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Abstract

Desiccation tolerancewas a key trait that allowed plants to colonize land. However, little is

known about the transition from desiccation tolerant non-vascular plants to desiccation

sensitive vascular ones. Filmy ferns (Hymenophyllaceae) represent a useful system to

investigate how water-stress strategies differ between non-vascular and vascular stages

within a single organism because they have vascularized sporophytes and nonvascular
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gametophytes that are each capable of varying degrees of desiccation tolerance. To ex-

plore this, we surveyed sporophytes and gametophytes of 19 species (22 taxa including

varieties) of filmy ferns on Moorea (French Polynesia) and used chlorophyll fluorescence

to measure desiccation tolerance and light responses. We conducted phylogenetically

informed analyses to identify differences in physiology between life stages and growth

habits. Gametophytes had similar or less desiccation tolerance (ability to recover from 2

d desiccation at -86 MPa) and lower photosynthetic optima (maximum electron transport

rate of photosystem II and light level at 95% of that rate) than sporophytes. Epiphytes

were more tolerant of desiccation than terrestrial species in both generations. Despite

their lack of greater physiological tolerances, gametophytes of several species occurred

over a wider elevational range than conspecific sporophytes. Our results demonstrate

that filmy fern gametophytes and sporophytes differ in their physiology and niche require-

ments, and point to the importance of microhabitat in shaping the evolution of water-use

strategies in vascular plants.

Keywords: chlorophyll fluorescence; desiccation tolerance; DNA barcoding; French Poly-

nesia; gametophyte; Hymenophyllaceae
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Introduction

The movement of plants from water to land was one of the most important evolutionary

events in the history of the earth, fundamentally altering the global carbon and water cy-

cle and setting the stage for modern terrestrial ecosystems (Graham 1993; Kenrick and

Crane 1997). The transition from aquatic to terrestrial growth was complex, requiring a

suite of evolutionary adaptations to survive in deadly dry habitats bombarded with radia-

tion (Waters 2003). Lacking mechanisms to regulate water loss, the earliest land plants

were likely poikilohydric, i.e., they existed in a state of equilibrium with the humidity of the

external environment (Raven 1999). Therefore, one particularly important early adaptation

that enabled plants to survive on land was desiccation tolerance (DT), the ability to lose

all metabolically active water, reach equilibrium with atmospheric humidity, and recover

upon rewetting (Mishler and Churchill 1985).

Compared with the ubiquitous DT among the earliest land plants, the occurrence of DT

varies across extant land plant lineages and life stages. Many bryophytes have retained

vegetative DT in the gametophyte stage (Oliver et al. 2005, and references therein). In

extant vascular plants (tracheophytes), DT occurs in certain non-vegetative stages (e.g.,

seeds and pollen), but has largely been lost in vegetative tissues (with some notable ex-

ceptions, the so-called “resurrection plants”; Hartung et al. 1998; Kappen and Valladares

2007; Scott 2000). Instead, the majority of tracheophytes solely rely on avoiding desic-

cation with adaptations including a waxy cuticle, stomata, roots, and an extensive vas-

cular system. Correlated with these differences in functional strategies to cope with wa-

ter stress is a major difference in life cycle. Over time, plants shifted away from wholly

gametophyte-dominated life cycle (as in extant bryophytes) to co-independence of the

gametophyte and sporophyte (i.e., ferns and lycophytes) to complete loss of the indepen-

dent gametophyte (i.e., spermatophytes). Little is known about the details of the transition

from desiccation tolerance to avoidance, nor how this took place in conjunction with the
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switch from a gametophyte to a sporophyte-dominated life cycle; yet, these two steps un-

derpin the radiation of vascular plants onto dry land (Puttick et al. 2018; Qiu et al. 2006;

Wickett et al. 2014).

Ferns represent an important, understudied group of tracheophytes for investigating both

the ecology and evolution of desiccation tolerance. Ferns are the only major lineage

among land plants with sporophytes and gametophytes that are capable of growing in-

dependently from each other. These two life stages differ drastically in their morphology

and physiology—fern sporophytes have true vascular tissue and are homoiohydric (i.e.,

they regulate their internal water content), whereas fern gametophytes are much smaller

(often < 1 cm), lack vascular tissue, and are poikilohydric. Recent studies indicate that

the gametophytes of many fern species are desiccation tolerant, while sporophytes of the

same species are thought to lack DT (Pittermann et al. 2013; Watkins et al. 2007a). Thus,

ferns present a unique opportunity to observe the transition from desiccation tolerance to

desiccation avoidance across independently growing life phaseswithin a single organism.

Filmy ferns (Hymenophyllaceae) represent a particularly interesting case for studying the

ecological and evolutionary significance of vegetative DT across life stages in ferns. Filmy

ferns are a large family (c. 430 spp.; Pteridophyte Phylogeny Group I 2016) of primarily

tropical, leptosporangiate ferns named for their remarkably thin leaf laminae, which are

usually only a single cell layer in thickness and lack cuticle or stomata (Fig. 1a–d). Filmy

fern sporophytes are a remarkable exception to the ‘typical’ homoiohydric fern sporophyte

described above because they have reverted to poikilohydry: their thin laminae allow for

passive, rapid uptake and loss of moisture, thereby maintaining nearly constant equilib-

rium with atmospheric humidity (Raven 1999). Many species of epiphytic filmy ferns have

extremely reduced root systems (Schneider 2000), relying completely upon absorption

through leaf laminae for water (Shreve 1911), although terrestrial species possess true

roots and use ground water (Dubuisson et al. 2011). Thus, the morphological and phys-
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iological gap between sporophytes and gametophytes is arguably smaller in filmy ferns

compared to any other fern clade. Thismakes filmy ferns a potentially useful group for un-

derstanding the transition from a desiccation tolerant, gametophyte-dominated strategy

to a desiccation avoiding, sporophyte-dominated one, since the sporophytes and gameto-

phytes of ancestral tracheophytes were also likely initially similar, then gradually diverged

by a series of step-wise adaptations (Bateman et al. 1998; Ligrone et al. 2012).

Filmy fern sporophytes encompass a broad diversity of growth forms (terrestrial, saxi-

colous, hemi-epiphytic, and holoepiphytic) and morphologies, with rhizome and leaf sizes

varying over an order of magnitude (Dubuisson et al. 2013; Hennequin et al. 2008; Nitta

and Epps 2009). As would be expected from their poikilohydric nature, DT of varying de-

grees has been reported in sporophytes ofmany filmy fern species (see references below).

Filmy fern gametophytes are similarly diverse, with morphotypes including filamentous,

ribbon, and a combination of these two types (Fig. 1e–h). While there are no quantita-

tive data about DT in filmy fern gametophytes available, DT has been reported in game-

tophytes from several other fern lineages (Pittermann et al. 2013; Watkins and Cardelús

2012; Watkins et al. 2007b), and may be expected to occur in filmy ferns as well. The pos-

sibility for varying degrees of vegetative DT in both stages of the life cycle of filmy ferns

makes them a potentially useful system to compare how DT is utilized between haploid,

non-vascular and diploid, vascular life stages. Furthermore, the diversity of growth forms

and habitats in filmy ferns makes them an ideal group for a comparative study of water-

stress strategies (i.e., desiccation tolerance vs. desiccation avoidance) and the correlation

of these strategies with ecological niche.

The degree of DT in filmy fern sporophytes occupying different niches has been rela-

tively well studied. In a series of elegant experiments on Jamaican filmy ferns, Shreve

(1911) demonstrated that water-use strategies differ between species occupying con-

trasting habitats (i.e., terrestrial, low elevation epiphyte, and high elevation epiphyte). Proc-
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tor (2003, 2012) investigated water relations and the ability to recover from desiccation in

sporophytes of several filmy ferns, and found a general correlation between high DT and

adaptation for high light levels inwidespread species vs. lowDTand adaptation to low light

levels in species occupying more sheltered habitats. In the only study to our knowledge

including in situ physiological observations of hymenophyllaceous gametophytes, John-

son et al. (2000) found that gametophytes of Vandenboschia speciosa (Willd.) G. Kunkel

(= Trichomanes speciosum Willd.) are adapted for extremely low light environments, and

operate at lower light levels than conspecific sporophytes. Parra et al. (2009) and Saldaña

et al. (2014) investigated the relationship between physiology (photosynthetic rates and

water relations) and vertical stratification in several epiphytic filmy fern species (primar-

ily genus Hymenophyllum) along tree trunks in Chile. They found that species occurring

at greater heights in the trees tended to have greater DT, higher photosynthetic capacity

(Amax), and lower rates of evapotranspiration. A study using two species of Hymenophyl-

lum demonstrated that DT in filmy ferns likely operates via a homoiochlorophyllous, consti-

tutive mechanism, which is more similar to that of bryophytes than other drought-tolerant

vascular plants, thus allowing filmy ferns to adjust to dry conditions extremely rapidly (Cea

et al. 2014). This was further supported by evidence that induced biomechanical mech-

anisms likely do not play a role in DT of filmy ferns (Fallard et al. 2018; but see Mkhize et

al. 2020). Recently, transcriptomics has been applied to elucidate the genes involved at

each step of the desiccation-recovery cycle of filmy ferns (Ostria-Gallardo et al. 2020a; b).

In epiphytic Hymenoglossum cruentum Cav., key genes and gene networks were identified

related to intracellular mobility and photosynthetic metabolism in the desiccated state,

and those related to detoxifying pathways and stabilization of photosystems during rehy-

dration (Ostria-Gallardo et al. 2020b). In a comparison of low-trunk and canopy epiphytes,

Ostria-Gallardo et al. (2020a) identified multiple differentially expressed genes that may

be specific to tolerating desiccation in these microhabitats.

Despite this considerable interest in filmy fern ecophysiology, with the sole exception of
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Johnson et al. (2000), no studies have compared physiology between gametophyte and

sporophyte phases, and we are aware of none that have done so across multiple species.

Furthermore, to our knowledge, no physiological studies of filmy ferns have accounted

for their phylogenetic relationships, and we lack an understanding of how physiological

strategies have evolved in this clade. In addition to DT, photosynthetic optima (adapta-

tion to different light levels) are likely to be important in determining the niches of life

stages and species of filmy ferns (Flores-Bavestrello et al. 2016; Parra et al. 2015; Proc-

tor 2003). Terrestrial and epiphytic species experience different levels of photosynthetic

radiation and desiccation, and light intensity varies with height along the host plant in epi-

phytes (Benzing 1990; Watkins and Cardelús 2009). The combined effect of desiccation

and light stress may induce greater oxidative damage in filmy ferns than either of these

stressors alone (Niinemets et al. 2018), suggesting the need to integrate studies of DT

with photosynthesis to gain a full picture of physiological adaptation in filmy ferns. Here,

we leverage a recently developed DNA barcoding system (Nitta et al. 2017) to test several

hypotheses related to DT and photosynthesis in a comparative phylogenetic framework in-

cluding both filmy fern sporophytes and gametophytes: 1.) Light responses and DT differ

between species with different growth habits. 2.) Light responses and DT differ between

sporophytes and gametophytes. 3.) DT increases with decreasing environmental water

availability. 4.) Gametophytes with broader elevational ranges have higher DT than those

with with narrower ranges.

Materials and methods

Study system

We selected the island of Moorea, French Polynesia (17°32’ S, 149°50’ W) for our survey

of filmy fern ecophysiology. Moorea is a small (135 km2; maximum elevation 1206 m)

tropical oceanic island, located c. 15 km NW of its larger sister island, Tahiti. Despite its
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small size, it hosts a range of habitats including coastal strand, low elevation rainforest,

and high elevation cloud forest. A total of 19 filmy fern species are known fromMoorea, in-

cluding multiple terrestrial, saxicolous, and epiphytic species (Florence in press; Murdock

and Smith 2003; Nitta et al. 2011b, 2017; Ranker et al. 2005) (Figs 1, S1; all supplemental

figures available in Online Resource 1). The two major clades of filmy ferns, the hymeno-

phylloid and trichomanoid lineages (Pryer et al. 2001), are represented on Moorea by 7

and 12 species, respectively. We follow the taxonomic system of Ebihara et al. (2006) for

Hymenophyllaceae.

Field survey and DNA barcoding

We surveyed filmy ferns on Moorea as part of a larger study including all ferns of Moorea

and Tahiti (Nitta et al. 2017). During this study, 17 sampling sites were established from c.

200m to 1200m primarily along trails to the summits of three large peaks onMoorea: Mt.

Rotui (899m), Mt. Mouaputa (880m), andMt. Tohiea (1206m). At each site, sporophytes

were sampled in a single 10 m × 10 m plot, and gametophytes sampled in two to three 50

cm × 50 cm plots located within the sporophyte plot. To estimate abundance of sporo-

phytes, the 10 m × 10m plot was subdivided into 25 2 m × 2m subplots, and the presence

of species in the sporophyte phase in each subplot was summed such that each species

was assigned an abundance rank from 1 to 25. For the gametophyte plots, each 50 cm x

50 cm plot was subdivided into 25 5 x 5 cm squares, and a single gametophyte selected

closest to the center of each square, to later be identified to species using DNA barcod-

ing (see below). Epiphytes were sampled to a maximum height of c. 2 m on their host

plants. For additional details on sampling procedure, see Nitta et al. (2017). The growth

habit of each species was scored based on field observations as terrestrial, saxicolous,

low elevation epiphyte (mostly occurring outside of cloud forest, i.e., below c. 500 m), or

high elevation epiphyte (mostly occurring in cloud forest, i.e., above c. 500 m). Crepido-

manes bipunctatum (Poir.) Copel. and C. humile (G. Forst.) Bosch were observed growing
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as both epiphytes and saxicoles, but were treated as epiphytes to distinguish them from

exclusively saxicolous species.

Unlike sporophytes, fern gametophytes are cryptic and cannot be identified to species

based on morphology alone. Therefore, we used DNA barcoding to identify filmy fern

gametophytes to species following Nitta et al. (2017). Briefly, DNA extraction was per-

formed using a modified CTAB protocol (Doyle and Doyle 1987) or the Plant Mini DNEasy

kit (Qiagen, Valencia, California, USA) following the manufacturer’s protocol. Chloroplast

rbcL and trnH–psbAwere amplified and sequenced using primers and protocols following

Nitta et al. (2017). For each marker, a reference library was constructed from sporo-

phyte sequences using the ‘makeblastDB’ command in BLAST (Altschul et al. 1997).

Field-collected gametophytes were identified by a local BLAST query against the refer-

ence library. Gametophytes matching > 99.5 % with a single reference sequence and no

others were identified as that species; those that did not match any reference sequence

or matched > 99.5 % with multiple reference sequences were not identified and excluded

from further analysis. For this study, only gametophytes that could be identified as Hy-

menophyllaceae were used; others were excluded from analysis.

Fieldwork was done under permits issued by the French Polynesian Government (Déléga-

tion à la Recherche) and the Haut-commissariat de la République en Polynésie Francaise

(Protocole d’Accueil 2012–2014). Voucher specimens were deposited at UC, with dupli-

cates at GH and PAP (abbreviations follow Thiers (2021)).

Microclimate

We used microclimate data collected by Nitta et al. (2020). This dataset includes relative

humidity (RH) and temperature measured every 15 min from 2013-07-07 to 2014-07-05 at

the fern survey sites with Hobo ProV2 dataloggers (Onset Computer Corporation, Bourne,

Massachusetts, USA), and vapor pressure deficit (VPD) calculated from these two values.
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The dataloggers were outfitted with radiation shields (RS1 or RS3, Onset Computer Cor-

poration, Bourne, Massachusetts, USA) to prevent direct contact with precipitation and

solar radiation, and placed in pairs at each site (one ‘epiphytic’ datalogger at c. 1.5 m on

a tree, one ‘terrestrial’ datalogger at c. 10 cm next to the tree). During the study period,

some dataloggers malfunctioned, presumably due to prolonged exposure to high humid-

ity. Any days during which one or more dataloggers failed are excluded from the dataset.

One terrestrial datalogger (Mt. Tohiea 393 m site) was lacking data for more than half of

the survey period, but had data available for the same period from a preliminary survey

conducted during the previous year (2012–2013), so the previous year’s data for this site

was used instead. The dataset includes 244 days of data from 15 sites (26 dataloggers).

Mean daily temperature on Moorea is strongly correlated with elevation, dropping c. 6 °C

from the lowest surveyed site (201m) to the highest (1206m); temperature does not differ

significantly between epiphytic and terrestrial habitats (Nitta et al. 2020). Epiphytic habi-

tats tend to have lower daily mean RH, and greater daily variation in RH, than terrestrial

ones. This difference is greatest at low elevations, and smallest at high elevations (Nitta

et al. 2020).

Desiccation tolerance

Samples were collected in the field and stored in plastic bags with a small amount of

water to keep them fresh during transport to the lab. For sporophytes, eight individuals

(one individual = single whole frond including a c. 2 cm section of rhizome) were used

per treatment, and all individuals for each species came from a single population. We did

not attempt to differentiate genotypes between fronds in species with long-creeping rhi-

zomes, which often formclonalmats; hence, in somecases, individualsmay be genetically

identical ramets. All experiments were initiated within 48 h of collection. Pre-treatment

maximum photochemical yield of photosystem II (Fv/Fm) (Kitajima and Butler 1975) was

measured in fresh plants after a 10 min period of dark-adaptation using a portable mini-
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PAM chlorophyll fluorometer (Walz Gmbh, Effeltrich, Germany). Any samples with pre-

treatment Fv/Fm < 0.4 were excluded from analysis, as typical values of Fv/Fm in healthy

plants tend to be c. 0.8 (Björkman and Demmig 1987). Samples were then transferred

to desiccation chambers containing saturated salts at three different desiccation intensi-

ties or a control treatment with moist tissues (100 % RH), and water withheld for either a

short (2 d) or long (15 d) interval (Testo andWatkins 2013). Conditions inside the desicca-

tion chambersweremonitored during the experiment using Track-It RH/Temp dataloggers

(Monarch Instrument, Amherst, NH) logging every 10 min (2012 field season for species

other than Callistopteris apiifolia (Presl) Copel.) or Hobo ProV2 dataloggers logging every

5 min (2012 C. apiifolia, 2013, 2014 field seasons). The desiccation chambers were kept

in an air-conditioned room. Temperature inside the chambers was mean 24.1 ± SD 1.15

°C (Fig. S2) (hereafter, the value following ‘±’ is standard deviation unless otherwise men-

tioned). Salts used for desiccation and their corresponding mean water potentials and

approximate relative humidity and VPD are as follows: LiCl (-282MPa, 18 % RH, 2.45 kPa),

Mg(NO3)2 (-86MPa, 58 % RH, 1.25 kPa), and NaCl (-38MPa, 80 % RH, 0.60 kPa). Following

the desiccation treatment, plants were rewetted by wrapping them in moist tissues using

water from a local stream. Plants were allowed to rehydrate, and Fv/Fm was again mea-

sured at 0.5 h, 24 h, and 48 h following rewetting. Ability to recover from desiccation was

quantified by comparing pre- and post-treatment Fv/Fm (Watkins et al. 2007a).

We measured relative water content (RWC) in a subset of samples by recording the mass

of samples prior to the DT test (freshmass), at each step of the DT test (turgidmass), then

following the DT test after drying them overnight in an oven at 65 °C (dry mass). Relative

water content was calculated as 𝑅𝑊𝐶 = 𝑇 𝑀−𝐷𝑀
𝐹𝑀−𝐷𝑀 × 100, where TM is turgid mass,

DM is dry mass, and FM is fresh mass.

Because field-collected gametophytes could not be identified to species prior to DNA ex-

traction, no planned replication by species was possible. We therefore applied the same

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2021.03.12.435213doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435213
http://creativecommons.org/licenses/by/4.0/


treatment for all gametophytes (2 d at -86 MPa) in batches of individuals (Table S1), and

verified the species of each individual after the experiment using the DNA barcode ap-

proach described above. Thus, gametophytes of some species were sampledmany times

whereas those of other species were not. Relative water content was not calculated for

gametophytes, as thesewere too small tomeasure accurately with the balances available.

Light responses

Rapid light response curves were constructed for each species by measuring photosyn-

thetic yield at gradually increasing levels of photosynthetically active actinic light (400 nm

to 700 nm) with the Light Curve function of the mini-PAM portable chlorophyll fluorometer

as described by the manufacturer. Briefly, the maximum yield (Fm) was first measured in

the absence of actinic light. Next, plants were equilibrated to the actinic light for 30 s, and

photosynthetic yield (∆F/Fm) measured with a 0.8 s saturating pulse. This was repeated

for each photosynthetic photon flux density (PPFD) level, up to ca. 500 µmol·m-2·s-1. Re-

sponse curves were fitted using the equation 𝑦 = 𝐴(1 − 𝑒−𝑘𝑥), where y is relative

electron transport rate of photosystem II (RETR), x is photosynthetic photon flux density

(PPFD), A is the asymptote of the curve, and k is a slope parameter; outliers at high PPFD

likely to distort the curve were discarded (Proctor 2012). The PPFD at 95 % saturation of

RETR (PPFD95%) and maximum RETR (ETRmax) were then calculated from the curve. Light

responses were measured in eight individuals per species in the lab for sporophytes, and

on single individuals in the field for gametophytes. The gametophytes were later identified

to species using the DNA barcodes.

Statistical analysis

All statistical analyses were done in R v.4.0.2 (R Core Team 2020).

We derived the phylogenetic tree used in this study by extracting Hymenophyllaceae from
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the tree of Nitta et al. (2017) with the ‘extract.clade’ function of the ‘ape’ package (Paradis

et al. 2004). This tree is in agreement with previously published, more densely sampled

phylogenies (Dubuisson et al. 2003; Ebihara et al. 2007; Hennequin et al. 2006; Pryer et

al. 2001).

We quantified the degree of phylogenetic signal in physiological traits using Blomberg’s K

(Blomberg et al. 2003) and Pagel’s λ (Freckleton et al. 2002; Pagel 1999) as implemented

with the ‘phylosig’ function in the ‘phytools’ package (Revell 2012). Both measures test

the hypothesis that the trait of interest is evolving according to Brownian Motion (BM). λ

is a scaling parameter that ranges from zero to one: λ near zero indicates random distri-

bution of trait values across the tree, and λ near one indicates evolution of traits along the

phylogeny following BM. For K, values near one indicate evolution of traits following BM;

K > 1 indicates traits more conserved than expected under BM, and K < 1 indicates that

traits have less phylogenetic signal than expected under BM. We tested the significance

of K by comparing the observed value against values from a null distribution of 10,000

phylogenies with the traits randomly shuffled across the tips. We tested the significance

of λ with a log-likelihood test comparing the likelihood of the observed value of λ vs. λ

= 0. For all further analyses, we used methods that account for phylogenetic history for

physiological traits that showed evidence of phylogenetic signal in at least one of the two

metrics, and standard methods otherwise.

We used general linear mixed models (GLMMs) to investigate the effect of growth habit

and life stage on DT (% recovery of Fv/Fm after 48 h recovery from desiccation at -86 MPa

for 2 d) and photosynthetic parameters (ETRmax and PPFD95%) using the ‘MCMCglmm’

package (Hadfield 2010). For each of the three response variables (species mean DT,

ETRmax, and PPFD95%), we constructed five models: a null model with no fixed effects, or

modelswith either growth habit (high-elevation epiphyte, low-elevation epiphyte, terrestrial

or saxicolous), generation (sporophyte vs. gametophyte), growth habit and generation, or
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growth habit, generation, and their interaction as fixed effects. We included species as

a random effect in all models, and included a phylogenetic variance-covariance matrix if

the response variable showed evidence of phylogenetic signal (Hadfield 2010). We used

an inverse-Gamma distribution for all priors, and ran analyses for 500,000 iterations, with

burnin after 1,000 iterations and thinning every 500 iterations. We comparedmodels using

the Deviance Information Criterion (DIC) (Spiegelhalter et al. 2002) and selected the best-

fitting model as the one with the lowest DIC.

Comparisons of DT, ETRmax, and PPFD95% between gametophytes and sporophytes of the

same species do not involve phylogeny, so we used a two-sided t-test for these.

To test for a correlation between environmental water availability and DT, we first derived

a single maximum VPD for each species by calculating the average of the maximum daily

VPD at all sites where that species was present. We used maximum VPD (i.e., minimum

humidity) values because these may represent a climatic extreme that limits the occur-

rence of species. We used data from the ‘epiphytic’ dataloggers mounted at 1.5 m on

trees for epiphytic species and data from the ‘terrestrial’ dataloggers on the ground for

non-epiphytic species. Data from the Mt. Rotui 830 m site were excluded because this

site ismuchmore exposed than the other high elevation sites, and appears as a significant

outlier in the microclimatic data (Nitta et al. 2020). Since DT showed significant phyloge-

netic signal (see Results), we used phylogenetic generalized least squares (PGLS) (Freck-

leton et al. 2002) to test for a relationship between VPD and DT while taking phylogeny

into account, using species’ means.

To test whether gametophytes with broader ranges have higher DT, we calculated the ex-

tent of gametophyte range beyond sporophytes (“G beyond S”) as the total elevational

range (m) gametophytes were observed growing beyond sporophytes at either end of the

elevational gradient. We conducted PGLS with DT as the response variable and G beyond

S as the explanatory variable with the ‘pgls’ function in the ‘caper’ (Orme et al. 2018).
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Datasets used in this study are available on FigShare (https://doi.org/10.6084/m9.

figshare.14184572). Code used to analyze the data and generate figures and this

manuscript are available on GitHub (https://github.com/joelnitta/moorea_filmies).

A Docker image is available to run the code at https://hub.docker.com/r/joelnitta/

moorea_filmies. The ‘targets’ package (Landau 2021) was used to automate the

workflow. The ‘ggplot2’ (Wickham 2016), ‘ggtree’, (Yu et al. 2017) and ‘patchwork’

(https://github.com/thomasp85/patchwork) packages were used to generate the

figures.

*** NOTE TO READER: The DOI for the dataset will not be active until the paper is

accepted. Until then, this link can be used for the dataset https://figshare.com/s/

d6349abf01a3756a5aae ***

Results

Field survey

In total, 22 filmy fern taxa (including two species that were recognized as multiple vari-

eties) were observed on Moorea. Three taxa with distinct rbcL sequences, morphology,

and elevational ranges could be distinguished within the Crepidomanes minutum (Blume)

K. Iwats. species complex, but species status of these taxa remains uncertain (Nitta et

al. 2011a). We refer to these here as C. minutum var. 1, 2, and 3. Similarly, two mem-

bers of the Abrodictyum asae-grayi (Bosch) Ebihara & K. Iwats. complex (also including

Abrodictyum caudatum (Brack.) Ebihara & K. Iwats. in our tree; Fig. S1) were observed on

the basis of rbcL and morphology, but as taxonomic treatment is beyond the scope of the

current study we refer to them as A. asae-grayi var. 1 and 2.

In several species, gametophytes exceeded the maximum or minimum elevational range

of sporophytes including C. apiifolia, C. minutum var. 2 and 3, Hymenophyllum digitatum

(Sw.) Fosberg, Hymenophyllum javanicum Spreng., Hymenophyllum pallidum (Blume) Ebi-
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hara & K. Iwats., and Polyphlebium borbonicum (Bosch) Ebihara & Dubuisson (Fig. S3). All

of these have sporophytes that are normally restricted to cloud forest (c. 500–1200 m),

but gametophytes that are distributed to lower elevations.

Sporophytes of two taxa, C. minutum var. 3 and Hymenophyllum braithwaitei Ebihara & K.

Iwats., did not occur in the study plots, but each was observed from a single population

onMt. Tohiea, at c. 1000m and near the summit (1206m), respectively. We include these

observations for comparison of ranges between sporophytes and gametophytes.

Phylogenetic signal

For DT, K was near 1 with P < 0.1 in both generations (gametophytes K = 0.68, P = 0.036;

sporophytes K = 0.69, P = 0.053); λ was near 1 for both generations, but not significant for

sporophytes (gametophytes λ = 0.68, P = 0.063; sporophytes λ = 0.71, P = 0.298). There

was no evidence of significant phylogenetic signal in photosynthetic parameters (PPFD95%

and ETRmax) in either generation (P » 0.05, Table 1). Therefore, phylogeneticmethodswere

used for analyses involving DT, but not photosynthetic parameters.

Desiccation tolerance

Ability to recover from desiccation was tested in sporophytes of 14 species and gameto-

phytes of 14 species, including 12 species with both life phases.

A general correlation of DT with habitat was observed in sporophytes (Fig. 2a). The two

terrestrial species lacked DT, although C. apiifolia showed slightly greater ability to recover

by 48 h compared to Abrodictyum dentatum (Bosch) Ebihara & K. Iwats., which completely

failed to recover from even the gentlest treatment of 2 d at –38 NaCl (more stringent tests

were not conducted on A. dentatum after confirming its lack of DT at this level). Saxi-

colous species (Crepidomanes kurzii (Bedd.) Tagawa & K. Iwats., Polyphlebium endlicheri-

anum (C. Presl) Ebihara & K. Iwats., and Vandenboschia maxima (Blume) Copel.) also had
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low DT; only C. kurzii was able to recover from desiccation up to –86 MPa for 2 d but

not more. Nearly all epiphytic species were capable of recovering from desiccation of

up to 2 d at –86 MPa. Crepidomanes bipunctatum, a widespread low-elevation epiphyte,

showed the greatest ability to recover from desiccation across all treatments. Interest-

ingly, high-elevation epiphytes Hymenophyllum multifidum (G. Forst.) Sw. and Hymeno-

phyllum polyanthos (Sw.) Sw. could recover from desiccation at –86 or –282 MPa for 15

d, but not –38 MPa.

Gametophytes of terrestrial species could not tolerate desiccation (mean 48 h recovery

9.0 % ± 0.8 %, n = 2 species). Levels of DT were in general higher for saxicolous and

epiphytic gametophytes, but otherwise did not show a clear pattern (Fig. 2b).

Desiccation tolerance of gametophytes tended to be lower than sporophytes (Fig. 3), and

was significantly lower in C. apiifolia, H. polyanthos, H. pallidum, and H. digitatum (t-test, P

= 0.015, < 0.001, 0.035, and < 0.001, respectively). Only P. endlicherianum showed signifi-

cantly higher DT in gametophytes compared to sporophytes (t-test, P = 0.027).

Control samples generally did not show any decrease in Fv/Fm throughout the duration of

the experiment (Fig. S4) and maintained RWC near 100% (Figs S5, S6). Relative water

content in the desiccated state ranged from 5.1 % ± 5.2 % (n = 9 species) in the –282MPa,

15 d treatment to 17.2 % ± 8.0 % (n = 10 species) in the –38 MPa, 2 d treatment (Fig. S5),

and returned to c. 100 % upon re-wetting in all species sampled (Figs S5, S6).

Relative humidity in the growth chambers was high when samples were first inserted, then

gradually decreased to the target value maintained by each drying salt (Fig. S2). In a

few cases (particularly species with larger fronds, e.g., C. apiifolia), the NaCl chamber did

not reach equilibrium humidity before 2 d (Fig. S2). Brief fluctuations in humidity were

observed when chambers were opened to insert or remove samples (Fig. S2).

The GLMM including the combined effects of generation plus growth habit and their in-

teraction was selected as the best-fitting model for DT (Table 2). Sporophytes had 52.3%
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greater DT (95 % CI 24.1% to 77.1%) relative to gametophytes (Table 3).

Photosynthetic optima

Light responses were measured in sporophytes of 13 species and gametophytes of 10

species, including nine species with both life phases.

Photosynthetic optima showed clear differences across generations: sporophytes were

adapted for higher light levels, whereas gametophytes were adapted for lower light levels

(Figs 3, S7, S8). Sporophytes reached their maximum photosynthetic rate (PPFD95%) at

light levels ca. 144.1 ± 36.8 µmol·m–2 ·s–1 (n = 13 species), whereas gametophytes did so

at 71.0 ± 29.6 µmol·m–2 ·s–1 (n = 10 species). Similarly, sporophytes attained higher rates

of electron transport (ETRmax) (8.6 ± 3.2 µmol·m–2 ·s–1, n = 13 species) than gametophytes

(4.6 ± 1.6 µmol·m–2 ·s–1, n = 10 species).

The GLMM including the effect of generation only was selected as the best-fitting model

for ETRmax, and the combined effect of growth habit plus generation and their interaction

was selected for PPFD95% (Table 2).

Relationships of vapor pressure deficit and range size with DT

Desiccation tolerance increased significantly with VPD for sporophytes, but not gameto-

phytes (PGLS, P = 0.038; Fig. 4; Table 4).

No significant relationship was detected between range size of gametophytes beyond

sporophytes and DT (Fig. 4, Table 4).

Discussion

Vegetative DT was a key innovation linked to the rise of early land plants, but is largely

limited to non-vascular groups such as bryophytes and algae among extant plants. Filmy
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ferns have received considerable attention for their remarkable reversion to vegetative DT

in the sporophyte phase (e.g., Cea et al. 2014; Ostria-Gallardo et al. 2020a; Proctor 2003;

Shreve 1911). Yet, no previous study to our knowledge has evaluated parallel physiology

of sporophytes and gametophytes of filmy ferns in relation to DT. Here, we present the

first comparisons of physiological parameters between generations within filmy ferns in

a phylogenetic comparative framework.

Filmy fern sporophytes have a wide range of DT

We identified awide variation of DT in filmy fern sporophytes onMoorea, frommarked sen-

sitivity in terrestrial species to tolerance of water potentials well below -200 MPa (VPD >

2.45 kPa) in some epiphytes. Levels of similarly extreme DT have also been reported in

other species of Hymenophyllum (Proctor 2003, 2012) and a general correlation of habitat

with DT in filmy ferns has been previously established (Parra et al. 2009; Proctor 2003,

2012; Saldaña et al. 2014; Shreve 1911), but no other studies to our knowledge have doc-

umented a similar range of DT values in filmy ferns from a single site. One may wonder

then, what is the adaptive significance of being able to withstand drying at -282 MPa (c.

2.45 kPa) vs. -86 MPa (c. 1.25 kPa) when the ambient VPD is typically < c. 0.10 kPa and

only rarely exceeds > 0.50 kPa. The recent finding of a constitutive mechanism for DT

in filmy ferns (Cea et al. 2014) supports the need for a relatively wide “safety margin,”

and similar (or even more extreme) levels of constitutive DT are well known in bryophytes

(Oliver et al. 1993). The conservative behavior of fern stomata, which lack a response to

the plant stress hormone ABA, is well documented (Brodribb andMcAdam2011; McAdam

and Brodribb 2012, 2013). It is possible that filmy ferns also behave conservatively with

respect to water-stress. We suggest that the variation in DT observed here is relevant be-

cause it is correlated with habitat, and likely reflects overall physiological tolerance, not

just artificial extremes. For example, sporophytes of some high elevation epiphytes that

we surveyed (H. multifidum, H. polyanthos) seem to be able to better withstand intense
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vs. moderate desiccation, with higher recovery values at -282 and -86 MPa vs. -38 MPa

when dry for 15 d. This may be an adaptation to cloud forest conditions; although cloud

forests are frequently moist due to constant fog, dry periods are intense during the times

when there is no cloud cover (J. Nitta, pers. obs.). The complete lack of DT in terrestrial

species is not surprising, considering they have much more direct access to water than

epiphytes and therefore are under substantially less selective pressure to maintain DT.

Because controls kept at 100% RH maintained Fv/Fm values near pre-treatment levels in

all sporophytes (Fig. S4), it is unlikely that the lack of tolerance seen in terrestrial species

is solely due to removal from the soil. The significant relationship between average daily

maximum VPD and DT in sporophytes supports the specialization of sporophyte DT ac-

cording to niche, and indicates that sporophytes of non-tolerant terrestrial and saxicolous

species may be unable to occur in habitats with VPD exceeding c. 0.1 kPa (Fig. 4).

Filmy fern gametophytes are not more stress-tolerant than sporophytes

Contrary to our hypotheses, gametophytes of filmy ferns are in general not more tolerant

of the abiotic environment (light levels and water potential) than sporophytes. This differs

from other fern groups with desiccation tolerant gametophytes but desiccation avoiding

sporophytes (Watkins et al. 2007a). In the filmy ferns we studied, DT levels of both sporo-

phytes and gametophytes largely reflected habitat; in general, epiphytic species tended to

have higher DT than terrestrial species, regardless of life stage (Figs 3, S8). Interestingly,

this echoes much earlier field observations (not experimental data) by Holloway (1930)

on filmy fern gametophytes in New Zealand: he reported apparent DT in gametophytes

of Hymenophyllum rarum R. Br. and H. villosum Colenso, both high elevation epiphytes

with desiccation tolerant sporophytes, and lack of DT in terrestrial filamentous game-

tophytes of Polyphlebium colensoi (Hook. f.) Ebihara & K. Iwats., Abrodictyum strictum

(Menzies ex Hook. & Grev.) Ebihara & K. Iwats., and A. elongatum (A. Cunn.) Ebihara & K.

Iwats. occupying moist, protected sites on the forest floor. Watkins et al. (2007a) also
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found that DT of fern gametophytes tended to match habitat, with terrestrial species hav-

ing lower DT than epiphytes. However, we found that gametophytes had lower DT than

sporophytes regardless of growth habit (Figs 3, S8). At high elevation sites (i.e., cloud

forest), epiphytic ferns often occur in a dense matrix of bryophytes (Fig. 1b). It is possi-

ble that this bryophyte cover helps to retain moisture during brief periods of drought and

thus protect the epiphytic fern gametophytes that grow amongst them (Harrington and

Watts 2021). More detailed studies of the high elevation epiphytic environment and inter-

actions between co-occurring gametophytes of ferns and bryophytes are required to test

this hypothesis.

Although we predicted that species with gametophytes that occur far beyond the range

of their sporophytes would have higher DT, this was not the case (Fig. 4c). This is per-

haps best illustrated by C. apiifolia (Fig. 1d, e, h). Sporophytes of this species are usually

restricted to moist cloud forest sites from c. 600 m to 1200 m, but we observed gameto-

phytes over a much wider range, down to 200 m (Fig. S3). A similar distribution pattern

has been reported in congeneric Callistopteris baldwinii (D. C. Eaton) Copel. from Hawaii

(Dassler and Farrar 1997). Since gametophytes of C. apiifolia are common on Moorea

and have a unique morphology (Nitta et al. 2017), we were able to collect sufficient ma-

terial of this species for additional tests of DT at 100% RH for 2 d. However, C. apiifolia

gametophytes still failed to recover from even this gentle treatment (Fig. S9). This sug-

gests that the widespread gametophytes of C. apiifolia do not rely on DT to attain their

distribution, but instead must do so via some other mechanism. Although we measured

terrestrial microhabitats by positioning sensors a few cm above the ground, these sen-

sors are still outside of the boundary layer. It is likely that the gametophytes of C. apiifolia

do not actually experience the conditions measured with our ‘terrestrial’ dataloggers, but

instead grow within a more consistently moist boundary layer. Gametophytes of C. api-

ifolia produce gemmae (Fig. 1e, h), and often form dense clonal mats. In the case that

their microhabitats do become too dry, they may suffer loss at the edge of the popula-
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tion, then recover by clonal growth (Farrar et al. 2008). Furthermore, the complex surface

of clonal mats has been shown to increase the boundary layer and decrease evaporation

rates in mosses (Rice et al. 2001), and may function similarly in C. apiifolia. Other filmy

fern species also produce gemmae, but they are much more frequent in C. apiifolia, and

the large size of the clonal mats formed by C. apiifolia indicate that it may have a high

growth rate (J. Nitta, pers. obs.). It is possible that there is a tradeoff between growth rate

and DT, such that species capable of rapid asexual growth like C. apiifolia are less able

to tolerate desiccation, but slower growing epiphytes such as Hymenophyllum spp. can

better tolerate it (Oliver et al. 2000). Growth rates of tolerant versus non-tolerant game-

tophytes, including quantification of gemmae production, should be investigated in these

species to test this hypothesis.

Gametophytes are adapted for lower light levels than sporophytes

We observed a clear intergenerational difference in photosynthetic optima, with gameto-

phytes consistently adapted for lower light levels than sporophytes (Fig. 3, Table 2). In

the only other study to our knowledge that compared photosynthetic rates between game-

tophytes and sporophytes of a filmy fern, Johnson et al. (2000) also found that gameto-

phytes of V. speciosa reachedmaximum ETR at lower levels than sporophytes: in gameto-

phytes of this species, photosynthesis became saturated at a PPFD of 4–5 µmol·m-2·s-1 in

the field or 30–50 µmol·m-2·s-1 in the lab vs. 30–50 µmol·m-2 ·s-1 for sporophytes (labmea-

surement only). Althoughwe found similar differences in direction between gametophytes

and sporophytes, the measurements of Johnson et al. (2000) are considerably lower than

what we observed in the field for both Moorean filmy fern gametophytes (PPFD95% c. 40–

60 µmol·m-2·s-1) and sporophytes (PPFD95% c. 130–160 µmol·m-2·s-1). This makes sense

in light of the fact that V. speciosa is an extremely deep-shade plant, with gametophytes

occupying protected rock crevices that receive less than 1 µmol·m-2·s-1 PPFD for most of

the day (Johnson et al. 2000); many of the gametophytes sampled in our study occur in
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more exposed conditions. It is surprising, however, that we did not observe any consis-

tent differences between species in different habitats, given that light levels should vary

between tree trunks and the forest floor, at least on a c. 1 m scale. Although the GLMM

showed an interaction effect between generation and growth habit for PPFD95%, themodel

including only generation was selected for ETRmax (Table 2). It is possible that the actual

light levels experienced by gametophytes growing in these habitats may not vary signifi-

cantly if they occupy protected microsites such as bryophyte mats or crevices in rock or

bark.

Influence of phylogeny on traits

Previous studies of filmy fern ecophysiology also found a link between habitat and DT

and/or photosynthetic rates (Parra et al. 2009; Proctor 2003, 2012; Saldaña et al. 2014);

however, ours is the first to our knowledge to investigate this pattern while taking phy-

logeny into account. We detected phylogenetic signal in DT (Table 1), suggesting that

phylogeny should be considered when interpreting differences in DT between species. In

contrast, the lack of phylogenetic signal in photosynthetic traits, coupled with the clear

intergenerational differences we observed, suggest that sporophytes and gametophytes

are adapted for different light levels regardless of clade or growth habit. In amore densely

sampled study of morphological evolution in the trichomanoid clade, Dubuisson et al.

(2013) identified severalmorphological changes including reduced stele and root systems

associated with the evolution of epiphytic growth within the HE subclade (comprising the

genera Polyphlebium, Didymoglossum, Crepidomanes, and Vandenboschia). It is possible

that both reduced morphology and increased DT are parts of an integrated adaptive strat-

egy for epiphytic growth within this subclade of filmy ferns, and have evolved together

repeatedly. However, Dubuisson et al. (2013) were unable to determine if these morpho-

logical changes had occurred independently, or if there was a single origin at the base

of the HE clade followed by multiple losses. Increased sampling of both morphological
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and physiological traits of additional trichomanoid taxa is needed to distinguish between

these competing scenarios.

Concluding remarks and future directions

In filmy ferns, both sporophyte and gametophyte generations are poikilohydric; however,

this does not necessarily mean they share similar physiological optima. Although filmy

fern sporophytes are often of small stature, elevating a leaf even a few cm above the

substrate surface means escape from the boundary layer and exposure to substantially

greater evapotranspiration. It is likely that even in this clade, wherein the physiological

divide between sporophyte and gametophyte is probably the smallest amongst ferns, the

two generations experience substantially different selective pressures. Fossils indicate

that some of the earliest vascular plants may have had sporophytes and gametophytes

that were both branched and small (Kenrick and Crane 1997), but it is unclear at what

point selective pressures began to diverge to favor large, complex sporophytes and small,

simple gametophytes. The relevance of plant size to water relations is supported by a

study showing increased DT in smaller size classes of the epiphytic fern Asplenium au-

ritum Sw. (Testo and Watkins 2012). Future studies of DT in filmy ferns should include

juvenile stages of the sporophyte, which are expected to experience similar microhabitats

as gametophytes, to better determine the role of microhabitat vs. life stage (and plant

size) on DT. The recent application of transcriptomics to filmy fern ecophysiology has be-

gun to reveal the genetic mechanisms underlying DT in these plants (Ostria-Gallardo et

al. 2020a; b). Future studies that apply such methods to gametophytes as well as sporo-

phytes across a variety of growth habits are anticipated to provide even greater insight

into the ecology and evolution of filmy ferns as well as the transition from desiccation

tolerance to avoidance in vascular plants.
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Tables

Table 1 Results of tests for phylogenetic signal (Blomberg’s K and Pagel’s λ) in desicca-

tion tolerance (DT) and photosynthetic parameters of filmy ferns from Moorea, French

Polynesia by generation

K P(K) λ P(λ)

Sporophytes

Recovery 0.686 0.053 0.708 0.298

ETRmax 0.349 0.469 7.23e-05 1.000

PPFD95% 0.300 0.652 0.115 0.706

Gametophytes

Recovery 0.680 0.036 0.680 0.063

ETRmax 0.217 0.895 7.26e-05 1.000

PPFD95% 0.404 0.501 7.26e-05 1.000

Recovery, recovery of Fv/Fm (%) following 2 d desiccation at –86 MPa; ETRmax, maximum

relative electron transport rate; PPFD95%, light level at which 95% of ETRmax is reached.
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Table 2 Deviance information criterion (DIC) and delta DIC for general linear mixedmodels

(GLMMs) of photosynthetic parameters and desiccation tolerance in response to genera-

tion and growth habit in filmy ferns from Moorea, French Polynesia

Fixed effects DIC delta DIC

ETRmax

Generation 112.39 0.00

Generation + habit 114.52 2.13

Generation + habit + Generation:habit 115.69 3.30

Null 122.68 10.29

Habit 125.55 13.16

PPFD95%

Generation + habit + Generation:habit 211.05 0.00

Generation 230.46 19.42

Generation + habit 232.97 21.93

Null 248.08 37.04

Habit 251.78 40.73

Recovery

Generation + habit + Generation:habit 8.01 0.00

Generation 16.36 8.35

Generation + habit 16.77 8.76

Habit 23.28 15.27

Null 23.39 15.38

ETRmax, maximum relative electron transport rate; PPFD95%, light level at which 95% of

ETRmax is reached; Recovery, recovery of Fv/Fm (%) following 2 d desiccation at –86 MPa

Best model (that with the lowest DIC) for each response variable in bold
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Table 3 Predictor effects, lower and upper 95% confidence interval (CI), effective sam-

ple size, and significance of model parameters for the best general linear mixed models

(GLMMs) of photosynthetic parameters and desiccation tolerance in response to genera-

tion and growth habit in filmy ferns from Moorea, French Polynesia

Fixed effects Predictor Mean effect Lower 95% CI Upper 95% CI Ef. sample size PMCMC

ETRmax

Generation Sporophyte 3.880 1.595 6.180 997 0.002

PPFD95%

Generation + habit + Generation:habit Low Epiphyte -9.964 -53.576 35.593 998 0.653

Generation + habit + Generation:habit Saxicolous 55.087 5.859 106.377 997 0.034

Generation + habit + Generation:habit Terrestrial 0.133 -44.127 49.057 997 0.998

Generation + habit + Generation:habit Sporophyte 105.200 77.411 135.288 998 0.001

Generation + habit + Generation:habit Low Epiphyte:Sporophyte -18.553 -77.984 34.518 998 0.447

Generation + habit + Generation:habit Saxicolous:Sporophyte -103.496 -156.991 -52.861 998 0.001

Generation + habit + Generation:habit Terrestrial:Sporophyte -59.072 -117.259 -11.485 998 0.040

Recovery

Generation + habit + Generation:habit Low Epiphyte 0.122 -0.268 0.545 997 0.513

Generation + habit + Generation:habit Saxicolous 0.119 -0.309 0.600 998 0.589

Generation + habit + Generation:habit Terrestrial -0.239 -0.793 0.371 1245 0.383

Generation + habit + Generation:habit Sporophyte 0.523 0.241 0.771 997 0.001

Generation + habit + Generation:habit Low Epiphyte:Sporophyte -0.074 -0.537 0.405 998 0.745

Generation + habit + Generation:habit Saxicolous:Sporophyte -0.683 -1.130 -0.234 998 0.008

Generation + habit + Generation:habit Terrestrial:Sporophyte -0.461 -0.975 0.042 998 0.072

ETRmax, maximum relative electron transport rate; PPFD95%, light level at which 95% of

ETRmax is reached; Recovery, recovery of Fv/Fm (%) following 2 d desiccation at –86 MPa

Effect of generation is relative to gametophytes; effect of growth habit is relative to high

elevation epiphytes

Significant predictors in bold
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Table 4 Phylogenetic generalized least squares (PLGS) models of desiccation tolerance

as a function of vapor pressure deficit (VPD) or the range of gametophytes beyond sporo-

phytes (G beyond S) in filmy ferns from Moorea, French Polynesia

Generation Predictor df F adj. R2 P

S VPD 2,12 5.421 0.254 0.038

G VPD 2,11 3.586 0.177 0.085

G G beyond S 2,12 4.127 0.194 0.065

S, sporophyte; G, gametophyte
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Figure legends

Fig. 1 Examples of filmy ferns from French Polynesia. (a–d) sporophytes; (e–h) gameto-

phytes. (a) Crepidomanes humile, a low elevation epiphyte. Nitta 3392 (GH). (b) Hymeno-

phyllum multifidum, a high elevation epiphyte growing in association with leafy liverworts

and mosses. Nitta 1257 (GH). (c) Polyphlebium endlicherianum, a saxicolous species

found at low to middle elevations. Nitta 629 (GH). (d) Callistopteris apiifolia, a terrestrial

specieswith sporophytes occurring only in humid cloud forests. Nitta 3990 (GH). (e)C. api-

ifolia (ribbon morphotype). Arrow indicates gemmae (asexual propagules) at tip of lobe.

Nitta 2565 (GH). (f) Hymenophyllum polyanthos (ribbon morphotype). Nitta 3862 (GH). (g)

Filamentous gametophytes of an unidentified species of Hymenophyllaceae. Nitta 4036

(GH). (h) C. apiifolia, showing detail of gemmifers (attachment points of gemmae, exam-

ple indicated by arrow) and branched gemmae. Nitta 3887 (GH). Scalebars: (a–c) 1.0 cm;

(d) 5.0 cm; (e) 5.0 mm; (f) 2.0 mm; (g, h) 1.0 mm. Photographs by J. H. Nitta.

Fig. 2 Desiccation tolerance of filmy fern sporophytes (a) and gametophytes (b) from

Moorea, French Polynesia. Recovery was measured by comparing maximum photochem-

ical yield of photosystem II before desiccation treatment with values at 30 min, 24 hr,

and 48 hr following desiccation at three different intensities for either 2 or 15 days (see

Methods). Recovery was not measured for all combinations of species and desiccation

treatments; missing points indicate data not collected (not recovery of 0%). Error bars indi-

cate standard deviation. n = 8 samples per species/treatment unless otherwise indicated.

Growth habit indicated in parentheses after each species: T, terrestrial; S, saxicolous; LE,

low elevation epiphyte; HE, high elevation epiphyte

Fig. 3 Phylogeny of filmy ferns from Moorea, French Polynesia with comparison of phys-

iological parameters (mean ± 1 SD) between sporophytes (dark grey bars) and gameto-

phytes (light grey bars). Phylogeny adapted from Nitta et al. (2016); only species with

physiological data shown. Bootstrap support >50% from 100 ML bootstraps indicated at
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nodes. Bold letters indicate major clades (H = hymenophylloid clade, T = trichomanoid

clade). Growth habit indicated by colored symbols (blue = low elevation epiphyte, green

= high elevation epiphyte, yellow = saxicolous, red = terrestrial). Crepidomanes bipunc-

tatum and C. humile were observed growing as both epiphytes and saxicoles, but are

shown as epiphytes to distinguish them from exclusively saxicolous species. Asterisk

indicates significant difference in means (P <0.05) between generations for a particular

species (t-test); ns indicates no significant difference; lack of ns or asterisk means not

enough observations available for that species for t-test. Left bar plot shows recovery (%)

of chlorophyll fluorescence (Fv/Fm) following 2 day desiccation at –86 MPa (Abrodictyum

dentatum was desiccated at –38 MPa instead of –86 MPa). Middle bar plot shows max-

imum relative electron transport rate of photosystem II (ETRmax) (µmol e-·m-2·s-1). Right

bar plot shows photosynthetic photon flux density at 95% saturation of RETR (PPFD95%)

(µmol quanta·m-2·s-1). Absence of a bar indicates measurements not available for game-

tophytes or sporophytes of that species.

Fig. 4 Recovery of Fv/Fm (%) following 2 d desiccation at –86 MPa plotted against en-

vironmental vapor pressure deficit (VPD; kPa) (a, b) or range of gametophytes beyond

sporophytes (m) (c) for gametophytes (a, c) or sporophytes (b). Speciesmeans ± 1 SD are

shown. Growth habit indicated by colored symbols (blue = low elevation epiphyte, green =

high elevation epiphyte, yellow = saxicolous, red = terrestrial). Crepidomanes bipunctatum

andC. humilewere observed growing as both epiphytes and saxicoles, but were treated as

epiphytes to distinguish them fromexclusively saxicolous species. Abrodictyumdentatum

sporophytes were desiccated at –38 MPa instead of –86 MPa. Range of gametophytes

beyond sporophytes calculated as the total elevation that gametophytes exceeded sporo-

phytes at either end of the elevational gradient. Relationships between recovery and VPD

or range of gametophytes beyond sporophytes were analyzed with phylogenetic general-

ized least squares (PGLS); significant relationships (P < 0.05) shown with grey line.
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Fig. 1
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