1	Changes and composition of microbial community during aerobic composting of
2	household food waste
3	
4	Zhihua Jin ^{a*} , Tong Lu ^{b*} , Wenjun Feng ^a , Qinchao Jin ^a , Zhige Wu ^a , Yu Yang ^{a #}
5	
6	[*] Zhihua Jin and Tong Lu contributed equally to this work, Author order was
7	determined both alphabetically and in order of increasing seniority.
8	
9	^a School of Biological and chemical engineering, Ningbo Tech University
10	^b College of chemical and Biological engineering, Zhejiang University
11	
12	Running title: microbial community of household food waste composting
13	Keywords
14	Household food waste, aerobic composting, microbial community,16SrRNA high-
15	throughput sequencing analysis
16	
17	#Address correspondence to Yu Yang
18	yangyu@nbt.edu.cn
19	
20	
21	
22	
23	

24 ABSTRACT

25	In order to explore the effect of added bacteria on microbial community and
26	determine the dominant bacteria in the aerobic composting process of household food
27	waste (HFW), two groups of HFW composting experiments were conducted for 30
28	days. The final degradation rates of the two groups were 69.95% (group A, natural
29	composting) and 73.52% (Group C, composting with added bacteria), respectively.
30	16S rRNA high-throughput sequencing was used to analyze the changes of microbial
31	community in the composting process. As the result displays, at the classification of
32	phylum level, the relatively abundant bacteria of two groups were Firmicutes,
33	Proteobacteria and Cyanobacteria. At the classification of genus level, Pediococcus
34	is the dominant bacteria of group A, which performed better in maintaining the
35	microbial community stable in the later stage of composting, while Weissella
36	accounted for a relatively large proportion of group C and behaved well in promoting
37	the final degradation rate of composting. The proportion of Ochrobactrum in the early
38	stage of group C is considerable and it is closely related to the removal of odour
39	during composting. The relative abundance of added bacteria was always in a rather
40	low level, suggested that the way they affect the composting process is to change the
41	proportion of dominant bacteria in different stage of composting. This experiment
42	provides an important reference for improving the microbial degradation efficiency of
43	HFW.
44	

45

46

47 **IMPORTANCE**

48	In recent years, food waste has gradually become a global problem, the annual waste
49	of food is as high as 1.3 billion tons. FW, especially HFW, as a high content of
50	organic matter waste, has a pretty good recycling value. So how to deal with and
51	recycle it efficiently, quickly and conveniently becomes more and more important.
52	Among many treatment and recovery methods, microbial treatment (including
53	anaerobic digestion and aerobic composting) has gradually become a research hotspot
54	due to its advantages of low pollution and low energy consumption, and
55	microorganisms play a crucial role in these process.
56	In this study we use 16S rRNA high-throughput sequencing method to explore aerobic
57	composting of HFW. The purpose of this study is to find out the dominant bacteria
58	which can improve the degradation efficiency, remove the odor and prolong the
59	treatment cycle, and then provide further theoretical reference for future HFW related
60	research.
61	INTRODUCTION
62	With the improvement of people's living standards, the proportion of food waste

(FW) is also increasing year by year, being considered to be one of the largest groups
of organic solid waste in the world, and its generation rate is rising steadily (1,2). FW
mainly comes from household kitchens, restaurants, canteens, and food processing
industries (3). Among them, household food waste (HFW) is getting much attention
owing to its high organic content and excellent source of value added products (4).
About 1.3 billion tons of edible food are lost or wasted every year in the world (5), So
the effective and harmless treatment of FW has always been the focus of global

70 attention (6,7).

71	At present, the treatment methods of FW mainly include direct crushing, dehydration,
72	chemical treatment, incineration and microbial treatment etc(8). Most of these
73	methods consume high energy and even cause secondary pollution to the environment
74	except microbial treatment (9). Therefore, microbial treatment of FW has become a
75	research hotspot at home and abroad. Microbial treatment methods include anaerobic
76	digestion and aerobic composting, both are the process of decomposing complex
77	organic matter into small molecule organic or inorganic matter by the metabolism of
78	microorganisms (10). This process can be realized not only by indigenous
79	microorganisms naturally growing in FW, but also by bacteria added during
80	composting (11). Anaerobic digestion and aerobic composting have good resource
81	recovery properties, and have the ability to produce high value-added products (12).
82	Thus, microbial treatment methods present a good impetus and vast potential for
83	future development (13). For instance, Quashie Frank Koblah, et al. use a continuous
84	stirred microbial electrolysis cell (CSMEC) with anaerobic digestion to deal with FW
85	and produce methanation and bioelectricity. The final COD removal of CSMEC
86	surpassed 92% with OLR (organic load rate) ranging from 0.4 to 21.31 kg
87	COD/m ³ ·d,and Firmicutes, Proteobacteria, and Euryarchaeota were the dominant
88	phyla observed (14). The natural composting method was implemented by Tran Huu
89	Tuan et al. to study the degradation effect of high concentration of dietyl terephthalate
90	(DOTP) FW by natural microorganisms proliferating during composting. The total
91	degradation efficiency of DOTP reached 98%, and Firmicutes was the most dominant
92	at the phylum level, followed by Proteobacteria and Bacteroidetes (15). Huang WY et

93	al. determined Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes as the
94	main phyla during aerobic FW co-composting degradation of highly PCDD/F-
95	contaminated field soil (16). Wang et al. reported that the dominant phyla of the
96	community structure in fed-batch composting were Firmicutes, Proteobacteria,
97	Bacteroidetes, and Actinobacteria by high-throughput sequencing (17).
98	Composting is an effective process for the valorisation of HFW into a stable and
99	nutrient-enrich biofertiliser (18), in which a variety of microorganisms play a critical
100	role (19). HFW is a kind of non-uniform material with high content of water, oil, salt
101	and cellulose, etc (20). Gaseous emissions, such as methane (CH ₄), nitrous oxide
102	(N ₂ O), and ammonia (NH ₃) which hinder composting application for food waste
103	treatment (21), are inherent by-products of the composting process regardless of the
104	initial organic material or process condition (22). These particular characteristics will
105	affect some aspects of the composting quality and process. As microorganisms play a
106	key role in the composting process, inoculating microorganisms with specific
107	functions may have a positive effect on the composting process and improve the
108	composting quality. So far, there are few studies on the changes of microbial
109	community in the process of HFW composting. In this study, 16SrRNA high-
110	throughput sequencing was used to analyze the microbial community changes and
111	composition in different stages of natural composting and composting with added
112	bacteria, aiming to find out the dominant bacteria which can remove odor, improve
113	the degradation rate and prolong the fermentation cycle in the composting process, so
114	as to provide a theoretical reference for the future aerobic composting process of
115	HFW.

116 **RESULT AND DISCUSSION**

117 Analysis of degradation rate and viable count.

Table 1 shows the changes of related parameters in different stages of composting 118 process. The final degradation rates of group A and group C were 69.95% and 73.52% 119 respectively. From the perspective of degradation rate, there was no significant 120 difference between group A and group C. However, from the perspective of specific 121 122 composting process, during stage 1-3, the odor produced by group C was significantly less than that by group A, and the composting residue of group C became looser and 123 drier, which is helpful for the follow-up treatment of HFW. In terms of the proportion 124 of composting residue in the machine volume, group C showed a good degradation 125 126 efficiency in each stage of composting process, being consistent with the result of final degradation rate. From the change of pH in the composting, with the continuous 127 addition of HFW, the pH values in the machine of two groups decreased gradually, 128 while the pH value increased during 10 days naturally storage after the composting 129 130 process, indicating that the composting process of HFW was an acidic process, which may be more suitable for the growth of some acidophilic strains. The total number of 131 viable bacteria in group A was larger than that in group C. During the process from 132 stage 1 to stage 2, the number of viable bacteria in group A decreased while that in 133 group C increased, which may be as a result of the inhibitory effect between the added 134 bacteria and the bacteria naturally growing during the composting process. In the later 135 stage, the microbial community gradually stabilized and the number of viable bacteria 136 began to increase, and then gradually decreased. The number of viable bacteria in the 137 two groups decreased slowly from stage 3 to stage 5. The reason for this phenomenon 138

may be that the decline of pH value changed the composting environment of the microbial community, at the same time, the increase of composting residue in the machine volume leads to the decrease of oxygen content in the machine, leading to the decrease of aerobic composting bacteria. These two factors may be the key points of the decreasing of viable bacteria during stage 3-5.

144 Analysis of sample sequencing data.

As shown in Table 2, after obtaining the original sequence data of different samples

by Illumina high-throughput sequencing with optimization and statistics, the final

147 number of effective sequences of 10 samples was 1286075, and the range of effective

sequences of each sample was 121536-133111, of which 647227 were obtained from

149 5 samples in group A and 638848 were obtained from 5 samples in group C. The

average sequence length was 422.95 bp. Based on 97% sequence homology, a total of

151 6626 OTUs were obtained, including 4144 OTUs in group A, and 3282 OTUs in

152 group C. After filtering out the OTUs containing Chloroplast, 5949 OTUs were

153 obtained, including 3804 OTUs in group A and 2945 OTUs in group C. The results of

154 Venn diagram (Fig.1) showed that there were 800 OTUs shared by these two groups,

accounting for 19.31% of group A and 24.38% of group C, respectively. By

156 comparison, it was found that there was a significant difference in OTUs between the

157 two groups, which might be due to the effect of the added bacteria on the composition

158 and structure of microbial community.

159 Analysis of alpha diversity index of samples.

160 Single sample diversity analysis (alpha diversity) reflects the abundance and diversity

161 of microbial community. The alpha diversity index of each group is shown in Table 3.

162	The results showed that the Chao1 index and Shannon index of group A increased
163	steadily, and reached the maximum value in A5. The Simpson index of group A
164	reached 0.7867, 0.8860 and 0.8823 in A3, A4 and A5, respectively, indicating that the
165	dominant bacteria of group A could be in a stable position for a long time in the
166	middle and late composting period. The Simpson index could still maintain a high
167	level in A5, indicating that the microbial community of group A has a good ability to
168	maintain self-stabilization, which is very important for the extension of composting
169	cycle. In group C, the Chao1 index and Shannon index of the microbial community
170	fluctuated greatly, decreased firstly and then increased, and finally reached the
171	maximum value of 1632 and 6.61 respectively in C3. The Chao1 index and Simpson
172	index decreased significantly in C4 stage, which indicated that the microbial
173	community abundance decreased greatly and the dominant strains maintained stable
174	only for a short time. The Chao1 index and Simpson index in C5 stage continued to
175	decline, indicating that the ability of group C to maintain community stable was not as
176	good as that of group A. The sequencing coverage of samples in each group was
177	above 0.99, indicating that the sequencing had high coverage of bacteria in samples
178	and suitable sequencing depth, which could meet the needs of bacterial diversity
179	analysis in each group. Fig. 2 A and B show the changes of coverage index and
180	Shannon index with the increase of sequencing depth, respectively. It can be seen
181	from the Fig. 2 that the coverage index and Shannon index in each group of samples
182	gradually increased and tend to be flat with the increasing of sequencing depth, which
183	further indicates that the sequencing results can more comprehensively reflect the
184	diversity information contained in these samples.

185 Analysis of bacteria composition during composting process at phylum level.

- 186 Fig. 3 shows the bacteria composition in different stages at the level of phyla
- 187 classification. The main bacteria phyla in stage1 is: A1: Proteobacteria (98.81%),
- 188 *Firmicutes* (0.64%); C1: *Proteobacteria* (90.03%), *Firmicutes* (5.86%),
- 189 Actinobacteria (2.66%). The relative abundance of Proteobacteria in the two groups
- 190 of samples in stage1both exceeded 90%, indicating that *Proteobacteria* is in an
- absolutely dominant position in both A1 and C1. Many bacteria of *Proteobacteria* are
- 192 pathogenic (23), such as Cronobacter (24), Burkholderia (25,26) and Ochrobactrum
- 193 (27). The main bacteria phyla in stage2 is: A2: Firmicutes (96.23%), Proteobacteria
- 194 (3.07%); C2: *Firmicutes* (96.60%), *Proteobacteria* (2.62%). In stage 2, the type and
- 195 proportion of bacteria phyla in A2 and C2 periods were almost the same and the
- 196 proportion of *Firmicutes* rose rapidly from stage 1 to stage 2 and replaced
- 197 Proteobacteria as the dominant bacteria phyla. The phylum Firmicutes includes
- 198 Gram-positive bacteria with rigid or semi-rigid cell walls that are predominantly from
- 199 the genera *Bacillus*, *Clostridium*, *Enterococcus*, *Lactobacillus* and *Ruminicoccus* (28).
- 200 Moreover, many *Firmicutes* produce spores that are resistant to dehydration and
- 201 extreme environments (29), which may be one of the reasons why group A had a
- strong ability to maintain stable in the late stage, of which the proportion of
- 203 *Firmicutes* was more than 80%. The main bacteria phyla in stage3 is: A3: *Firmicutes*
- 204 (66.67%), Cyanobacteria (26.73%), Proteobacteria (4.89%); C3: Firmicutes
- 205 (49.09%), Proteobacteria (40.84%), Actinobacteria (2.70%), Bacteroidetes (2.70%),
- 206 Acidobacteria (1.19%). The emergence of Cyanobacteria in A3 led to a decrease in
- 207 the proportion of *Firmicutes*. Those bloom-forming *Cyanobacteria* may have a certain

208	inhibitory effect on pathogenic bacteria of Proteobacteria, because some genera of it
209	possess the ability to produce various toxic or bioactive secondary metabolites, e.g.
210	toxic microcystins (MCs) and bioactive anabaenopeptins (APs) which is linked to
211	antibacterial, fungal or cytostatic effects (30). In contrast, the proportion of
212	Proteobacteria in C3 period increased greatly without Cyanobacteria existing, further
213	proving that the emergence of cyanobacteria in A3 could inhibit the proliferation of
214	the pathogenic bacteria of Proteobacteria. The main bacteria phyla in stage4 is: A4:
215	Firmicutes (93.66%), Proteobacteria (2.34%), Cyanobacteria (1.90%); C4:
216	Firmicutes (78.89%), Cyanobacteria (15.64%), Proteobacteria (4.64%). Firmicutes
217	still occupied the dominant position in A4, while the proportion of Proteobacteria in
218	C4 decreased significantly with a small amount of Cyanobacteria appeared, which
219	confirmed once again the inhibitory effect of Cyanobacteria on pathogenic bacteria of
220	Proteobacteria. The main bacteria phyla in stage 5 is: A5: Firmicutes (82.30%),
221	Cyanobacteria (6.87%), Proteobacteria (5.08%), Bacteroidetes (2.93%),
222	Actinobacteria (2.15%); C5: Firmicutes (54.40%), Proteobacteria (2.44%),
223	Cyanobacteria (42.61%). The proportion of Firmicutes in A5 was about 30% more
224	than that in C5, indicating that the relative abundance of dominant phyla in group A
225	could still maintain at a high level after ten days of storage, indicating that group A
226	had a good ability to maintain community stable.
227	Analysis of bacteria composition during composting process at genus level.
228	As shown in Fig. 4, at the level of genus classification, the relatively abundant
229	bacterial genera in the A1 are Cronobacter (57.44%),
230	unclassified_Enterobacteriaceae (24.75%), Burkholderia-Caballeronia-

231	ParaBurkholderia (15.24%). These three genera belonging to Proteobacteria are all
232	opportunistic pathogens. Now, 10 individual species of Cronobacter have been
233	identified (31,32), which are associated with necrotizing enterocolitis, septicemia, and
234	meningitis (33). Enterobacteriaceae family can contaminate fresh products at any
235	stage of production either at pre-harvest or post-harvest stages (34). Many species of
236	Burkholderia are opportunistic pathogens, such as Burkholderia pseudomallei that
237	causes melioidosis (35) and Burkholderia cepacia that causes cystic fibrosis in human
238	lungs (36,37). The relatively abundant bacterial genera in C1 is Ochrobactrum
239	(84.61%), and the proportion of added bacteria is: Bacillus (1.89%), Pseudomonas
240	(0.24%), Paenibacillus (0.01%). Similarly, Ochrobactrum also belongs to the
241	Proteobacteria, and several Ochrobactrum spp. have been investigated for their
242	potential to degrade xenobiotic pollutants and for heavy metal detoxification under a
243	variety of environmental conditions (38). Moreover, the odour of group C in the early
244	stage of composting was significantly smaller than that of group A. Therefore,
245	Ochrobactrum may play a better role in degradation and deodorization of HFW in the
246	early stage of composting. However, in the early stage, the proportion of added
247	bacteria is less, which may be caused by the small initial addition or the inhibition of
248	the growth of pathogenic bacteria. It can be clearly seen that the types and proportions
249	of the dominant bacteria in the two groups in the early stage of composting are quite
250	different, but at the level of phylum classification they all belong to Proteobacteria.
251	The reason for this result may be that the presence of added bacteria affects the
252	proportion of the dominant bacteria during the process of composting. The relatively
253	abundant bacteria genera in the A2 are Pediococcus (93.12%), Klebsiella (1.40%),

254	while that in the C2 are <i>Pediococcus</i> (94.82%), <i>Ochrobactrum</i> (1.29%), and the
255	proportion of added bacteria is: Bacillus (0.38%), Pseudomonas (0.021%),
256	Paenibacillus(0.02%). Obviously different from the first stage, the dominant bacteria
257	in both A2 and C2 are <i>Pediococcus</i> belonging to <i>Firmicutes</i> and the relative
258	abundance of them are both more than 90%. Literature review shows that
259	Pediococcus can secrete pediocins which are short peptides with strong antibacterial
260	activity, high temperature resistance, and acid resistance in the process of proliferation
261	(39). It is noteworthy that the proportion of pathogenic bacteria in A2 and C2 drops
262	dramatically. It is inferred that the pediocins secreted by Pediococcus inhibit and
263	control the opportunistic pathogens at a low level. Meanwhile, the proportion of added
264	bacteria is still maintained at a relatively low level, which may be due to the
265	inhibitory effect of the proliferation of Pediococcus. The relatively abundant bacterial
266	genera in A3 are Pediococcus (57.01%), Bacillus (2.53%), Enterococcus (1.33%), and
267	some Chloroplast (26.73%). The proportion of Pediococcus in A3 decreased to a
268	certain extent, and a small amount of Chloroplast appeared, which may be as a result
269	of incomplete degradation of vegetables in HFW. The main genera of C3 are
270	Pediococcus (20.73%), Lactobacillus (10.10%), Proteus (8.64%), Acinetobacter
271	(7.65%), Klebsiella (7.08%) and Oceanobacillus (6.74%). Among these genera,
272	Proteus, Acinetobacter and Klebsiella are all opportunistic pathogen. Proteus consists
273	of five species and three unnamed subspecies. Among these species, P. vulgaris and P.
274	mirabilis are most frequently linked with food contamination and food poisoning
275	(40,41). The non-fermentative bacteria of Acinetobacter are opportunistic
276	pathogens, for instance, Acinetobacter Baumannii has emerged as one of the most

277	problematic common opportunistic nosocomial pathogens worldwide (42). The most
278	common species of Klebsiella is Klebsiella Pneumoniae, a conditional pathogen that
279	can settle in human skin and mucous membranes to cause urinary tract infections,
280	sepsis and pneumonia in individuals with weakened immunity (43,44). The
281	Lactobacillus, of which the relative abundance increased in C3, is a kind of probiotics
282	widely existing in human intestinal tract (45), and may play an important role in
283	inhibiting those opportunistic pathogens. The proportion of added bacteria in C3 is:
284	Bacillus (2.21%), Pseudomonas (0.68%), Paenibacillus(0.11%), increased slightly,
285	but still at a low level, which may be due to the low pH and high salt concentration. In
286	C3, the proportion of <i>Pediococcus</i> decreased significantly, and a large number of
287	miscellaneous bacteria appeared. The reason for this phenomenon may be that when
288	the proportion of Pediococcus decreased and Weissella did not occupy the dominant
289	position in the middle stage of composting, these pathogenic bacteria and
290	miscellaneous bacteria took this opportunity to proliferate and occupy a certain
291	proportion. As the proportion of Weissella increased in later stage, the relative
292	abundance of these miscellaneous bacteria decreased sharply to a very low level.
293	Members of the genus Oceanobacillus were aerobic, rod-shaped, endospore-forming,
294	halophilic bacteria (46). The increase of Oceanobacillus in C3 may be due to the
295	rising of salt concentration in the middle stage of composting. The relative abundance
296	of bacteria genera of Stage 4 was as follows, A4: Pediococcus (41.39%), Weissella
297	(34.97%), Leuconostoc (5.68%), Bacillus (2.08%), Lactobacillus (1.55%),
298	Macrococcus (1.55%); C4: Weissella (70.89%), Leuconostoc (3.07%), Acinetobacter
299	(1.16%), and added bacteria of Bacillus (0.46%), Pseudomonas (0.06%),

300	Paenibacillus (0.05%). The proportion of Weissella in A4 and C4 increased greatly,
301	more than 70% in C4, indicating that Weissella played a greater role in the later stage
302	of composting. It should be noted that Weissella also belonged to Firmicutes. To this
303	day, 19 species of Weissella have been identified, such as W. beninensis, W. ceti, W
304	cibaria, W. confuse etc(47,48)]. Among them, W. confuse and W. cibaria have the
305	potential of anticancer, anti-inflammatory, antibacterial, antifungal and enhancing
306	immunity (49,50,51), which may be beneficial to the synergistic effect of
307	Pediococcus and Weissella in the middle and later stage of composting. The relative
308	abundance of bacteria genera of Stage 5 was as follows, A5: Pediococcus (47.51%),
309	Weissella (20.21%), Bacillus (2.60%), Leuconostoc (2.25%), Bacteroides (1.25%);
310	C5: Weissella (47.99%), Leuconostoc (3.86%), and added bacteria of Bacillus
311	(0.20%), Pseudomonas (0.11%), Paenibacillus(0.01%), and also some Chloroplast
312	(42.61%). Both A5 and C5 were the state of natural storage for 10 days after the end
313	of composting. In A5, Pediococcus still occupied the dominant position, followed by
314	Weissella. In C5 period, the proportion of Weissella decreased significantly, and a
315	large proportion of Chloroplast (42.61%) appeared, which may be caused by
316	incomplete degradation of vegetable wastes. Chloroplast has appeared in the
317	composting components since Stage 3, and always occupies a certain proportion
318	during stage3-stage5, indicating that the microbial bacteria is still relatively limited in
319	the degradation of vegetable waste. In the future composting process, strains with
320	strong cellulose degrading ability can be added and their comprehensive degradation
321	effect need to be determined. The proportion of added bacteria was maintained at a
322	low level during C1-C5, indicating that the added bacteria were not the dominant

323	strains in the process of composting, and it is possible that the way they affect the
324	composting process is to change the relative abundance of dominant bacteria in
325	different stage of composting(Fig. S1).
326	Analysis of Beta diversity.
327	Through PCoA we can study the similarity and difference of data. Fig. 5 shows the
328	PCoA results of different samples in genus level. It can be seen from Fig. 5 that PC1
329	is the first principal coordinate component, and its contribution to the
330	representativeness of the total bacteria is 49.4%; PC2 is the second principal
331	component, and its contribution to the representativeness of the total bacteria is
332	26.6%; for the PC1-2 analysis of the principal component, A1 and C1 are farther apart
333	on the coordinate axis, indicating that the added bacteria may have a significant
334	impact on the composition of the microbial community at the early stage of the HFW
335	composting process. A2 and C2 are almost at the same position, indicating that the
336	microbial community composition of A2 and C2 at the genus level is almost the same
337	at this stage, and that the added bacteria species at this stage has little effect on the
338	microbial community. A4 and C4 are far apart on the coordinate axis, indicating that
339	the groups A and C have a large difference in the composting process in the later
340	stage. The added bacteria may affect the proportion of dominant bacteria in different
341	stages of the composting process to improve the composting rate and other critical
342	factors.
343	CONCLUSION

345 *Cyanobacteria* accounted for the largest proportion during the composting process of

The above analysis shows that at phylum level, Firmicutes, Proteobacteria and

344

346	group A and C. At genus level, Pediococcus and Weissella were the dominant bacteria
347	of group A and C, and both of them belonged to <i>Firmicutes</i> . The abundance of the
348	added bacteria in the composting process of group C is always at a low level,
349	indicating that the added bacteria may affect the composting process by changing the
350	proportion of the dominant strains. The relative abundance of pathogenic bacteria
351	decreased to a very low level after Pediococcus and Weissella gradually increased and
352	occupied a dominant position in the middle stage of the two groups, indicating that
353	Pediococcus and Weissella might play a certain inhibitory role on pathogenic bacteria.
354	Weissella is the dominant bacteria in group C, and the final degradation rate of group
355	C is higher than that of group A, indicating that Weissella may play a positive role in
356	improving the degradation efficiency. In C1, the Ochrobactrum occupied a
357	considerable proportion and the smell during this stage is obviously better than that of
358	group A, indicating the Ochrobactrum may have an active impact on the removal of
359	peculiar smell. Group A performed better in stabilizing the microbial community in
360	the later stage and the Pediococcus took a rather high proportion during the
361	composting process of group A, indicating that Pediococcus have the ability of
362	maintaining system stable and prolonging the composting cycle.
363	In conclusion, the microbial communities of the two groups during the composting
364	process of HFW have a high degree of diversity. There are not only differences in
365	species distribution and relative abundance but also common core bacteria between
366	them. In this paper, the study of microbial community changes in the composting
367	process of HFW is helpful to explore the microbial resource pool, deepen the
368	understanding of the composting process of HFW, and is of great significance for the

369 further harmless resource treatment of HFW.

370 MATERIALS AND METHODS

- 371 Materials.
- 372 The HFW was collected from the dining hall of Ningbo Tech University; The added
- bacteria are: B2 (Bacillus subtilis), F4 (Pseudomonas aeruginosa), 303 (Paenibacillus
- 374 *lautus*), 792 (*Bacillus thuringiensis*), which are all preserved in our laboratory;
- 375 Sawdust; LB broth medium; 75510-019Agarose (Invitrogen); Non-fat milk powder;
- NEB M0491L Q5[®] High-Fidelity DNA Polymerase (New England Biolabs (NEB);
- 377 P7598 Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen); DL2000 Marker (Takara);
- 378 AM9870 TAE (Invitrogen).
- 379 Equipment.
- 380 Small HFW treatment machine (Midea Group); Freeze dryer; pH meter; ABI 2720
- 381 PCR amplify instrument (ABI); FLX800T type enzyme labelling instrument (BioTek
- 382 Proton Instrument Co., Ltd.); DYY-6C electrophoresis apparatus (Beijing 61
- 383 Biological Technology Co., Ltd.); Microplate reader (BioTek, FLx800); BG-
- 384 gdsAUTO (130) gel imaging system (Beijing Bai Jing Biotechnology Co., Ltd.)
- 385 **Preparation of bacteria freeze-dried powder.**
- 386 These added bacteria which was preserved on slant culture medium were inoculated
- 387 200 ml LB medium (sterilized at 121 ° C for 20 min), and then cultured in a constant
- shaker at 37 ° C, 200 rpm for 24 h. After culture, the broth was centrifugated at 4 ° C
- 389 for 15 min at 8000 rpm and the supernatant was discarded, and the bacteria precipitate
- were thoroughly mixed with 5-10 ml of non-fat milk (sterilized at 100 ° C for 10 min)
- and poured into the plate. After sealing the plastic wrap (poking several small holes)

392	and pre freezing at - 4 ° C for 2 h, the plate was freeze-dried using a freeze dryer for
393	18 h, and then distributed into 10 ml EP tube (sterilized at 121 ° C for 20 min) and put
394	into 4 $^{\circ}$ C freezer for further use (about 5 g of freeze-dried powder can be made for
395	every 200 ml of broth, the viable bacterial count of freeze-dried powder was about 10^9
396	CFU/g).

397 **Experimental grouping and treatment.**

398 This experiment was divided into two groups: group A (natural composting) and

399 group C (composting with added bacteria), and the composting process was carried

400 out in the HFW treatment machine. 500g sawdust was added at the beginning of

401 composting of two groups. In group C, 5g freeze-dried powder with four kinds of

- 402 added bacteria was added, and $500g \sim 600g$ HFW was added at 1 pm every day. The
- 403 residue in the machine was sampled every two days to determine the number of viable

404 bacteria and the pH value, and 20g sample was stored in the refrigerator at - 70 ° C for

405 subsequent 16S rRNA sequencing analysis. The composting process sustained 20

days, and after that the composting residue was naturally stored for 10 days. The

407 composting samples on the 1st, 7th, 15th, 20th and 30th days were taken for 16S

408 rRNA sequencing analysis, named stage1-stage5. At the end of experiment, the weight

409 of composting residue was measured and the degradation rate was calculated. The

410 degradation rate can be calculated according to the following formula:

411 Degradation rate (%) = $(X_1 - X_2 + X_3)/X_1$

X₁—Total weight of HFW added (g)

X₂—Weight of composting residue in the machine (g)

X₃—Weight of sawdust added (g)

412 High throughput sequencing of 16S rRNA.

413	According to the experience, the most suitable method of total DNA extraction was
414	utilized for different sources of microbiome samples. At the same time, DNA was
415	quantified by Nanodrop and the quality of DNA was detected by 1.2% agarose gel
416	electrophoresis.
417	Generally, the target sequences, such as ribosomal RNA or specific gene fragments,
418	which can reflect the composition and diversity of microbial community, are used to
419	design primers according to the V3 \sim V4 region of 16SrRNA gene, and the specific
420	barcode sequence was added to amplify the rRNA gene variable region (single or
421	continuous multiple) or specific gene fragment by PCR.
422	The PCR amplification adopts PFU high fidelity DNA polymerase (TransGen
423	Biotech), and the number of amplification cycles were strictly controlled, so as to
424	make the number of cycles as low as possible and ensure the same amplification
425	conditions of the same batch of samples. At the same time, a negative control was set,
426	which can detect environmental, reagent and other microbial contamination, and any
427	negative control amplification samples with bands can not be used for subsequent
428	experiments. The related information are shown in table 4.
429	Fluorescence quantification of amplification products.
430	The PCR products were quantified by fluorescent reagent quant (Quant-iT PicoGreen
431	dsDNA Assay Kit), and the quantitative instrument is Microplate reader (BioTek,
432	FLx800). According to the results of fluorescent quantitative analysis, the samples

432 FLx800). According to the results of fluorescent quantitative analysis, the samples

433 were mixed according to the corresponding proportion according to the sequencing

434 requirements of each sample.

435 Construction and sequencing of Illumina Library.

- 436 Illumina high-throughput sequencing and bioinformatics analysis were performed
- 437 with the assistance of Personalbio Biotechnology Co. Ltd. (Shanghai).

438 ACKNOWLEDGMENTS

- 439 We would like to thank the staff working at the dining hall of Ningbo Tech University
- 440 for kindly offering us the household food waste. In addition, a particular thanks goes
- 441 to Personalbio Biotechnology Co. Ltd. (Shanghai) for sample testing and chart
- 442 making. This work was financially supported by Zhejiang Provincial Department of
- 443 Education (item Number: Y201941839).
- 444 We declare that we have no competing interests.
- 445
- 446
- 447

448 **REFERENCE**

- 1. Elkhalifa S, Al-Ansari T, Mackey HR, McKay G. 2019. Food waste to biochars
- 450 through pyrolysis: a review. Resour Conserv Recycl 144:310-320.
- 451 2. Shen YF. 2020. A review on hydrothermal carbonization of biomass and plastic
 452 wastes to energy products. Biomass Bioenergy 134:105479-105496.
- 3. Barik S, Paul KK. 2017. Potential reuse of kitchen food waste. J Environ Chem
 Eng 5:196-204.
- 455 4. Sindhu R, Gnansounou E, Rebello S, Binod P, Varjani S, Thakur IS, Nair RB,
- 456 Pandey A. 2019. Conversion of food and kitchen waste to value-added products.
- 457 Environ Manage 241:619-630.
- 458 5. Xiong XN, Yu IKM, Tsang DCW, Bolan NS, Ok YS, Igalavithana AD, Kirkham

459	MB.	Kim KH.	Vikrant K.	2019.	Value-a	added	chemicals	from	food	supply	y chain

- 460 wastes: state-of-the-art review and future prospects. Chem Eng J 375:121983461 122006.
- 462 6. Kim S, Lee Y, Lin KY, Hong E, Kwon EE, Lee J. 2020. The valorization of food
 463 waste via pyrolysis. J Clean Prod. 259 :120816-120828.
- 464 7. Su H, Zhou X, Zheng R, Zhou Z, Zhang Y, Zhu G, Yu C, Hantoko D, Yan M.
- 465 2021. Hydrothermal carbonization of food waste after oil extraction pre-
- treatment: Study on hydrochar fuel characteristics, combustion behavior, and
- removal behavior of sodium and potassium. Sci Total Environ 754:142192-.
- 468 8. Yin Y, Liu YJ, Meng SJ, Kiran EU, Liu Y. 2016. Enzymatic pretreatment of
- 469 activated sludge, food waste and their mixture for enhanced bioenergy recovery
- and waste volume reduction via anaerobic digestion. Appl Energy 179:1131-1137.
- 471 9. AI-Wahaibi A, Osman AI, AI-Muhtaseb AH, Alqaisi O, Baawain M, Fawzy S,
- 472 Rooney DW. 2020. Techno-economic evaluation of biogas production from food
 473 waste via anaerobic digestion. Sci Rep 10, 15719.
- 474 10. Cáceres R, Malińska K, Marfà O. 2018. Nitrification within composting: A
 475 review. Waste Manag 72:119-137.
- 11. Sánchez ÓJ, Ospina DA, Montoya S. 2017. Compost supplementation with
- 477 nutrients and microorganisms in composting process. Waste Manag 69:136-153.
- 478 12. Bernstad A, la Cour Jansen J. 2012. Review of comparative LCAs of food waste
- 479 managementsystems: Current status and potential improvements. Waste Manag
 480 32(12):2439-2455.
- 481 13. Szeki-Lin C, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark
- 482 JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S,
- 483 Mohamed Z, Brocklesbyc R, Luque R. 2013. Food waste as a valuable resource

- for the production of chemicals, materials and fuels. Current situation and global
 perspective. Energy Environ Sci. 6(2):426-464.
- 486 14. Quashie FK, Feng K, Fang A, Agorinya S, Antwi P, Kabutey FT, Xing D. 2021.
 487 Efficiency and key functional genera responsible for simultaneous methanation
 488 and bioelectricity generation within a continuous stirred microbial electrolysis
 489 cell (CSMEC) treating food waste. Sci Total Environ 757:143746.
- 490 15. Tran HT, Lin C, Bui XT, Itayama T, Dang BT, Cheruiyot NK, Hoang HG, Vu CT.
- 491 2021. Bacterial community progression during food waste composting containing
- high dioctyl terephthalate (DOTP) concentration. Chemosphere 265:129064.
- 493 16. Huang WY, Ngo HH, Lin C, Vu CT, Kaewlaoyoong A, Boonsong T, Tran HT, Bui
- 494 XT, Vo TD, Chen JR. 2019. Aerobic co-composting composting of highly
- 495 PCDD/F-contaminated field soil. A study of bacterial community. Sci Total
 496 Environ 660:595-602.
- 497 17. Wang X, Pan S, Zhang Z, Lin X, Zhang Y, Chen S. 2017. Effects of the feeding
- 498 ratio of food waste on fed-batch aerobic composting and its microbial community.
- 499 Bioresour Technol 224:397-404.
- 500 18. Lin L, Xu FQ, Ge XM, Li YB. 2018. Improving the sustainability of organic
- 501 waste management practices in the food-energy-water nexus: a comparative
- review of anaerobic digestion and composting. Renew Sust Energ Rev 89:151-
- 503 167.
- 19. Onwosi CO, Igbokwe VC, Odimba JN, Eke IE, Nwankwoala MO, Iroh IN,
- Ezeogu LI. 2017. Composting technology in waste stabilization: On the methods,
 challenges and future prospects. Environ Manage. 190:140-157.
- 507 20. Cerda A, Artola A, Font X, Barrena R, Gea T, Sánchez A. 2018. Composting of
- 508 food wastes: Status and challenges. Bioresour Technol. 248(Pt A):57-67.

	509	21.	Yang F, I	LiY,	Han Y,	Qian	W,	LiG	, Luo	W.	2019.	Performanc	e of mature
--	-----	-----	-----------	------	--------	------	----	-----	-------	----	-------	------------	-------------

- compost to control gaseous emissions in kitchen waste composting. Sci Total
 Environ. 657:262-269.
- 512 22. Maulini-Duran C, Artola A, Font X, Sanchez A. 2014. Gaseous emissions in
- 513 municipal wastes composting: effect of the bulking agent. Bioresour Technol
- 514 172:260-268
- 515 23. Madigan M, Martinko J (eds.). 2005. Brock Biology of Microorganisms 11th.
 516 Prentice Hall ISBN 0-13-144329-1.
- 517 24. Jia X, Hua J, Liu L, Xu Z, Li Y. 2018. Phenotypic characterization of pathogenic
 518 *Cronobacter* spp. strains. Microb Pathog 121:232-237.
- 519 25. Rachlin A, Mayo M, Webb JR, Kleinecke M, Rigas V, Harrington G, Currie BJ,
- 520 Kaestli M. 2020. Whole-genome sequencing of *Burkholderia pseudomallei* from
- an urban melioidosis hot spot reveals a fine-scale population structure and
- 522 localised spatial clustering in the environment. Sci Rep 10(1):383-416.
- 523 26. Mareya CR, Tugizimana F, Di Lorenzo F, Silipo A, Piater LA, Molinaro A,
- 524 Dubery IA. 2020. Adaptive defence-related changes in the metabolome of
- 525 Sorghum bicolor cells in response to lipopolysaccharides of the pathogen
- 526 Burkholderia andropogonis. Sci Rep 10(6):134-54.
- 527 27. Medeiros E, Tang K, Hu S, Shah A. 2020. Ochrobactrum Peritonitis: Case Report
 528 and Literature Review. Cureus 12(9):e10564.
- 529 28. Stojanov S, Berlec A, Štrukelj B. 2020. The Influence of Probiotics on the
- 530 Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory
- 531 Bowel disease. Microorganisms 8(11):1715.
- 532 29. Taib N, Megrian D, Witwinowski J, Adam P, Poppleton D, Borrel G, Beloin C,
- 533 Gribaldo S. 2020. Genome-wide analysis of the Firmicutes illuminates the

- diderm/monoderm transition. Nat Ecol Evol 4(12):1661–1672.
- 535 30. Kurmayer R, Entfellner E, Weisse T, Offterdinger M, Rentmeister A, Deng L.
- 536 2020. Chemically labeled toxins or bioactive peptides show a heterogeneous
- 537 intracellular distribution and low spatial overlap with autofluorescence in bloom-
- forming cyanobacteria. Sci Rep 10(1):471-483.
- 539 31. Holý O, Forsythe S. 2014. Cronobacter spp. as emerging causes of healthcare-
- associated infection. J Hosp Infect 86:169–177.
- 541 32. Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ. 2012.
- 542 Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter
- 543 *universalis* sp. nov., a species designation for *Cronobacter* sp. genomospecies 1,
- recovered from a leg infection, water and food ingredients. Int Syst Evol
- 545 Microbiol 62:1277–1283.
- 54633. Forsythe SJ. 2018. Updates on the Cronobacter Genus. Annu Rev Food Sci
- 547 Technol 9:23-44.
- 548 34. Osaili TM, Alaboudi AR, Al-Quran HN, Al-Nabulsi AA. 2018. Decontamination
- and survival of *Enterobacteriaceae* on shredded iceberg lettuce during storage.
- 550 Food Microbiol 73:129-136.
- 551 35. Duangurai T, Reamtong O, Rungruengkitkun A, Srinon V, Boonyuen U,
- 552 Limmathurotsakul D, Chantratita N, Pumirat P. 2020. In vitro passage alters
- 553 virulence, immune activation and proteomic profiles of *Burkholderia*
- 554 *pseudomallei*. Sci Rep 10(1):201-210.
- 36. Hu J, Qiao XF, Wei L, Mi BZ. 2016. Isolation and identification of *Burkholderia cepacia* and disinfectant inactivation test. Environ Eng 34(S1):6-8.
- 557 37. Yang B, Ma HL, Shou YW, Zhang XL, Qin C. 2017. Distribution of Burkholderia
- *cepacia* infections in ICUs and drug resistance. Chin J Nosocomiol 27(21):4822-

- 38. Ryan MP, Pembroke JT. 2020. The Genus *Ochrobactrum* as Major Opportunistic
 Pathogens. Microorganisms 8(11): 1797.
- 562 39. Qin LM, Sun AY, Wang QW, Gao JW, Wei DZ. 2017. Improvement of pediocin
- 563 yield by a novel high residual sugar and re-alkalized feeding strategy. J Shandong
- 564 University (Medical Edition) 55 (9):41-45.
- 40. O'Hara CM, Brenner FW, Miller JM. 2000. Classification, identification, and
 clinical significance of *Proteus*, *Providencia*, and *Morganella*. Clin Microbiol
- 567 Rev 13:534–546.
- 41. Rózalski A, Sidorczyk Z, Kotełko K. 1997. Potential virulence factors of Proteus
 bacilli. Microbiol Mol Biol Rev 61:65–89.
- 42. Ahmad I, Nygren E, Khalid F, Myint SL, Uhlin BE. 2020. A Cyclic-di-GMP
- 571 signalling network regulates biofilm formation and surface associated motility of
- 572 *Acinetobacter baumannii* 17978. Sci Rep 10(21):1079-1081.
- 43. Vuotto C, Longo F, Pascolini C, Donelli G, Balice MP, Libori MF, Tiracchia V,
- 574 Salvia A, Varaldo PE. 2014. Antibiotic Resistance Related to Biofilm Formation
- 575 in *Klebsiella pneumoniae*. Pathogens (Basel, Switzerland) 3(3):743-58.
- 576 44. Podschun R, Ullmann U. 1998. *Klebsiella* spp. as nosocomial pathogens:
- 577 epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin
 578 Microbiol Rev 11(4):589-603.
- 45. Park MR, Shin M, Mun D, Jeong SY, Jeong DY, Song M, Ko G, Unno T, Kim Y,
- 580 Oh S. 2020. Probiotic *Lactobacillus fermentum* strain JDFM216 improves
- cognitive behavior and modulates immune response with gut microbiota. Sci Rep
 10(1):21701.
- 583 46. Zhu WY, Yang L, Shi YJ, Mu CG, Wang Y, Kou YR, Yin M, Tang SK. 2020.

⁵⁵⁹ **4825**.

584		Oceanobacillus halotolerans sp. nov., a bacterium isolated from salt lake in
585		Xinjiang province, north-west China. Arch Microbiol 202:1545–1549.
586	47.	Nam H, Ha M, Bae O, Lee Y. 2002. Effect of Weissella confusa strain PL9001 on
587		the adherence and growth of Helicobacter pylori. Appl Environ Microbiol
588		68(9):4642-5.
589	48.	Kang MS, Chung J, Kim SM, Yang KH, Oh JS. 2006. Effect of Weissella cibaria
590		isolates on the formation of <i>Streptococcus mutans</i> biofilm. Caries Res 40(5):418-
591		25.
592	49.	Srionnual S, Yanagida F, Lin LH, Hsiao KN, Chen YS. 2007. Weissellicin 110, a
593		newly discovered bacteriocin from Weissella cibaria 110, isolated from plaa-som,
594		a fermented fish product from Thailand. Appl Environ Microbiol 73(7):2247-50.
595	50.	Lee W, Cho SM, Kim M, Ko YG, Yong D, Lee K. 2013. Weissella confusa
596		bacteremia in an immune-competent patient with underlying intramural
597		hematomas of the aorta. Ann Lab Med 33(6):459-62.
598	51.	Valerio F, Favilla M, De Bellis P, Sisto A, de Candia S, Lavermicocca P. 2009.
599		Antifungal activity of strains of lactic acid bacteria isolated from a semolina
600		ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces
601		fibuliger contaminating bakery products. Syst Appl Microbiol 32(6):438-448.
602		
603		
604		
605		
606		
607		
608		

609 Tables

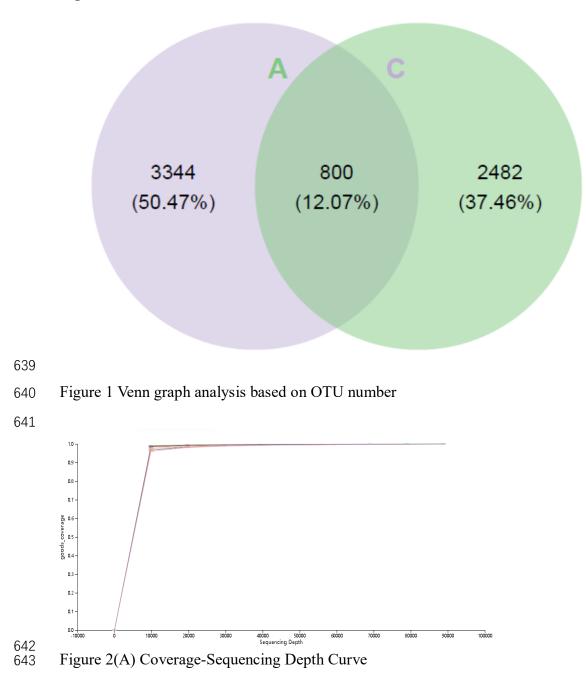
Samples	Composting	Viable count	pН	Percentage of composting
	time (d)	(CFU/g)		residue in machine volume
A1	1	6.97×10 ¹¹	6.21	7.94%
A2	7	2.63×10 ⁸	5.95	18.24%
A3	15	2.23×10^{6}	5.56	32.35%
A4	20	1.06×10^{6}	5.32	41.17%
A5	30	8.66×10 ⁵	5.87	40.58%
C1	1	2.21×10^{6}	6.35	7.06%
C2	7	7.63×10 ⁷	6.13	16.18%
C3	15	4.33×10 ⁵	5.88	30.30%
C4	20	2.33×10 ⁵	5.57	39.12%
C5	30	7.33×10 ⁴	5.96	38.53%

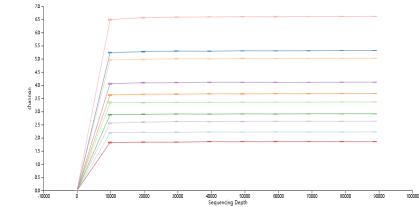
Table 1: Changes of related parameters in different stages of composting process

611 Table 2: Statistics of optimized effective sequences and OTUs in each se	ample
--	-------

Sample	optimized effective sequences	OTUs	OTUs (without
			Chloroplast)
A1	131796	388	387
A2	128788	460	459
A3	130073	1076	835
A4	132226	1118	1100
A5	124344	1349	1270
C1	133111	1300	1300

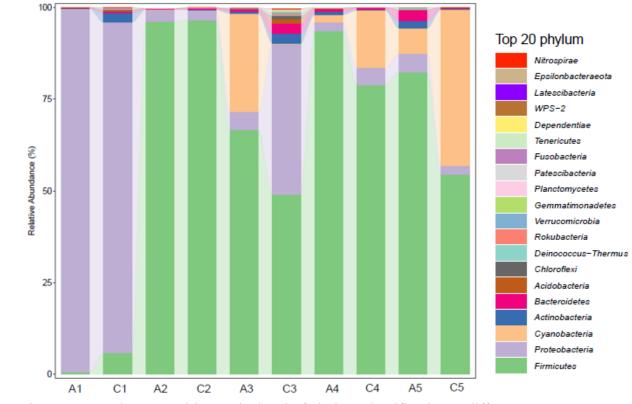
C2	132463	565	565
C3	124660	1624	1620
C4	127078	824	717
C5	121536	622	396

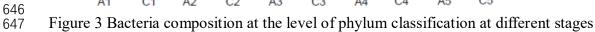

612	Table 3: Alpha	diversity index	in each group

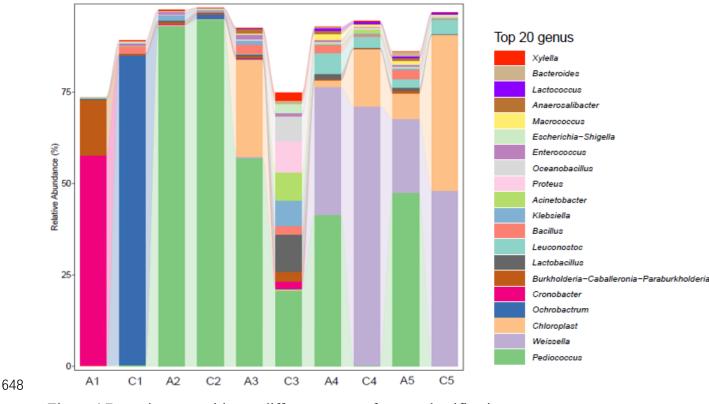

	Sampl	le C	Chao1 index	Shannon	index	Simpson	Coverage	index
						index		
	A1	3	90	2.91		0.8172	0.999824	
	A2	4	-81	2.22		0.6058	0.999341	
	A3	1	119	3.68		0.7867	0.998544	
	A4	1	146	5.01		0.8860	0.998834	
	A5	1	380	5.31		0.8823	0.998801	
	C1	1	346	2.64		0.3926	0.998469	
	C2	6	07	1.86		0.4941	0.999011	
	C3	1	632	6.61		0.9585	0.999083	
	C4	8	48	4.11		0.7467	0.998987	
	C5	6	50	3.36		0.7235	0.999132	
613	Table 4	: Primer in	formation of P	CR ampli	fication			
Primer name	;	Pre-prime	er sequence		Post-pr	rimer sequence		length of Amplified
								fragment
V3 V4 region of		ACTCCT	TACGGGAGG	CAGCA	GGAC	TACHVGGGTV	VTCTAAT	500bp
standard bac	teria							

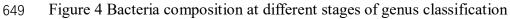
- 614 Amplification system (25 μ L): 5×reaction buffer 5 μ L, 5×GC buffer 5 μ L, dNTP
- 615 (2.4mM) 2µL, Forwardprimer (10uM)1µL, Reverseprimer (10uM)1µL, DNA
- 616 Template 2μL, ddH₂O 8.75μL, Q5 DNA Polymerase 0.25μL
- 617 Amplification parameters: Initial denaturation 98°C 2min, Denaturation 98°C 15s,
- 618 Annealing 55°C 30s, Extension 72°C 30s, Final extension 72°C 5min, 10°C Hold,
- 619 25-30Cycles.

637

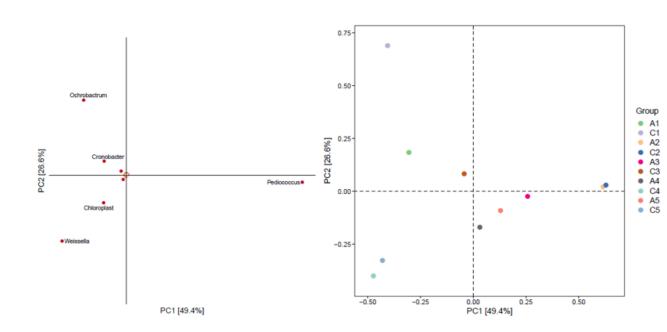

638 Figures







645 Figure 2(B) Shannon-Sequencing Depth Curve



650

652 Figure 5 Analysis of PCoA in different samples

653