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Abstract Engineered proteins generally must possess a stable structure in order to achieve their

designed function. Stable designs, however, are astronomically rare within the space of all possible

amino acid sequences. As a consequence, many designs must be tested computationally and

experimentally in order to find stable ones, which is expensive in terms of time and resources.

Here we report a neural network model that predicts protein stability based only on sequences of

amino acids, and demonstrate its performance by evaluating the stability of almost 200,000 novel

proteins. These include a wide range of sequence perturbations, providing a baseline for future

work in the field. We also report a second neural network model that is able to generate novel

stable proteins. Finally, we show that the predictive model can be used to substantially increase the

stability of both expert-designed and model-generated proteins.

Introduction

Most proteins, natural or designed, require a stable tertiary structure for functions such as binding

(Chevalier et al. (2017)), catalysis (Jiang et al. (2008)), or self-assembly (King et al. (2012)). Because
structural stability derives from thousands of interactions between atoms, both attractive and

repulsive, whose net sum is close to zero, precise prediction of stability is extremely challenging.

Current approaches use combinations of statistical and physics-based potentials to approximate

and refine calculations of these interactions. While much progress has been made, these programs

comprise many terms that scale unfavorably in compute time, are imperfectly parameterized, and
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attempt to model poorly understood processes such as the entropy of the unfolded state or the

polarizability of some atoms (Alford et al. (2017); Magliery (2015)). Thus, calculating the stability
of even a small protein is both computationally expensive and usually insufficiently accurate for

practical use. This means that creating a small number of successful proteins typically requires the

design and evaluation of a large number of candidates, at significant cost. Data-driven approaches,

especially neural networks, implicitly solve only the calculations necessary to arrive at a prediction,

and have been used in computational prediction tasks in other domains lacking accurate statistical

or physics-based models. A successful application to protein stability would lead to both higher

design-build-test throughput and higher accuracy in design for a wide range of applications.

There has been a recent surge in the application ofmachine learning to understanding properties

of proteins. In particular, there is substantial interest in predicting the forces guiding protein

folding and dynamics, leading to physically plausible models of protein structure (reviewed in

Noé et al. (2020)). AlQuraishi (2019) presents an approach for learning protein structure from
primary sequence leveraging geometric constraints, which yields competitive accuracy with high

computational performance. Senior et al. (2020) applied similar geometric constraints to a model
that augmented its primary sequence input with data about mutation correlations in homologous

proteins to yield state-of-the-art performance in structure prediction. There have been a few

attempts to use primarily or exclusively primary sequence data to make predictions about proteins,

leaving the underlying biology, chemistry, and physics to be learned implicitly. Wu et al. (2019)
showed that a greedy search guided by simple sequence-based machine-learning models could

substantially improve the efficiency of guided evolution for protein binding. Alley et al. (2019)
developed a sequence-based recurrent model which generated fixed-length vector embeddings

of proteins, based solely on primary sequence. They demonstrated that these embeddings were

useful for solving complex problems in protein engineering, including stability prediction, using very

simple models. Vig et al. (2020), Rives et al. (2020), and Elnaggar et al. (2020) explored attention-
based models that had been trained on large sets of protein sequences and found that the models’

learned representations aligned with such biophysical properties as 3D structure and binding

domains.

Data-driven models have also recently been applied to the direct design of proteins. Müller
et al. (2018) used recurrent neural networks to generate novel peptide designs based on a training
set of helical antimicrobial peptides, with results that were predicted to be more active than random

draws from the training set distribution. These designs were not tested in the laboratory, however.

In Russ et al. (2020), constraints derived from evolutionary statistics of single and paired amino
acids yielded novel designs that demonstrated the intended enzymatic activity. Anishchenko et al.
(2020) demonstrated that a model trained to predict 3D structure could be used to “hallucinate”
novel sequences that formed experimentally validated proteins.

One drawback of machine learning models is that they require large amounts of training data.

This presents a particular problem for modeling protein stability because, historically, experimental

measurements of stability have been laborious. Most previous attempts to apply machine learning

to problems in protein science have taken advantage of existing large datasets such as the Protein

Data Bank (rcsb.org, Berman et al. (2000)), UniProt (The UniProt Consortium (2018)), or a handful
of existing datasets of empirical measurements (e.g. Reinke et al. (2013); Rocklin et al. (2017)).
This has constrained the types of questions that can be addressed: for example, while structure

and stability are conceptually linked, and prediction of structure is undeniably useful, one cannot

directly infer stability from structural data. It is also undesirable from the standpoint that these

datasets are largely static, limiting the ability to test model predictions comprehensively on new

data or to engage in reinforcement learning strategies. On the other hand, machine learning has

been used successfully with newly generated data in other areas of biology, to predict functional

motifs such as alternative polyadenylation (Bogard et al. (2019)), alternative splicing (Rosenberg
et al. (2015)), small molecule inhibitor discovery (Zhavoronkov et al. (2019)), and protein-protein
interaction surfaces (Gainza et al. (2020)).
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Figure 1. Proteins are designed, either by an expert using Rosetta or dTERMen software or by a neural network

model that transforms secondary sequences into primary sequences. These designs are refined to maximize

stability via an iterative procedure. At each step, the stability of all possible single-site substitutions is predicted

by a second neural network model. The mutants with the highest predicted stability are saved and used as

seeds for the next round of optimization.

Figure 1–Figure supplement 1. Protein stability assay.

Figure 1–Figure supplement 2. New unfolded-state model.

Figure 1–Figure supplement 3. Relationship between EC50 values for trypsin and chymotrypsin.

Figure 1–Figure supplement 4. Relationship between stability scores for trypsin and chymotrypsin.

Figure 1–Figure supplement 5. Mapping chymotrypsin EC50 values between expression vectors.

Figure 1–Figure supplement 6. Mapping trypsin EC50 values between expression vectors.

Here we describe a data-driven process for the high-speed, automated creation of stable protein

designs (Figure 1). We use a previously described combination (Rocklin et al. (2017)) of parallel oligo
library synthesis, yeast surface display, and next-generation sequencing, coupled with Aquarium

lab automation software (aquarium.bio) to generate very large datasets suitable for training and

testing a neural network model of protein stability. We describe a computationally efficient neural

network, the Evaluator Model (EM), that is able to predict protein stability with high accuracy, based

solely on amino acid sequence. We validate the EM using data on almost 200,000 new protein

designs, assayed using this robust experimental pipeline. We also demonstrate the use of the EM

to refine the stability of protein designs by making multiple changes, increasing stability tenfold

as evaluated by the assay described in Rocklin et al. (2017). We show that these refinements can
easily be made to respect additional constraints on how they change the proteins. We describe

a second neural network, the Generator Model (GM), that is able to create novel stable protein

sequences at high speed; these sequences can also be successfully refined by the EM. Finally, we

demonstrate via low-resolution methods that selected examples fold into stable structures, and

report a high resolution crystal structure of one design that matches the expected topology.

Results

High-throughput measurement of protein stability

In order to generate enough data to train a sequence-based neural network model of stability,

we adapted and automated a recently developed technique for assaying the stability of small

proteins through their relative resistance to digestion by proteases (Figure 1–Figure Supplement 1).
This approach uses DNA oligonucleotide gene library synthesis to encode the designed proteins,

which are expressed in a yeast surface display system so that each cell displays many copies of a

single designed protein. The yeast library is treated with trypsin and chymotrypsin in a range of

concentrations, and sorted in a fluorescence activated cell sorter (FACS) to collect yeast cells with

a high proportion of undigested protein. The resulting pools are then deep-sequenced, and the
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relative resistance to protease digestion is computed from the frequencies of sequence reads. We

used this combination of the existing assay and software-based automation to evaluate the stability

of up to 100,000 proteins in a single experiment.

While resistance to digestion by protease is partly determined by a protein’s unfolding free

energy (i.e. its stability), this relationship is complicated by the intrinsic, unfolded-state resistance of

the sequence to cleavage. Rocklin et al. (2017) devised a method to subtract the intrinsic resistance
predicted by an unfolded-state model (USM) from the overall observed resistance. This yields a

stability score that, in principle, represents only the component of resistance derived from folding.

Because this correction is imperfect—for example, it only modestly improves agreement between

trypsin- and chymotrypsin-derived stability scores—we reasoned that potential latent factors, such

as the propensity of the sequence to form residual unfolded-state structures incompatible with

binding to the active site of the protease, could also affect the cleavage resistance. We developed

a more flexible USM to account for these additional factors. This new USM yielded predictions

that improved upon the original USM in several metrics (Figure 1–Figure Supplement 2). We
also confirmed that the stability score calculated using the new USM was an improvement over

raw EC50, by comparing relationships between EC50 values for the two proteases (Figure 1–FigureSupplement 3) and relationships between stability scores for the two proteases (Figure 1–Figure
Supplement 4). Given the apparent improvements in stability score over raw EC50, and in the new
USM over the original, we chose to use a stability score based on the new USM for all analyses.

Analyses performed with the original USM yield similar results and unchanged conclusions.

Predicting stability with a sequence-only model

We built a convolutional neural network (CNN) model, the Evaluator Model (EM), to predict the

stability score of a sequence of amino acids (Figure 2). This model was trained on a corpus of
113,681 proteins designed by experts using Rosetta (Alford et al. (2017)) or dTERMen (Zhou et al.
(2020)) software (Figure 2–Figure Supplement 1, Figure 2–Figure Supplement 2), and achieved high
performance on held-out test data. The training corpus comprised the designs reported in Rocklin
et al. (2017), in Linsky et al. (2021), as well as previously unpublished designs.
The EM demonstrated predictive performance near the limit of the experimental data using a

random testing subset. We reserved a set of 5000 randomly selected designs for testing model

performance, with the remaining designs used for training. We calculated both the squared Pearson

correlation coefficient (i.e. r2) and the R2 goodness-of-fit scores for the test set, for five versions of

the EM (built by training from scratch five times). R2 is more stringent than r2 because it does not
assume a linear regression of model predictions onto data, and can be negative when the model

performs worse than simply predicting the sample mean. The mean R2 score for the EM was 0.48

(r2 = 0.49), slightly better than the relationships between trypsin and chymotrypsin stability scores
(trypsin onto chymotrypsin R2 = 0.34, chymotrypsin onto trypsin R2 = 0.38; r2 = 0.47). Ideally, trypsin
and chymotrypsin stability scores would be equal; that EM predictions are as similar to stability

scores as the per-protease scores are to each other suggests that the EM’s performance is near the

limit imposed by the assay.

We also evaluated EM performance when controlling for the possibility that it was memorizing

artifacts of the design process rather than modeling underlying aspects of stability. It is reasonable

to think that a neural network might overfit the data by learning the patterns associated with a given

topology or methodology. Topologies each have a loose but distinctive patterning of hydrophobic

and hydrophilic residues (Hill et al. (2000)). Similarly, a particular design methodology may have a
sequence-level “tell”—even one that is not easy for humans to discern (Nielsen and Voigt (2018)). In
order to guard against overfitting to such features, we took advantage of the fact that our training

corpus comprised numerous topologies, design approaches, and sizes. We partitioned the corpus

into 27 classes based on these factors. For each class, we tested performance on the designs within

that class after training each of the three models on data from the other 26 classes. We again used

R2 goodness-of-fit scores, taking the mean of three retrained EMs for each held-out class. The
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Figure 2. (A) Architecture of Evaluator Model. (1) Input: one-hot encoding of protein’s primary sequence. (2)

Three convolutional layers; the first flattens the one-hot encoding to a single dimension, successive filters span

longer windows of sequence. Three dense layers (3) yield trypsin and chymotrypsin stability scores (4). The final

stability score (5) is the minimum of the two. (6) A separate dense layer from the final convolution layer yields

one-hot encoding of the protein’s secondary structure. (B) Success of EM predictions on a library of new designs.

We used the EM to predict the stability of 45,840 new protein sequences that the model had not seen before;

the distribution of predictions is shown in pink. The blue curve shows the fraction of these designs that were

empirically stable (stability score >1.0) as a function of the model’s a priori stability predictions (dotted black
line: stability threshold for predicted stability). (C) Predicted versus observed stability scores for the same data.

Figure 2–Figure supplement 1. Summary of mini-protein designs used to train the EM.

Figure 2–Figure supplement 2. Characteristics of proteins used to train the EM.

Figure 2–Figure supplement 3. Generalization performance by protein class.

Figure 2–Figure supplement 4. Evaluator Model predicts stability of perturbed sequences

Figure 2–Figure supplement 5. Evaluator Model predicts destabilizing effects of perturbations.
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EM achieved a mean R2 of 0.17 over all classes, indicating some overfitting to topology or design

methodology, but also a substantial level of generalization. Performance on each held-out class is

shown in Figure 2–Figure Supplement 3.
We next sought to evaluate the EM’s ability to predict the effects of sequence perturbations and

to refine the stability of synthetic protein designs. To support this investigation, we constructed a

new library of 96,799 designs, which fell into three main categories: expert designs subjected to

a variety of perturbations, expert designs subjected to refinement, and neural network designs

subjected to refinement (all described below). We used the EM to predict the stability of these new

designs, and then tested them empirically in the stability assay. We analyzed the 45,840 of these

designs for which the credible intervals for both measured protease EC50 values were no greater

than 2. Across this set of designs, the EM’s predictions were highly consistent with the observed

stability scores (R2 = 0.52, r2 = 0.59, Figure 2B,C).
Many designs in the new library were expert designs mutated to test whether the EM could be

misled by local or global changes to a sequence. Such mistakes could reveal weaknesses caused by

the model’s training data or approach. The EM was trained only on stability scores of expert designs

created with stability as a goal (though it was exposed to natural protein sequences during training;

see Methods), which made overfitting a particular concern. The EM might, for instance, learn to

make predictions based mostly on a design’s overall amino acid composition, taking advantage

of statistical differences between the training set and the larger set of possible sequences. In

that case, the EM may be relatively insensitive to single-site mutations or changes that alter the

ordering of amino acids but maintain their overall frequencies. Conversely, if the EM has learned to

make predictions based on specific memorized motifs present in the training data, then single-site

mutations away from these motifs may cause the model to react unpredictably. To test these

possibilities, we evaluated the effects of fourteen different types of perturbations to each of the

5000 designs in the original test set. These fell into three classes: single-site mutations (substitution,

insertion, deletion), global rearrangements that did not change amino-acid frequency (sequence

reversal, cyclic shifts), and global compositional changes (deleting half the amino acids).

The model was able to predict the stability of perturbed proteins with reasonable fidelity (Fig-
ure 2–Figure Supplement 4). As expected, all fourteen classes of perturbations tended to decrease
a protein’s stability. Also as expected, the two classes of global disruptions tended to decrease

stability more than the local mutations. To evaluate the EM’s ability to predict decreases in stability,

we limited analysis to cases where the base protein had, or was predicted to have, a stability score

of at least 1. As seen in Figure 2–Figure Supplement 5, the model systematically underestimated
the impacts of these sequence perturbations. However, it ordered the perturbations reasonably

well by mean destabilization (Spearman � = 0.908, p = 7.30 × 10−6) and showed some success at
ranking the impacts of disruptions to individual proteins (Spearman � = 0.432, p = 1.68 × 10−202).

Refining stability with a sequence-only model

Successfully predicting that mutations reduce stability could, in principle, be achieved by overfitting

to signatures of expert design—mutated versions of such designs, lacking those signatures, could

be judged as inferior. Therefore, we asked whether the EM can also predict stabilizing mutations,

which presumably would not be seen by the model as improving upon an adventitious signature.

The EMwas able to findmulti-site mutations that increased stability score from among astronom-

ically large sets of possible mutations to a collection of proteins. This demonstrates extrapolation

of the EM’s predictions to those regions of design space where a design’s stability increases. More

importantly, it raises the possibility of rapid and automatic improvement to existing protein design

pipelines. To evaluate this possibility, we randomly selected a subset of 1215 of the test set designs,

and subjected these sequences to incremental stabilization guided by the predictions of the EM.

We performed a five-round beam search (Figure 3A) to generate successive single-site substitu-
tions with higher predicted stability. Although this approach required the prediction of stability

for hundreds of millions of primary sequences, the computationally efficient EM yielded these
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predictions in only a few hours using a single GPU. On average, this iterative refinement increased

assayed stability more than ten-fold (i.e., one stability score unit) after five single-site substitutions

(Figure 3B).
Substantial improvements to stability are seen even when we restrict analysis only to proteins

that are already at least marginally stable and have EC50 values well below the assay’s ceiling

(Figure 3–Figure Supplement 1). This demonstrates that the EM can stabilize designs that are
already somewhat stable, rather than only transforming entirely unstable sequences into partially

folded structures. By limiting EC50 values we ensure that the EM is not being misled by, or taking

advantage of, unfolded-state predictions outside the assay’s range.

Iterative stabilization of proteins also succeeds with respect to the individual components of

the final stability score. In Figure 3–Figure Supplement 2 and Figure 3–Figure Supplement 3, we
show stability scores for each protease separately. We see that the effect of guided substitutions is

smaller, and the effect of random substitutions is larger, for trypsin than for chymotrypsin. As also

seen in Figure 1–Figure Supplement 4, trypsin stability scores tend to be lower than chymotrypsin
stability scores, which means that they more often determine the final stability score. In every case,

however, we see increasing divergence between guided and random substitutions as the number

of substitutions increases.

To separate how much of the change in stability score was due to changes in protease resis-

tance and how much was due to changes in predicted unfolded-state resistance, we examined

the experimentally observed EC50 values for each protease. Figure 3–Figure Supplement 4 andFigure 3–Figure Supplement 5 show the results, broken down by protease. In both cases, there is
increasing divergence between EC50 values for guided versus random substitutions as the number

of substitutions increases. Trypsin EC50 values increase modestly as a result of EM guidance, while

chymotrypsin EC50 values hold steady. For both proteases, much of the increase in stability score is

associated with predicted decreases in unfolded-state resistance, in the absence of a correspond-

ing decrease in observed protease resistance. As with stability scores, we see the same pattern

of results when we restrict analysis only to proteins that are already at least marginally stable

and which demonstrate EC50 values well below the assay’s ceiling (Figure 3–Figure Supplement 6,Figure 3–Figure Supplement 7).
Generating and refining novel proteins with sequence-only models

Given that a data-driven neural network model can rapidly and successfully predict stability from

sequence, we next asked if a similar model can also rapidly generate new stable designs. Specifically,

we approached de novo protein design as a language generation task where the amino acids are the
words of our language. We adapt deep learning sequence models from neural machine translation

(Luong et al. (2015); Och (2003)) for our task. This architecture translates secondary structure
sequences to primary sequences of the same length using an attention-based encoder-decoder

recurrent neural network (Gehring et al. (2016)). We refer to this model as the Generator Model
(GM, Figure 4A).
As a preliminary diagnostic to confirm that this class of model is fundamentally able to map

between the domains of primary and secondary structure, we consider the reverse task: predicting

secondary structure from primary structure. We trained a model with architecture equivalent to

the GM’s to predict ground-truth secondary structure sequences derived from applying the DSSP

algorithm (Kabsch and Sander (1983)) to Rosetta tertiary structure models for a set of primary
sequences. This “Reverse GM” achieves a secondary-sequence character error rate of 0.67% (CER:

the average fraction of characters that are wrong; more precisely, the Levenshtein edit distance

between the predicted and reference secondary sequences divided by sequence length). Even when

evaluated on topologies that the model was not trained on, it achieves a CER of 9% for secondary

sequence. We also used the Reverse GM to evaluate primary sequences produced by the GM, as

described below.

We used the GM to create a set of primary sequences based on secondary sequences of expert-
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Figure 3. (A) Beam search refinement begins with a protein’s amino acid sequence (left, green). All possible

single-site substitutions are generated (bold red characters in middle sequences), and they are sorted according

to the EM’s prediction of their stability (middle). The design with the highest predicted stability (middle, green) is

reserved as the product of refinement at this stage. The k single-site substitutions with the highest predicted
stability (middle, green and yellow; k = 2 in this illustration, though we used k = 50 to stabilize proteins) are then
used as new bases. For each of the k new bases, the process was repeated, combining all single-site
substitutions of all k new bases in the new sorted list (right). In this fashion, we predicted the best mutations of
1–5 amino acid substitutions for each of the base designs. (B) Effect of guided and random substitutions on

expert-designed proteins. Guided substitutions (orange) raised the mean stability score from 0.23 in the base

population (green) to 1.27 after five amino acid changes, as compared to random substitutions (blue) which

dropped it to -0.06. Because stability score is logarithmic, the increase in stability is more than ten-fold after five

guided substitutions. Annotated black bars indicate means, notches indicate bootstrapped 95% confidence

intervals around the medians, boxes indicate upper and lower quartiles, and whiskers indicate 1.5 times the

inter-quartile range.

Figure 3–Figure supplement 1. Refinement of stable designs far from EC50 ceiling.

Figure 3–Figure supplement 2. Trypsin stability scores with refinement.

Figure 3–Figure supplement 3. Chymotrypsin stability scores with refinement.

Figure 3–Figure supplement 4. Trypsin EC50 values with refinement.

Figure 3–Figure supplement 5. Chymotrypsin EC50 values with refinement.

Figure 3–Figure supplement 6. Refined trypsin EC50 values for stable designs far from EC50 ceiling.

Figure 3–Figure supplement 7. Refined chymotrypsin EC50 values for stable designs far from EC50 ceiling.

Figure 3–Figure supplement 8. Stability scores with refinement and no USM decreases.

Figure 3–Figure supplement 9. Stability scores with refinement, no USM decreases, no W.

Figure 3–Figure supplement 10. Stability scores with refinement, no USM decreases, no AFILMVWY.

Figure 3–Figure supplement 11. Refinement of scrambles, with no USM decreases.

Figure 3–Figure supplement 12. Refinement of scrambles, with no USM decreases, no W.

Figure 3–Figure supplement 13. Refinement of scrambles, with no USM decreases, no AFILMVWY.
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designed proteins that had been held out from the training corpus. To evaluate how well the

model was able to learn principles of expert-designed proteins, we measured the perplexity (Jelinek
et al. (1977); Brown et al. (1992)) of the predicted primary sequences relative to the actual primary
sequences of the test proteins. Perplexity, the standard metric in language modeling (Jelinek (1990)),
is the exponentiated average of the per-residue cross entropy of the model’s predictions. It can

be intuitively understood as the average number of reasonable choices available to the model for

each predicted amino acid, and can be as low as 1 when predictions are perfect. A perplexity of 19

would indicate chance (since we are excluding cysteine). As a control, we trained a basic recurrent

neural network on the same data set. When tasked with predicting an amino acid in a protein’s

sequence based on the amino acids preceding it, this control model achieved a perplexity of 1.8.

The GM considers, for each amino acid, not only the primary sequence generated so far but the

desired secondary sequence. It achieves a perplexity of 1.1—by considering secondary structure

information, it is able to produce primary sequences that are more reliably similar to those of the

training corpus.

We selected 1000 GMdesigns with the highest agreement between the input secondary structure

and the Reverse GM’s predicted secondary structure, speculating that these designs might have

underlying features best encoded by the GM. These 1000 designs were assayed for stability as part

of our test library. Their measured stability scores and EC50 values were similar to those of the

expert-designed proteins on which they were trained, and much higher than random scrambles of

the same designs (Figure 4B–D). We used BLAST (Altschul et al. (1990)) to compute the maximum
identity of the designs with respect to designs in the training data set. Of the 993 designs that

expressed at a detectable level, 275 had a maximum identity less than 95% and 47 of these 275

(17%) had an empirical stability score greater than 1.0 (classified as “stable”). Of the 120 designs

with a maximum identity below 75%, 17 (14%) were stable. The GM produced stable sequences

for six of the nine topologies that were represented by at least 500 designs in the training set.

Note that the training set for the GM was a subset of the data used to train the EM, with many

unstable designs excluded and greater weight given during training to stable designs (see Materials

and Methods). The GM was able to nearly match the stability distribution of this enriched corpus

(Figure 4B).
We questioned whether EM-based refinement would improve these 1000 GM designs as it did

expert-designed proteins, or, alternatively, whether the EM would see designs by another neural

network model trained on the same data as unimprovable. Guided substitutions overall yielded

ten-fold increases in the stability of GM designs (Figure 5A, stability score increase of 1.0). By
contrast, random substitutions overall yield proteins that are less stable than those created by the

GM. Importantly, the increase in stability with EM refinement is apparent even for proteins that

are the most different from those in the training corpus (Figure 5B, Figure 5–Figure Supplement 1).
This demonstrates that we are able to design and iteratively improve highly stable proteins de novo,

using an automated, rapid pipeline.

Figure 5–Figure Supplement 2 and Figure 5–Figure Supplement 3 show increasing divergence
between guided and random substitutions for each protease’s individual stability score as the num-

ber of substitutions increases. Figure 5–Figure Supplement 4, and Figure 5–Figure Supplement 5
show increased divergence between guided and random substitutions for each protease’s EC50 as

the number of substitutions increases.

Guided refinement demonstrates biases but yields stable monomers

We observed that individual single-site substitutions were much more successful at improving

assayed stability when guided by the EM than when carried out at random. Considering mutations

to both expert-designed and GM sequences, there were 5850 guided single-site substitutions

evaluated in the experimental library, and 4798 random substitutions. For each type of substitution

(i.e. for each change from amino acid x to amino acid y) we calculated the mean stability change
when that substitution was applied due to the EM’s guidance and when it was applied at random.
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Figure 4. (A) Architecture of the GM. Adapted for use with protein secondary and primary sequences fromGehring et al. (2016). (B) Density plot of experimental stability scores for training designs, designs from the GM,
and scrambles of the GM designs. (C) Density plot of trypsin EC50 values. (D) Density plot of chymotrypsin EC50
values.
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Figure 5. (A) Effect of guided and random substitutions on designs created by the GM. The base stability score

was much higher for this population of designs than for the expert-designed proteins tested, with a mean of

0.67; EM-guided refinement further increased it to 1.67. As with the expert-designed proteins, this

demonstrates a ten-fold increase in stability. Random substitutions again had a deleterious effect, dropping

mean stability to 0.29. (B) Stability of GM designs, and guided and random substitutions within those designs,

as novelty increases. We consider designs to be more novel when BLAST percent identity with the most-similar

design in the training corpus is lower.

Figure 5–Figure supplement 1. Raw scatter plots of experimental stability versus percent identity.

Figure 5–Figure supplement 2. Trypsin stability scores with refinement.

Figure 5–Figure supplement 3. Chymotrypsin stability scores with refinement.

Figure 5–Figure supplement 4. Trypsin EC50 values with refinement.

Figure 5–Figure supplement 5. Chymotrypsin EC50 values with refinement.

Figure 5–Figure supplement 6. Stability scores with refinement and no USM decreases.

Figure 5–Figure supplement 7. Stability scores with refinement, no USM decreases, no W.

Figure 5–Figure supplement 8. Stability scores with refinement, no USM decreases, no AFILMVWY.
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There were 191 of these types of substitution for which we have data in both conditions. Of these,

guided substitutions were more successful than random for 148 of them, with an average stability

increase over all types of 0.155 (Figure 6). As a somewhat arbitrary threshold for considering
differences between guided and random substitutions to be reliable, we ran t-tests between the

two approaches for each type of substitution (two-sample unpaired two-tailed t-test, p < 0.05
uncorrected for multiple comparisons). 24 of the substitution types showed significant differences

between guided and random substitutions, indicating sufficient examples of both treatments as well

as sufficient differences between them; in 23 of those, guided substitutions were more successful

than random.

Further breaking down these analyses and looking at guided and random substitutions sepa-

rately, we see that guided substitutions increased stability score 4138 out of 5850 times (70.7%); the

mean stability change over all guided substitutions was 0.208 (Figure 6–Figure Supplement 1). Out
of 196 types of guided substitution, 43 showed a significant positive effect on stability (two-tailed

t-test, p < 0.05 uncorrected for multiple comparisons), and 2 showed a significant negative effect. If
guided substitutions had no real effect on stability, we would expect to see approximately 10 types

crossing this significance threshold in each direction. Random substitutions, meanwhile, decreased
stability score 2731 out of 4798 times (56.9%); the mean stability change over all random substitu-

tions was -0.074 (Figure 6–Figure Supplement 2). Out of 318 types of random substitution, 6 were
significantly helpful (two-tailed t-test, p < 0.05 uncorrected), and 55 were significantly deleterious;
we would expect approximately 16 in each direction, if random substitutions had no real effect on

stability. The general lack of improvement with random substitutions conforms with the intuition

that stabilizing proteins is difficult. That EM-guided substitutions perform so well is encouraging

but invites further scrutiny.

The EM’s refinement of proteins frequently substituted amino acids with tryptophan (Figure 6–
Figure Supplement 1)—it was the amino acid of choice in 3276 of the 5850 guided single-site
substitutions. This raises the possibility that the EM has learned how to exploit gaps between

what the stability assay is actually computing (a difference between observed protease resistance

and predicted unfolded-state resistance) and the assay’s objective (protein stability). For example,

indiscriminately adding tryptophan to a sequence might cause proteins to aggregate or undergo

nonspecific hydrophobic collapse (Schwartz et al. (2001)), or even to form regions of stable struc-
ture (Cochran et al. (2001)). Either of these could increase protease resistance without necessarily
increasing the stability of the intended tertiary structure. However, random mutations to tryp-

tophan show virtually no change in assayed stability score (mean increase of 0.016), compared

to a substantial increase in stability score when those substitutions are guided by the EM (mean

increase of 0.215). Lysine and glutamic acid are the two most common residues to be mutated

to tryptophan, and these residues usually occur on the surface of the protein. By favoring these

mutations, the EM could be implicitly learning to bias tryptophan substitutions at surface sites,

versus random mutations which would be more uniformly distributed and thus less likely to lead

to aggregation. However, if those biases were leading to aggregation and thus artificially inflated

stability score, random mutations from lysine or glutamic acid to tryptophan should show a similar

increase in stability score as guided mutations. Guided mutations, however, increase stability scores

substantially more. Taken together, these observations show that increasing the tryptophan count

of a protein in and of itself does not increase stability—the changes to tryptophan must be at the

right location for the protein in question.

To directly test the quality of the proteins generated, we expressed twelve designs in Escherichia
coli with N-terminal His6 affinity purification tags and purified them using immobilized metal affinity
chromatography (IMAC, Figure 7A). Eight of the designs were expressed as reasonably soluble
proteins and seven of those were monomeric as judged by size exclusion chromatography (SEC).

Mass-spectroscopy confirmed that the purified fractions were predominantly molecules of the

correct molecular weight. Circular dichroism (CD) spectroscopy with wavelength scans and thermal

melts were used to assess the secondary structure and overall stability, respectively, of each of
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Figure 6. Differential effects on stability between guided and random single-site substitutions. For each original

amino acid (indexed on the y-axis) and each replacement amino acid (indexed on the x-axis), the mean effect on

stability when that substitution was guided by the EM is computed, as is the mean effect on stability when that

substitution was applied randomly. The difference between these two effects is plotted for each from-to pair

that was represented in the data; redder circles indicate that guided substitutions were more beneficial for

stability, bluer circles indicate that random substitutions were more beneficial. Circles with heavy black outlines

showed a significant difference (two-sample unpaired two-tailed t-test, p < 0.05 uncorrected) between guided
and random effects. Bar graphs indicate mean differences in stability score (guided substitutions minus

random substitutions) averaged across all replacement amino acids for each original amino acid (left) and and

averaged across all original amino acids for each replacement amino acid (bottom).

Figure 6–Figure supplement 1. Effects of guided single-site mutations.

Figure 6–Figure supplement 2. Effects of random single-site mutations.

Figure 6–Figure supplement 3. Effects of guided single-site mutations without USM decreases.

Figure 6–Figure supplement 4. Effects of guided single-site mutations, no USM decreases, no W.

Figure 6–Figure supplement 5. Effects of guided single-site mutations, no USM decreases, no AFILMVWY.
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the soluble proteins. The nmt_0457_guided_03 and nmt_0994_guided_02 proteins, expected to

be all alpha helical, show distinct minima at 222nm and 208nm, consistent with the intended

helical structure. For all the other designs, the spectra are consistent with a mixed alpha-beta

secondary structure (Figure 7–Figure Supplement 1). Thermal stability of the designed proteins
was determined by monitoring the CD signal at 222nm as a function of temperature. Five of the

eight monomeric/oligomeric designs are highly thermostable (Figure 7–Figure Supplement 1) and
four do not unfold even at a temperature of 99°C. For one of the designs (Figure 7B) we obtained
a crystal structure (Figure 7C); this showed an all-helical structure, consistent with predictions of
the Reverse GM, CD, and trRosetta (Yang et al. (2020)). Two of the three helical segments observed
in the crystal structure match trRosetta’s prediction, with the third helix taking a slightly different

trajectory from the prediction. We predicted the tertiary structure of all twelve designs using Rosetta

(Figure 7–Figure Supplement 2). These results confirm that our data-driven pipeline can design
stable monomeric proteins, amenable to analysis with current tertiary structure prediction models,

without itself making any explicit calculation of tertiary structure.

Refinement under constraint

To further examine how EM-guided refinement increases stability score, as well as to demonstrate

the feasibility of performing this refinement under a range of constraints, we generated and

assayed another set of 97,702 proteins, including three sets representing refinements governed by

increasingly stringent constraints. GM designs on this chip were required to have less than 50%

sequence identity with the most similar expert-designed protein, and all refinements used a new

version of the EM trained on the union of the original training set and the new proteins described

in previous sections.

The first set of designs demonstrated that refinement could be successful without decreasing

USM predicted EC50 values for either protease. This greatly reduces the potential for the EM to

exploit weaknesses in the USM. Refinement of expert-designed sequences under this constraint

showed a slight improvement in stability, compared with a substantial decrease to stability for

random substitutions (which were permitted to decrease USM predictions). After four EM-guided

substitutions, the mean stability score for this set of refined proteins was 0.6 stability score units

higher than for random substitutions (Figure 3–Figure Supplement 8). In comparison, initial GM
designs were on average much less stable than expert designs, leaving random substitutions with

very little room to decrease stability. However, in contrast to expert designs under these constraints,

these GM designs were substantially stabilized. After four guided mutations, they were 0.51 stability

score units above random substitutions (Figure 5–Figure Supplement 6).
The second set of designs showed that refinement could be successful when a no-tryptophan

constraint was added to the previous USM constraint. In the original library of stabilized proteins,

refinements were dominated by substitutions that replaced other amino acids with tryptophan. As

described above, we were concerned that these substitutions may be artificially inflating stability

scores. Notably, this predilection for tryptophan was less apparent even in the least-constrained

set of refinements in this library (Figure 6–Figure Supplement 3), likely because mutations to
tryptophan tended to decrease USM EC50 predictions. Explicitly prohibiting tryptophan eliminated

the 823 mutations to tryptophan seen in the previous set of refinements, but otherwise altered

the pattern of changes and their effects relatively little (Figure 6–Figure Supplement 4). Due to
space constraints on this library’s chip, we did not evaluate random no-tryptophan mutations of

expert-designed proteins. However, guided refinement of expert designs yielded maintenance or

slight improvement in stability (Figure 3–Figure Supplement 9), comparable to what was seen when
mutations to tryptophan were permitted. GM designs refined without tryptophan also responded

similarly to refinements where it was permitted, with four guided mutations ending up at 0.56

stability score units higher than four random mutations (Figure 5–Figure Supplement 7).
The third set of designs demonstrated that stability score could be maintained or only slightly

decreased when substitutions were made under constraints that expanded to exclude a set of
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222nm as a function of temperature. Five of the eight monomeric/oligomeric designs are highly 
thermostable (supplementary figure X) and four do not unfold even at a temperature of 99 °C. 
We obtained a crystal structure for one of the designs (Figure 7C), which showed an all-helical 
structure, consistent with predictions of both CD and trRosetta (\cite{Yang1496}). Two of the 
three helical segments observed in the crystal structure match trRosetta’s prediction, with the 
third helix taking a slightly different trajectory from the prediction. These results confirm that our 
data-driven pipeline can design stable monomeric proteins, amenable to analysis with current 
tertiary structure prediction models, without itself making any explicit calculation of tertiary 
structure. 
 
Figure 7: 

 
{A. Results of targeted analyses of twelve GM proteins. All twelve proteins had less than 60% 
identity with respect to the entire set of training proteins, as calculated by BLAST. Reported 
topology was predicted by PSIPRED (\cite{Buchan2019psipred}) and Rosetta (in that order, 
when predictions differ). B. “Life cycle” of one refined protein, nmt_0994_guided_02. The design 
began with a requested secondary structure fed into the GM. The GM produced a primary 
sequence (nmt_0994) with the goal of comporting with that requested structure; however, the 
Reverse GM predicted that two of the requested helices were actually merged into one in the 
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nmt_0861_guided_04 49 EHH/EEEH -0.12 + mon borderline n/a 

nmt_0990 40 HHEH/HHH -1.20 ++ mon unfolded n/a 

nmt_0990_guided_05 38 EHHEH 1.25 +++ oligomer folded >99°C 

nmt_0315_guided_04 45 EHEEHE 1.88 – agg n/a n/a 

nmt_0457_guided_03 48 HHHH 2.00 +++ mon folded >99°C 

nmt_0752_guided_05 37 EEH -0.04 – agg n/a n/a 

nmt_0994_guided_02 46 HHH/HHHH 1.88 ++ mon folded >99°C 
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Figure 7. (A) Results of targeted analyses of twelve GM proteins. All twelve proteins had less than 60% identity

with respect to the entire set of training proteins, as calculated by BLAST. Reported topology was predicted by

PSIPRED (Buchan and Jones (2019)) and Rosetta (in that order, when predictions differ). (B) “Life cycle” of one
refined protein, nmt_0994_guided_02. The design began with a requested secondary structure fed into the GM.

The GM produced a primary sequence (nmt_0994) with the goal of comporting with that requested structure;

however, the Reverse GM predicted that two of the requested helices were actually merged into one in the

generated structure. EM-guided refinement then changed two residues to tryptophan, which raised the

empirical stability score from -0.18 to 1.88. Green characters highlight differences from original sequences. (C)

Crystal structure for nmt_0994_guided_02 (grey), showing that it also has the three helices predicted by the

Reverse GM for its pre-refinement progenitor. It is shown aligned to the structure predicted by trRosetta (blue).

The two structures have a C�RMSD of 3.7 Å.

Figure 7–Figure supplement 1. Circular dichroism.

Figure 7–Figure supplement 2. Structural predictions.
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nonpolar amino acids: alanine, phenylalanine, isoleucine, leucine, methionine, valine, tryptophan,

and tyrosine. Even with this stringent constraint, GM designs did not decrease in stability score (Fig-
ure 5–Figure Supplement 8), and expert designs decreased only 0.22 stability score units after four
mutations (Figure 3–Figure Supplement 10). Under such heavy constraints, EM-guided refinement
most often selected lysines to change into other amino acids, most frequently (and most reliably

successfully) aspartic acid and glutamic acid (Figure 6–Figure Supplement 5).
The benefits of EM-guided refinement are not universally effective across arbitrary amino acid

sequences. We attempted to refine a set of randomly scrambled expert-designed proteins, with no

success. This was true regardless of whether all mutations other than those which decreased USM

EC50 predictions were permitted (Figure 3–Figure Supplement 11), tryptophans were prohibited
(Figure 3–Figure Supplement 12), or the larger set of nonpolar amino acids were prohibited (Fig-
ure 3–Figure Supplement 13). This failure to refine scrambles provides evidence that refinement is
not merely changing arbitrary sequences in such a way that they fool the assay into viewing the

sequences as more stable. The failure to refine scrambles contrasts notably with the success at

refining GM designs even when they are not initially very stable—there may be some degree of

baseline plausibility to the unstable GM designs, which random scrambles do not possess, that

permits successful refinement.

Discussion

Here we demonstrate that a convolutional neural network model (the EM) can predict the stability

(measured using a massively parallel yeast display assay) of novel mini-proteins given only primary

sequences as input. Specifically, when testing on held-out designs derived from the same datasets

used in training, the EM predicts stability with high accuracy, close to the ceiling imposed by the

noisiness of the assay. This shows that the EM can readily identify patterns that relate designed

protein sequences to their stability. Its generalization to new classes of proteins (with a different

size, topology, or design method) is not as good, which could be due to limited training data (the

designs only explore a tiny sliver of protein space) or limitations of a sequence-based model that

does not explicitly consider the protein’s 3D structure. However, the EM’s predictions are still

generally better than predicting the mean stability score of the novel class of proteins, already a

non-trivial achievement.

To explore additional regions of design space beyond the training data, we created a large set of

proteins whose sequences were manipulated in various ways, ranging from single-site mutations

to global disruptions. These manipulations were designed to probe anticipated weaknesses of

sequence-based models, and many of the manipulations were not represented in the training set.

The EM’s predictions systematically underestimated the magnitude of mutational impacts, exposing

limitations of the model. However, it successfully predicted that most mutations were deleterious

and successfully ranked different kinds of manipulations by effect size, providing further evidence

of the EM’s ability to generalize to new proteins. In addition to quantifying the EM’s ability to predict

such disruptions, we hope that this set of data can serve as a benchmark for other sequence-based

models of protein stability in the future.

The yeast display stability assay is not without drawbacks. There is relatively high experimental

noise, the results depend on multiple assumptions and models, and stability values are limited by

the protease resistance of the expression vector. The tradeoff, however, is incredible throughput

at relatively low cost. Given that machine learning models tend to perform (and in particular to

generalize) better with a high quantity of noisy data than with a low quantity of cleaner data, this

assay is a good partner for machine learning methods. Although we are cognizant of the possibility

that the EM is learning to exploit weaknesses, in the USM or elsewhere in the approach, we are

reassured by numerous control analyses. Moreover, we have demonstrated through empirical

laboratory experiments that the process can yield soluble, monomeric, and stable designs.

We show that over a few substitutions using a model-guided beam search, proteins are sub-

stantially stabilized relative to the starting point, and even more so relative to an equal number
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of random substitutions. In addition to being accurate, the EM is orders of magnitude faster com-

putationally than physics-based methods (such as Borgo and Havranek (2012)), with the ability to
generate on the order of 100,000,000 predictions per GPU-hour. This speed means it can readily be

incorporated into existing design approaches, as a complement to more computationally intensive

physics-based tools (e.g. Hiranuma et al. (2020)).
Recent studies using language models to analyze or generate proteins have been promising,

demonstrating an ability to generate realistic looking amino acid sequences, sometimes guided

by desired structural or functional properties, after training on large sets of natural proteins. We

demonstrate that the GM can translate an input secondary structure into a primary structure that

achieves a stable tertiary structure. This approach is able to generate hundreds of thousands of

designs, of comparable stability to those generated by experts using Rosetta, in a day. It is also

possible to sacrifice stability performance for novelty, generating large numbers of marginally stable

but highly distinct proteins (with < 50% amino acid identity to their nearest neighbors in the training
set) that can then be stabilized through EM-guided refinement. This success provides evidence that

a combination of imperfect models can still lead to remarkable generalization into new areas of

design space. Encouragingly, upon experimentally determining the crystal structure of one of these

designs, we found that the designed secondary structure (as predicted by the Reverse GM) closely

matched the real structure.

High-throughput cycles of design-test-learn are becoming common in protein design (Rocklin
et al. (2017); Cao et al. (2020)). Here, we show that a neural network can be a powerful tool for
learning patterns that relate a protein’s sequence to a desired property (in this case stability).

Further, we show that neural network models can inform subsequent rounds of design, either by

refining sequences from previous rounds, or by designing completely new ones. This can succeed

even when models are overfitted or otherwise generalize imperfectly, as long as they carry a

reasonable amount of information about the domain. Overall, this study provides a framework and

grounding for using sequence-based neural networks in other design-test-learn contexts. These

could include optimization targets beyond stability, such as protein binding.

Although the EM and GM do not predict the 3D structure of the design, there have recently

been large advances in the accuracy of machine learning-based computational models for structure

prediction (Senior et al. (2020); Yang et al. (2020)). We found that one such model (trRosetta) could
predict the crystal structure that we obtained for one of our designs with reasonable accuracy,

including correctly predicting the secondary structure and the relative orientation of secondary-

structure elements, despite differences in finer details. Like the GM and EM, machine learning-based

models can predict tertiary structure very quickly. Going forward, linking these approaches together

could be used to rapidly generate 3D structural models for entire libraries of designs generated by

the GM and refined by the EM, which could in turn be used as scaffold libraries for various design

applications.

While the current EM is limited by both architecture and training data to small proteins, it may be

possible to extend its capabilities to successfully accommodate larger proteins. Such an extended

EM might have useful applications in medicine. Recent mRNA vaccines against SARS-CoV-2 (Jackson
et al. (2020);Mulligan et al. (2020) have used a stabilized protein to elicit an immune response to
the virus’s spike protein in its prefusion configuration. This construct (Wrapp et al. (2020)) depended
on techniques discovered and developed earlier (Pallesen et al. (2017)) for a related coronavirus.
Discovering how to stabilize viral proteins in this manner has historically required a great deal of

laboratory experimentation; an extended EM might be able to help speed such discoveries, by

ranking or even suggesting the most promising mutants to investigate. Even without extending the

EM to accommodate larger proteins, there may be medical utility: increasing the stability of small

biologics benefits their shelf life, resistance to degradation in the body, and production efficiency.

EM-guided stabilization also might be able to provide more stable bases for the evolution of proteins

with new functions (Bloom et al. (2006)).
By combining the EM and the GM, we achieve a data-driven pipeline that enables straightforward
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extension into new regions of protein design space, and can be used in optimization tasks in which

constraints are placed on the changes made. We demonstrated success at refinement while

preventing USM predictions from increasing, while excluding tryptophan, and while excluding a

large set of nonpolar residues. Other potential constraints include optimizing stability without

increasing overall hydrophobicity, without disrupting a motif responsible for binding, without

changing predicted secondary structure, or while maintaining a complementary tool’s prediction of

tertiary structure or charge distribution within certain bounds. This validated pipeline opens the

door to the engineering of new kinds of small proteins.

Materials and Methods

Protein design

We trained the EM on several datasets of mini-proteins, each of which is listed in Figure 2–Figure
Supplement 1. Datasets consist of primary sequences, secondary sequences predicted by the DSSP
algorithm (Kabsch and Sander (1983)), and experimentally measured stability scores, as quantified
using the high-throughput assay from Rocklin et al. (2017), with modifications described below. As
indicated by the table, some data are from other publications, while some are being published as

part of this study. Experimental stability score data for the “Rocklin” dataset are aggregated from all

four design rounds from Rocklin et al. (2017). For all other datasets, experimental data come from
independent experiments conducted as part of this study.

In cross-validation of the EM, we divided datasets into three different Libraries, and further

subdivided Libraries by protein topology. We grouped designs in this way to ensure that different

cross-validated groups did not include designs that shared the same topology, sequence length, and

design protocol. Figure 2–Figure Supplement 1maps each dataset into one of these Libraries. Fig-
ure 2–Figure Supplement 2 shows experimental stability scores for designs and control sequences
from each Library, or groups of designs within a single Library (described below), broken down by

protein topology. This figure also shows the distribution of protein length and number of designs

and controls in each category.

Library 1 consists of all designs from all four design rounds from Rocklin et al. (2017). We
recomputed stability scores for both designs and controls using the new USM developed in this

study (Figure 2–Figure Supplement 2A). The control sequences (“scrambles” in Figure 2–Figure Sup-
plement 2) include all three types of controls from Rocklin et al. (2017): fully scrambled sequences
(made by completely randomizing the designed sequence), “patterned” scrambles (made by ran-

domizing the designed sequence, while preserving the patterning of hydrophobic and hydrophilic

amino acids, as well as the positioning of glycines and prolines), and designed sequences with an

aspartic acid mutation introduced at a buried hydrophobic residue. Recomputed stability scores for

designs and controls mirror the trends observed with the original stability scores in Rocklin et al.
(2017): most controls have stability scores near zero, designs tend to have higher stability scores
than controls, and the fraction of stable proteins (stability score > 1) is higher for designs than it is
for controls. These trends qualitatively hold across all four topologies, which are named according

to the ordering of secondary-structural elements in the design (H indicates a helix and E indicates a

strand).

Library 2 consists of designs from Linsky et al. (2021), which span several topologies (4h: four-
helix bundles; HHH: three-helix bundles; beta_grasp: beta-grasp fold; coil: helical bundle; ferredoxin:

ferredoxin fold; thio: thioredoxin fold; fold2 and fold4: new folds from Linsky et al. (2021)). Figure 2–
Figure Supplement 2B shows stability scores for these designs, along with scrambled controls
generated from a subset of designs by randomly shuffling the entire designed sequence. As

expected, most scrambles have stability scores near zero. For some topologies, designs tend to

have higher stability scores than scrambles, indicating that their stability arises from more than just

the overall amino-acid composition of the sequence.

Library 3 consists of three groups of designs, each of which are being published as part of
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this study. The first group are “blueprint-based” designs made using Rosetta. We designed these

proteins using the same protocol as Rocklin et al. (2017), except that we designed the proteins
to be longer: 64–65 amino acids in length instead of 40 amino acids. We did so by modifying the

“blueprints” from Rocklin et al. (2017) to encode for longer proteins, while preserving the overall
topology. We did this for three of the four topologies from Rocklin et al. (2017): EHEE, EEHEE,
and HEEH. Figure 2–Figure Supplement 2C shows stability scores for these designs and scrambled
controls made from a subset of designs. All scrambled controls in Library 3 were “patterned”

scrambles, as described above. Designs tend to have higher stability scores than scrambles,

suggesting that their stability arises from more than just amino-acid composition or the patternings

described above.

The second group of designs from Library 3 were designed using dTERMen (Zhou et al. (2020)).
The detailed design protocol is described inMackenzie (2019). Briefly, the protocol involved identify-
ing sets of tertiary structural motifs that could be assembled into compact mini-proteins, connecting

these motifs with loops so that they formed single chains, and then using dTERMen to design amino-

acid sequences onto those single-chain backbones. This strategy was used to generate proteins

spanning several topologies, as described in Figure 2–Figure Supplement 2D. HHH refers to three-
helix bundles. All other topologies are named using the pattern “XaY b”, where X indicates the
number of helices and Y indicates the number of strands in the design. Figure 2–Figure Supple-
ment 2D shows experimental stability scores for these designs, along with “patterned” scrambled
controls. As above, for many of the topologies, designs tend to be more stable than the scrambled

controls.

The third group of designs from Library 3 are Rosetta designs that were designed in a similar

manner to the dTERMen designs. Instead of using dTERMen to connect motifs with loops and

design amino-acid sequences onto backbones, however, we used Rosetta to perform these tasks.

As shown in Figure 2–Figure Supplement 2E, this protocol was less successful than the dTERMen
protocol: both designs and the “patterned” scrambled controls from this group tended to have

stability scores near zero, and less than 1% of designs achieved stability scores greater than 1.

Stability score

We experimentally measured stability scores using the high-throughput assay described in Rocklin
et al. (2017). We independently assayed each dataset of mini-proteins used to train the EM (see Fig-
ure 2–Figure Supplement 1), with the exception of the “Rocklin” dataset, for which we used published
data from Rocklin et al. (2017). For the “Longxing” dataset, we followed the samemethod as Rocklin
et al. (2017). For the other datasets used to train the EM, we used a modified version of the method
described inMaguire et al. (2020), and conducted these experiments at the University of Washing-
ton BIOFAB (http://www.uwbiofab.org/) using Aquarium software (https://www.aquarium.bio/) to

automate the workflows (https://github.com/aquariumbio/yeast-display). For all training datasets,

we used the original yeast-display vector from Rocklin et al. (2017).
We assayed the two large libraries containing EM-stabilized designs (as well as GM designs

and other manipulations) at the BIOFAB using the modified method from Maguire et al. (2020).
However, in these experiments, we also used the modified version of the yeast-display vector from

Maguire et al. (2020), which was evolved to have increased resistance to trypsin and chymotrypsin.
This evolved vector expands the dynamic range of the assay. In order to compare stability scores

collected with the original and evolved vectors, the BIOFAB assayed the round 4 library from Rocklin
et al. (2017) using the modified method and evolved vector. In the section “Reconciling multiple
protein libraries” we describe how we use the resulting data to transform stability scores obtained

using the evolved vector into values comparable with those obtained using the original vector.

Unfolded-State Model

Stability scores, yielded by the protein stability assay (Rocklin et al. (2017)), are defined as the
difference of two quantities: (1) empirical resistance to proteolysis, expressed in EC50, and (2)
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an estimate of the protein’s resistance to proteolysis if it were always in an unfolded state, as a

function of its particular sequence of amino acids. The goal is to factor out baseline proteolysis

resistance, leaving only resistance due to being in a folded configuration. The estimate of a

sequence’s resistance when unfolded comes from the USM, which is trained on EC50 data generated

for scrambled sequences that are highly unlikely to be stable. The USM reported in Rocklin
et al. (2017) appeared to be successful at generating predictions that were more useful than raw
EC50 values. However, during refinement, the EM might theoretically exploit imperfections in the

unfolded-state model to increase stability score without increasing stability. For example, raising

unfolded-state proteolysis resistance without raising the USM’s predictions would yield a higher

empirical resistance to proteolysis and thus a higher stability score, without actually increasing the

stability of the protein.

To reduce the chance of this happening, we constructed new USMs (one for each of the two pro-

teases used). These were constructed like the originals (Rocklin et al. (2017)), with three differences.
First, rather than learning one kernel, each model learned 100. Second, rather than taking the sum

of the convolution vector of the kernel with the encoded protein sequence, each kernel’s maximum

activation over the entire convolution vector was taken, and these maxima were combined via a

learned linear function. Finally, in addition to scrambles from Library 1, we used scrambles from

Library 2.

Reconciling multiple protein libraries

In addition to the protein designs described in Rocklin et al. (2017) and Linsky et al. (2021), our
training corpus included designs from five other sets of proteins built using Rosetta or dTERMen.

Because these were run with different batches of reagents, in different labs, at different times,

by different people, some experimental variance likely affected the data. To compensate for this

and calibrate results, we used a set of “ladder” proteins—present in all libraries—that spanned the

range of EC50 values. For each chip and each protease, we performed an orthogonal regression

between observed EC50 values of ladder proteins on the new chip and observed EC50 values of

ladder proteins on the original four chips. The resulting linear function was then applied to map

the new EC50 values into the same space as the original four libraries.

A second complication was introduced and mitigated in the chips of 100K designs developed

and assayed for this manuscript. The proteins in the training set were embedded in the expression

vector described in Rocklin et al. (2017), which set a soft upper limit on the EC50 values that could
practically be assayed: beyond a certain value, the expression vector itself would start to suffer

measurable cleavage. For the 200K proteins assayed in the current set of experiments, an updated

version of the expression vector was used. This allows for a wider range of EC50 values and hence

stability scores, which will be valuable for future research. However, the EM and the Unfolded-

State Model were trained with stability scores generated using the original expression vector,

making numerical comparisons between new data and the models’ predictions more difficult. To

address this, we learned functions that mapped EC50 values from the new expression vector to

what we would have expected had we run the experiments with the original expression vector. We

ran a repeat of the Round 4 chip from Rocklin et al. (2017) with the new expression vector. We
compared the resulting EC50 values with those of the original Round 4 chip, and subjected them to

a piecewise-linear orthogonal regression. Data up to a best-fit inflection point were constrained to

lie along y = x; beyond the inflection point, slope was allowed to vary. This yielded a two-parameter
model for each protease. After inverting these functions to map our new data into the original

expression vector’s space, we applied the orthogonal regression (described above) for reconciling

multiple libraries. Data and best-fit functions are shown in Figure 1–Figure Supplement 5 and
Figure 1–Figure Supplement 6.
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Evaluator Model

The EM is built around a convolutional neural network. Its input is a fixed one-hot encoding layer

for an amino acid sequence, with dimension 23 × 175. There are 20 amino acids permissible, along
with codes indicating no amino acid (“X”, i.e. padding), the start of a protein (“J”), and the end of a

protein (“O”). A given sequence is encoded as a sparse matrix, mostly 0 but with a 1 corresponding

to the identity of the amino acid at each location. During training and testing, it is situated at a

random (but consistent for a given sequence) site within the 145 middle locations of the input layer,

preceded by a run of “X” and then a “J”, and followed by an “O” and then another run of “X”. The

random location shift prevents the model from mapping particular sites in a protein sequence to

particular inputs, encouraging the learning of relational attributes.

The first convolutional layer comprises 400 kernels, each of them 23 × 5. Because only valid
convolutions (i.e. those without edge effects) are used, the dimensionality of this layer is 171 × 400.
The second and third convolutional layers contain, respectively, 200 1 × 9 and 100 1 × 17 kernels. All
three layers use ReLU activation functions and 20% dropout during training.

The output of the last convolutional layer passes into two dense layers. One, for the secondary

structure prediction pathway, is 6 × 175 units (one-hot encoding of loops, helices, strands, and
“X”/“J”/“O” null/start/stop codes as in the input). This layer uses a softmax activation and represents

the model’s prediction of secondary structure. The other dense layer receiving input from the final

convolutional layer consists of 80 ReLU-activated units. This layer passes in to a densely connected

layer of 40 ReLU-activated units, and ultimately a 2-unit dense layer with a linear activation function—

stability scores for chymotrypsin and trypsin. A third unit, whose value is the minimum of the two

stability score outputs, is also appended.

There are two ways in which the EM departs from a standard CNN. First, in addition to predicting

stability scores, the EM simultaneously predicts secondary structure sequences. Multi-task models

have been found to improve performance in other domains (Caruana (1997)); we observed a small
improvement in stability score prediction performance after adding this second output pathway.

The secondary structure output was highly predictive of actual secondary structure labels, which

were generated by applying DSSP (Kabsch and Sander (1983)) to tertiary structure models built by
Rosetta during the design process. Levenshtein edit distance for secondary structure sequences

averaged 2.7 characters per protein over the test set.

Second, the EM is trained using natural protein sequences in addition to stability data from

designed proteins. We reasoned that a naturally occurring protein is more likely to be stable than

a scrambled sequence composed of the same amino acids. During training, triplets of proteins

are passed in: a designed protein, labeled with its experimental stability scores and secondary

sequence; a natural protein sequence, with no associated label; and a scrambled version of the

same natural protein sequence (again with no associated label). For designed proteins, the model’s

loss function encouraged learning how to map primary sequences to secondary sequences and

stability scores. For natural proteins, the loss function imposed a penalty proportional to the

predicted stability of the scramble minus that of the natural protein, i.e. encouraging the model

to learn that natural proteins are more stable than scrambles. Inclusion of these natural proteins

yielded another modest improvement in stability score prediction performance. We included 22,354

natural proteins whose length was between 25 and 65 amino acids from the UniProt database (The
UniProt Consortium (2018)).
The loss function for the stability score outputs is

s(X, X̂) =
√

(X − X̂)2 − 5
(

1 −
xm − x̂m
xm − xm

)

−
(

1 −
xc,t − x̂c,t
xc,t − xc,t

)

.

Here, X = (xc , xt, xm) is the experimentally observed stability score vector corresponding to chy-
motrypsin, trypsin, and their minimum; ⋅̂ indicates the predicted value; ⋅ indicates the mean over

samples in the minibatch. This loss function encourages a low root-mean-squared error between

predicted and actual stability scores. It also encourages a high coefficient of variation between the
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predicted and actual individual protease stability scores as well as (much more strongly) between

the predicted and actual final stability score (i.e. the minimum of the two protease stability scores).

The loss function for the comparator of natural and scrambled natural protein sequences is

c(Ŷ , Ỹ ) =
2.5

1 + eỹm−ŷm
+ 0.001

√

(ŷc − ŷt)2,

where Ŷ and Ỹ are the model’s predicted stability score vectors for the natural and scrambled
natural proteins, respectively. This loss function encourages natural protein sequences to have

higher predicted stability than scrambled natural protein sequences, though it places a cap on

the bonus/penalty possible due to this difference. There is also mild encouragement for the two

predicted protease stability scores for natural proteins to be similar to each other.

The loss function for the secondary structure output depends upon a bank of convolutional

kernels that encode the rules by which secondary sequences can change from one position to the

next. Each kernel corresponds to one of the six symbols in the library, {“L”, “E”, “H”, “X”, “J”, “O”}, as

indicated by the position of the 1 in the first column. The second column indicates with a -1 that

the corresponding symbol is permitted to follow the symbol in question. For example, an amino

acid in a loop (“L”) may be followed by another loop amino acid or by the beginning of a strand (“E”)

or helix (“H”), or it may be the end of the protein (followed by “O”). It may not be followed by an

“X” (because the end of a protein must be set off from empty space by an “O”) or a “J” (because an

amino acid that is part of a loop cannot appear before the beginning of the protein). The sum of the

convolutions of these filters with the one-hot encoding of a protein’s predicted secondary structure

gives the number of times these rules are violated. Importantly for training, the convolution of

these filters with the softmax activation output yields a measure of error with a gradient that can

be followed to better secondary structure predictions.
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We define this convolutional loss as follows:

∗(Ẑ) = max
i
clip(Ẑ ∗ Ki),

where Ẑ is the softmax activation of the secondary structure channel, clip forces a value to be
between 0 and 1, and the maximum value of the convolution over all six kernels is evaluated at

each position in the convolution vectors. If Ẑ01 is the one-hot binarization of Ẑ, i.e. the matrix with a
1 corresponding to the highest of the six values in Ẑ at each amino acid position and a 0 otherwise,
we arrive at the final loss function for the secondary structure pathway:

d(Z, Ẑ) = −
∑

Z log Ẑ + 0.8∗(Ẑ01) + 0.4max∗(Ẑ01) + 0.1∗(Ẑ) + 0.05max∗(Ẑ).

This is the categorical cross-entropy, plus four estimates of the invalidity of the predicted secondary

sequence—two based on the one-hot binarization of the output and two on the raw softmax

activation; two considering the mean invalidity over the whole sequence and two considering the

worst position in the sequence.

The final loss function for the entire network, used in training, is then given by

(X, X̂, Ŷ , Ỹ , Z, Ẑ) = 0.2s(X, X̂) + 0.1c(Ŷ , Ỹ ) + 2d(Z, Ẑ).

This loss was used with the Adadelta optimizer (Zeiler (2012)) to train themodel, with eachminibatch
containing 64 designed proteins (and their stability scores and secondary structures), 64 natural
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proteins, and 64 disrupted natural proteins. Each designed protein was presented once per epoch,

and training continued until validation loss (based on 10,000 validation samples randomly held-out

from the training data set) failed to improve for five epochs. The saved state of the model five

epochs previous was then recovered, i.e. the model with the best validation performance. This

generally required 15–25 epochs of about 90 seconds each on an NVIDIA GeForce GTX 1080 Ti. The

model was implemented using Keras (Chollet et al. (2015)) with the TensorFlow (Abadi et al. (2015))
backend.

Generator Model

The GM estimates a conditional distribution over primary sequences given a secondary sequence of

the same length using a deep learning recurrent neural network encoder/decoder architecture with

attention (Gehring et al. (2016)). The model is conditioned on a secondary sequence which consists
of “E”, “H”, and “L” tokens, corresponding to beta-sheets, alpha-helices and loops respectively. The

output primary vocabulary is 20 amino acids plus a special stop token to signify the end of a

sequence. The model first encodes the secondary sequence into a sequence of compact vector

space representation. Then the network decodes a primary sequence conditioned on the internal

representation.

Since the decoder iteratively generates amino acids from left to right, the encoder is augmented

with an attention mechanism that estimates which parts of the input secondary sequence are most

salient to the position during decoding. The encoder and attention networks both use convolutional

neural networks while the decoder is a long short-term memory recurrent neural network. In total,

the model has 128M parameters and has no explicit encoding of biophysical properties—it only

observes pairs of aligned secondary and primary sequences.

When generating primary sequences with the GM, we use a beam search to produce five

likely primary sequences from each secondary sequence. The model iteratively builds up primary

sequences, one amino acid at a time. At each iteration (e.g. iteration N ), we have five intermediate
primary sequences produced so far (e.g. of length N ). A distribution over all possible next amino
acids (e.g. the N + 1tℎ amino acid) is calculated for each of the five sequences, and the five likeliest
new sequences (each of length N + 1) are used for the next iteration.
To estimate the parameters of the GM, we considered the same 113,681 expert-designed

proteins used to train the EM. Because this model was tasked with generating proteins rather than

predicting them, unlike the EM, we did not hold out any designs for testing. These designs were all

assayed for stability and ranged in length from 28 to 65 amino acids (mean 55). For each design, we

examined secondary structure generated by the DSSP algorithm from the Rosetta-designed pdb

(Kabsch and Sander (1983)). 203 unique secondary topologies were present in this data set, with
10 having 100 or more designs. Our aim is to produce stable proteins, but the formulation of our

model does not take stability into account. To overcome this, we created a new data set in which

designs were represented in proportion to their stability score. This training data set shifted the

mean stability from 0.73 to 0.91, using 46,448 unique protein designs. We then fit the parameters

of our model by minimizing the cross-entropy of the model’s predicted primary sequence with the

reference primary sequence using stochastic gradient descent, given the secondary sequence as

input. We stopped training after 65 iterations, by which point loss appeared to have converged.

Optimization took around 24 hours training on four GTX 1080 Ti GPUs in parallel (Ott et al. (2019)).
Individual protein analyses

Protein expression

Genes encoding the designed protein sequences were synthesized and cloned into modified

pET-29b(+) E. coli plasmid expression vectors (GenScript, N-terminal 8× His-tagged followed by
a TEV cleavage site). For all the designed proteins, the sequence of the N-terminal tag used is

MSHHHHHHHHSENLYFQSGGG (unless otherwise noted), which is followed immediately by the

sequence of the designed protein. Plasmids were then transformed into chemically competent E.
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coli Lemo21 cells (NEB). Protein expression was performed using the Studier autoinduction media
supplemented with appropriate antibiotics, and grown overnight at 37°C. The cells were harvested

by spinning at 4,000xg for 10 min and then resuspended in lysis buffer (300 mM NaCl, 30 mM

Tris-HCL, pH 8.0, with 0.25% CHAPS for cell assay samples) with DNAse and protease inhibitor

tablets. The cells were lysed with a QSONICA SONICATORS sonicator for 4 minutes total (2 minutes

on time, 10 sec on-10 sec off) with an amplitude of 80%. Then the soluble fraction was clarified by

centrifugation at 24,000g for 30 min. The soluble fraction was purified by Immobilized Metal Affinity

Chromatography (Qiagen) followed by FPLC size-exclusion chromatography (Superdex 75 10/300

GL, GE Healthcare). All protein samples were characterized with SDS-PAGE with the purity higher

than 95%. Protein concentrations were determined by absorbance at 280 nm measured using a

NanoDrop spectrophotometer (Thermo Scientific) using predicted extinction coefficients.

Circular dichroism

Far-ultraviolet CDmeasurements were carried out with an JASCO-1500 equipped with a temperature-

controlled multi-cell holder. Wavelength scans were measured from 240 to 190 nm at 24°C.

Temperature melts were recorded by monitoring CD signal at 222 nm in steps of 2°C per minute

with 5s of equilibration time. Wavelength scans and temperature melts were performed using 0.3

mg/ml protein in PBS buffer (20mM NaPO4, 150mM NaCl, pH 7.4) with a 1 mm path-length cuvette.

Raw CD mdeg data were converted to molar ellipticity using standard methods (Greenfield (2006)).
Crystallography sample preparation, data collection, and analysis

Crystal screening was performed using Mosquito LCP by STP Labtech. Crystals were grown in 10%

PEG 20000, 20% PEG MME 550, 0.2M Sodium formate; 0.2M Ammonium acetate; 0.2M Sodium

citrate tribasic dihydrate; 0.2M Potassium sodium tartrate tetrahydrate; 0.2M Sodium oxamate and

0.1M MES/imidazole pH 6.5. Crystals were subsequently harvested in a cryo-loop and flash frozen

directly in liquid nitrogen for synchrotron data collection. Data was collected on 24-ID-C at NECAT,

APS. X-ray intensities and data reduction were evaluated and integrated using XDS (Kabsch (2010))
and merged/scaled using Pointless/Aimless in the CCP4 program suite (Winn et al. (2011)).
Starting phases were obtained by molecular replacement using Phaser (McCoy et al. (2007)) with

Rosetta prediction as the search model. Sidechains were rebuilt and the model was refined with

Rosetta-Phenix (Adams et al. (2010)). Manual rebuilding in Coot (Emsley and Cowtan (2004)) and
cycles of Phenix refinement were used to build the final model. The final model was evaluated using

MolProbity (Williams et al. (2018)). Structure deposited to PDB (PDB ID 7KUW). Data collection and
refinement statistics are recorded in the table below.
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Crystallographic data collection and refinement statistics  

Data were collected from one single crystal. 
aValues in parentheses are for the highest-resolution shell. 

 
 

 nmt_0994_guided_02 (PDB: 7KUW) 
Data collection   

Space group P43212 

Cell dimensions   

a, b, c (Å) 52.26, 52.26, 47.35 

α, β, γ (°) 90, 90, 90 

Resolution (Å) 52.27 - 2.43 (2.53 - 2.43)a 

No. of unique reflections 2746 (299) 

Rmerge 0.471 (2.479) 

Rpim 0.107 (0.579) 

I/σ (I) 6.5 (1.1) 

CC 1/2 0.987 (0.421) 

Completeness (%) 100.0 (100.0) 

Redundancy 22.6 (19.4) 

Refinement   

Resolution (Å) 36.96 - 2.43 (2.51 – 2.43) 

No. of reflections 12717 (267) 

Rwork / Rfree (%) 24.7 / 28.1 (34.0 / 31.8) 

No. atoms 507 

Protein 507 

Ion /Ligand 0 

Water 0 

Ramachandran 
Favored/allowed 
Outlier (%) 

  
98.33/1.67 
00.00 

r.m.s. deviations   

Bond lengths (Å) 0.003 

Bond angles (°) 0.420 

Bfactors (Å2)   

Protein 67.08 
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Figure 1–Figure supplement 1. Protein stability assay. Designed protein sequences are fused

in-frame with the yeast surface protein Aga2 and a C-terminal myc tag (for expressing on the surface

of yeast, and tagging with FITC, respectively), encoded by an oligonucleotide library. The library

is expressed on the surface of yeast cells (one design per cell). Titration with proteases, followed

by FACS and deep sequencing, yields a measurement of each design’s resistance to proteolysis.

Separately, the USM predicts the intrinsic unfolded-state resistance of each design, and this value is

subtracted from the observed resistance. The resulting stability score is a measure of the protection

against proteolysis conferred by the tertiary structure of the protein.

A CB

Figure 1–Figure supplement 2. (A) The new Unfolded State Model (USM) improved correlation

coefficients between predicted and actual EC50 values for both trypsin and chymotrypsin. (B)

Root mean squared errors between predicted and actual EC50 values also improved for the new

USM relative to the original. (C) By chance, the set of designed proteins is likely to have a similar

distribution of unfolded-state protease resistances to a set of scrambled versions of those designs.

If the medians of the two predicted distributions differ, therefore, it suggests that the USM is biased.

Here we see that the difference between median USM-predicted design EC50s and and median

USM-predicted scramble EC50s is lower for the new USM, suggesting that it is less biased despite its

greater complexity.
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Figure 1–Figure supplement 3. Relationship between EC50 values for trypsin and chymotrypsin.
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Figure 1–Figure supplement 4. The increased correlation coefficient versus that seen between

EC50 values for trypsin and chymotrypsin (Figure 1–Figure Supplement 3) suggests that stability
score (which corrects for differences in unfolded-state susceptibility by subtracting off the prediction

of the USM) is a better measure of stability than uncorrected EC50. The original USM described in

(Rocklin et al. (2017)) achieved an r2 of 0.62 on the same data.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435185doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435185
http://creativecommons.org/licenses/by-nc/4.0/


Manuscript submitted to eLife

0 2 4 6 8
Chymotrypsin EC50, Vector v.1

0

2

4

6

8

Ch
ym

ot
ry

ps
in

 E
C5

0,
 V

ec
to

r v
.2

Inflection: 2.414
Slope: 3.173

Figure 1–Figure supplement 5. Chymotrypsin EC50 values observed for proteins embedded in the

second-generation expression vector (Y-axis) plotted against EC50 values observed for the same

proteins embedded in the original expression vector. The heavy red line shows the function learned

through orthogonal regression to map the first-generation values to the second-generation values.

The function is constrained to be y = x below a parametrized inflection point, at which point its
slope is allowed to range to best fit the orthogonal regression. Optimal parameters for this fit are

shown. By inverting this function, we can map chymotrypsin EC50 values from those observed using

the second-generation expression vector back to what they would have been had they been tested

with the first-generation vector.
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Figure 1–Figure supplement 6. Trypsin EC50 values observed for proteins embedded in the second-

generation expression vector (Y-axis) plotted against EC50 values observed for the same proteins

embedded in the original expression vector. Conventions are as in Figure 1–Figure Supplement 5
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Table SX. Summary of mini-protein designs used to train the EM. 
 

Library Name of dataset 
Source of 

designs 

Source of 

experimental 

data 

Library 1 Rocklin 
Rocklin et al., 

2017 

Rocklin et al., 

2017 

Library 2 

Eva1 

Linsky et al., 

2021 
This paper Eva2 

Inna 

Library 3 

Longxing 

This paper This paper 
topology_mining_and_Longxing_chip_1 

topology_mining_and_Longxing_chip_2 

topology_mining_and_Longxing_chip_3 

Figure 2–Figure supplement 1. Summary of mini-protein designs used to train the EM.
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A) D)

B)

E)

C)

Figure 2–Figure supplement 2. Characteristics of mini-protein designs used to train the EM.

Different panels show data for different Libraries (Figure 2–Figure Supplement 1), or different
groups of designs within the same Library (we describe these groups in more detail in Materials

and Methods). Within each panel, we group designs by topology (y axis) according to the naming

scheme described in Materials and Methods. The leftmost plot in each panel shows distributions of

stability scores for designs (blue) and scrambles (orange), where boxes show the quartiles, whiskers

extend to either the end of the distribution or a maximum of 1.5-fold of the inter-quartile range

past the outer quartiles, and diamonds show outliers beyond this range. Successive plots show

the fraction of “stable” proteins (stability score > 1), the distributions of sequence lengths, and the

number of proteins in each group. (A) Data from Rocklin et al. (2017). The very narrow length
distributions reflect design protocols that specified one or two precise lengths for each topology.

Scrambles longer than their designed counterparts retained amino-acid padding used to normalize

the lengths of a subset of proteins to 50 amino acids. Although this padding was stripped from

design sequences, it was retained in scrambled sequences when we trained the new USM in this

study. (B) Protein designs from Linsky et al. (2021); we assayed stability scores for these designs in
this study. (C) Blueprint-based Rosetta designs. Narrow length distributions are again because of

the design protocols used. (D) Designs created using dTERMen software. (E) Designs created using

a TERM-based Rosetta protocol.
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Figure 2–Figure supplement 3. Performance for the EM on each held-out protein class, after

training on all other classes.
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Figure 2–Figure supplement 4. Observed versus predicted stability scores for proteins after

being subjected to each of the fourteen sequence perturbations. In contrast to Figure 2–Figure
Supplement 5, where we showed stability score changes for stable (or predicted-stable) proteins,
here we show stability scores for all proteins.
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Figure 2–Figure supplement 5. Impact of fourteen types of sequence perturbation on predicted

and observed stability. Substitutions, Insertions, and Deletions are single-site changes at ran-
dom locations. Their respective Central versions are at random locations excluding the first and
last ten amino acids. Cycled proteins had the indicated number of amino acids moved from the
beginning of the sequence to the end. Half sequences preserved the indicated 50% of the sequence,
discarding the rest. Reversal proteins were simple sequence reversals. Only cases where the
predicted or actual stability score of the base protein was ≥ 1 are considered, in order to illustrate
the effects (and predicted effects) of each manipulation on proteins with some real or predicted

baseline stability.
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Figure 3–Figure supplement 1. Effects on stability scores of guided and random substitutions

within expert-designed proteins with base-design stability score < 0.7 and EC50 values < 4 (pre-
vector-reconciliation) for both proteases.
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Figure 3–Figure supplement 2. Effects on trypsin stability scores of guided and random substitu-

tions within expert-designed proteins.
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Figure 3–Figure supplement 3. Effects on chymotrypsin stability scores of guided and random

substitutions within expert-designed proteins.
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Figure 3–Figure supplement 4. Effects on trypsin EC50 values of guided and random substitutions

within expert-designed proteins.
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Figure 3–Figure supplement 5. Effects on chymotrypsin EC50 values of guided and random substi-

tutions within expert-designed proteins.
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Figure 3–Figure supplement 6. Effects on trypsin EC50 values of guided and random substitutions

within expert-designed proteins, restricted to proteins with base-design stability score > 0.7 and
EC50 values < 4 (pre-vector-reconciliation).
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Figure 3–Figure supplement 7. Effects on chymotrypsin EC50 values of guided and random substi-

tutions within expert-designed proteins, restricted to proteins with base-design stability score > 0.7
and EC50 values < 4 (pre-vector-reconciliation).
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Figure 3–Figure supplement 8. Effects of guided and random substitutions within expert-designed

proteins, when guided substitutions are not permitted to decrease USM EC50 predictions.
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Figure 3–Figure supplement 9. Effects of guided substitutions within expert-designed proteins,

when they are not permitted to decrease USM EC50 predictions or to change amino acids to

tryptophan.
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Figure 3–Figure supplement 10. Effects of guided substitutions within expert-designed proteins,

when they are not permitted to decrease USM EC50 predictions or to change amino acids to alanine,

phenylalanine, isoleucine, leucine, methionine, valine, tryptophan, or tyrosine.
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Figure 3–Figure supplement 11. Effects of guided substitutions within scrambled expert-designed

proteins, when they are not permitted to decrease USM EC50 predictions.
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Figure 3–Figure supplement 12. Effects of guided substitutions within scrambled expert-designed

proteins, when they are not permitted to decrease USM EC50 predictions or to change amino acids

to tryptophan.
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Figure 3–Figure supplement 13. Effects of guided substitutions within scrambled expert-designed

proteins, when they are not permitted to decrease USM EC50 predictions or to change amino acids

to alanine, phenylalanine, isoleucine, leucine, methionine, valine, tryptophan, or tyrosine.
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Figure 5–Figure supplement 1. Experimental stability for GM proteins as novelty increases. Nov-

elty is determined by the maximum percent identity as computed by BLAST over all designs in the

training data set (i.e. the percent identity to the most similar training design).
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Figure 5–Figure supplement 2. Effects of guided and random substitutions within GM designs on

trypsin stability scores.
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Figure 5–Figure supplement 3. Effects of guided and random mutations of GM designs on chy-

motrypsin stability scores.
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Figure 5–Figure supplement 4. Effects of guided and random mutations of GM designs on trypsin

EC50 values.
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Figure 5–Figure supplement 5. Effects of guided and random mutations of GM designs on chy-

motrypsin EC50 values.
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Figure 5–Figure supplement 6. Effects of guided and random substitutions within GM designs

with a maximum sequence identity to any expert-designed protein of less than 50%, when guided

substitutions are not permitted to decrease USM EC50 predictions.
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Figure 5–Figure supplement 7. Effects of guided and random substitutions within GM designs

with a maximum sequence identity to any expert-designed protein of less than 50%, when guided

substitutions are not permitted to decrease USM EC50 predictions and neither guided nor random

substitutions are allowed to change amino acids to tryptophan.
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Figure 5–Figure supplement 8. Effects of guided and random substitutions within GM designs

with a maximum sequence identity to any expert-designed protein of less than 50%, when guided

substitutions are not permitted to decrease USM EC50 predictions and neither guided nor random

substitutions are allowed to change amino acids to alanine, phenylalanine, isoleucine, leucine,

methionine, valine, tryptophan, or tyrosine.
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Figure 6–Figure supplement 1. Effects and frequencies of guided single-site substitutions on

protein stability. For each original amino acid (indexed on the Y-axis) and each changed-to amino

acid (indexed on the X-axis), the mean effect on stability when that substitution was guided by

the EM is computed and plotted for each from-to pair that was represented in the data; redder

circles indicate that guided substitutions were on average stabilizing, bluer circles indicate that

they were on average destabilizing. Circles with heavy black outlines showed a significant deviation

from zero (two-tailed t-test, p < 0.05 uncorrected). Bar graphs indicate mean differences over all
changed-to amino acids for each original amino acid (left) and all original amino acids for each

changed-to amino acid (bottom). Circle area beyond a minimal baseline size indicates the number

of times the corresponding substitution was made. Numbers on the axes beside/below the amino

acid abbreviations indicate the total number of times the corresponding amino acid was mutated

from/to.
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Figure 6–Figure supplement 2. Effects and frequencies of random single-site substitutions on

protein stability. Conventions are the same as in Figure 6–Figure Supplement 1
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Figure 6–Figure supplement 3. Effects and frequencies of guided single-site substitutions when

guided mutations are not permitted to reduce USM-predicted unfolded-state resistance. This

restriction reduces the opportunities for the refinement process to improve stability score simply

by exploiting flaws in the USM. Conventions are the same as in Figure 6–Figure Supplement 1
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Figure 6–Figure supplement 4. Effects and frequencies of guided single-site substitutions when

guided mutations are not permitted to reduce USM-predicted unfolded-state resistance or to

change amino acids to tryptophan. Conventions are the same as in Figure 6–Figure Supplement 1
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Figure 6–Figure supplement 5. Effects and frequencies of guided single-site substitutions when

guided mutations are not permitted to reduce USM-predicted unfolded-state resistance or to

change amino acids to any of the following: alanine, phenylalanine, isoleucine, leucine, methionine,

valine, tryptophan, or tyrosine. Conventions are the same as in Figure 6–Figure Supplement 1
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Figure 7–Figure supplement 1. Thermal stability of the designed proteins monitored by circular

dichroism spectroscopy (CD). Left, full-spectral scans at 24°C and 84°C for each variant between

200–240nm wavelength. Right, MRE at 222 nm as a function of temperature.
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Figure 7–Figure supplement 2. Ab initio Rosetta predictions of the structures of the twelve designs

subjected to additional testing. The top row shows the four designs which were refined to yield the

designs in the middle row; the bottom row shows the four designs for which only refined versions

were evaluated. Note that nmt_0994_guided_02 was evaluated crystallographically and found to

have a somewhat different structure from that predicted here (Figure 7B).
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