in product, grey stick; Cap-0 in substrate structures). In 
the absence of Mg2+ in the substrate structure, the side chain of N198 coordinates with 3’-OH of 
the N1 base whereas in the product structure it coordinates with the phosphoryl oxygen of the N2 
base and Mg2+ ion. 
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Supplementary Table 1. 

Data collection and refinement statistics (molecular replacement) 
 

nsp16/nsp10/m7GpppAmU 
(PDB ID: 7LW3) 

nsp16/nsp10/SAH 
(PDB ID: 7LW4) 

Data Collection NECAT-24ID, APS NECAT-24ID, APS 
Wavelength 1.071 1.071 
Resolution range (Å) 28.63 - 2.3 29.75 - 2.5 
Space group P3121 P3121 
Unit cell (Å)           a=b, c (Å) 

    α=β, 𝛾 (o) 
184, 57.1 

90, 120 
184.5, 56.9 

90, 120 
Total reflections 98827 (9874) 76521 (7646) 
Unique reflections 49419 (4937) 38625 (3842) 
Multiplicity 21.13 (3.75) 2.0 (2.0) 
Completeness (%) 99.9 (100) 99.79 (100) 
Mean I/sigma(I) 15.2 (0.9) 11.80 (3.02) 
Wilson B-factor 
R-merge 

44.93 
0.089 (2.34) 

47.39 
0.113 (1.41)    

Refinement 
  

Reflections used in refinement 49411 (4937) 38620 (3842) 
R-work 0.22 (0.28) 0.20 (0.26) 
R-free 0.25 (0.32) 0.24 (0.29) 
Number of non-hydrogen 
atoms 

3444 3384 

macromolecules 3192 3157 
ligands 91 62 
solvent 161 165 

RMS (bonds) 0.027 0.034 
RMS (angles) 2.37 2.43 
Ramachandran favored (%) 93.64 94.61 
Ramachandran allowed (%) 5.62 4.9 
Ramachandran outliers (%) 0.73 0.49 
Average B-factor (Å2) 57.52 58.58 

macromolecules 57.31 58.55 
ligands 67.12 71.77 
solvent 56.3 54.17 

 
*Values for outermost shell are given in parentheses. 
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