








Figure 8. In triad synapse models exhibiting synaptic depression, paired feedforward E/I 
enhances high-frequency transmission. (A-B) 2 triad synapse models, in which the LGN neuron 
receives inputs via different sets of channels exhibiting synaptic depression. Each model is 
simulated for 2s with input parameters F = 20Hz, PR = 50Hz. Postsynaptic conductance 
(excitatory: light green, inhibitory: gray) and the membrane potential of the LGN cell (blue) are 
simulated in response to RG and interneuron input. LGN firing times (red x) and postsynaptic 
response is compared to the underlying input characteristics (dashed yellow). The output 
response is divided into 2 components over time: a 1s period of initial activity following 
nonphysiological silence (gray highlight) and the subsequent long-term activity (pink highlight). 
(A) Inputs are transmitted via AMPA and NMDA channels only. (B) Inputs are transmitted via 
AMPA, NMDA, GABAA, and GABAB channels. (C) Fourier coefficients (FCF) for a range of input 
modulation frequencies F. Models are simulated for 5s, and Fourier coefficients are computed 
1s after the start of each simulation to examine the long-term activity. (D) Fourier coefficients 
averaged over all response frequencies (FCavg) for a range of input modulation frequencies F. (E) 
Normalized Fourier coefficients (FCF/FCavg). Dashed line indicates FCF/FCavg = 1. With synaptic 
depression, AMPA-NMDA-GABA synapses allow for transmission at higher frequencies than 
synapses exhibiting excitation alone. 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.03.13.435272doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.13.435272


0 2 4 6 8
Interspike interval (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S2
/S

1
AMPA depression

Raw data
Fit

0 2 4 6 8
Interspike interval (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S2
/S

1

NMDA depression

Raw data
Fit

0 1 2 3 4
Interspike interval (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S2
/S

1

GABA depression

Raw data
Fit

A B C

Figure 8 Supplement 1(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.03.13.435272doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.13.435272


Supplementary Figure 8-1. Fitting depression at the retinogeniculate synapse. (A-C) The 
paired-pulse ratio for the AMPAR (A), NMDAR (B), and locked GABAR (C) components of the 
synaptic current was plotted over a range of interspike intervals. For each channel, raw data 
(black) obtained from voltage clamp experiments (Chen et al., 2002; Blitz and Regehr, 2005) 
were fitted to a depression model (see Methods section). Paired-pulse experiments were then 
simulated using the fitted depression model (red). 
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Figure 9. Paired feedforward E/I in a multi-input model allows computations that are 
frequency-limited by the membrane time constant of the feedforward inhibitory neuron. (A) 
A paired feedforward E/I model circuit with 100 input cells (light green) providing excitatory (E) 
input to a cortical neuron e (blue) and to an interneuron i (gray), which in turn provides 
inhibitory input to the cortical neuron. (B) 0.6s simulations of the model circuit with Poisson 
input parameters F = 5Hz (left), 20Hz (center), and 90Hz (right), and PR = 100Hz. The excitatory 
postsynaptic conductance (light green) in the i (iGE) and e cells (eGE) are simulated in response to 
the summed input. This excitatory input produces spiking of the i cell (dark gray), resulting in an 
inhibitory postsynaptic conductance in the e cell (light gray, eGI). The combination of excitatory 
and inhibitory inputs produces the observed spiking in the e cell (blue). Notably, there is an 
absence of inhibitory input to the e cell at 90Hz. (C) Fourier coefficient at input frequency F 
(FCF) for a range of input modulation frequencies. Legend entries indicate the value of the 
interneuron membrane time constant τm,I for each paired feedforward E/I model; “E-only” 
indicates a feedforward E model, in which the interneuron is not present. (D) Fourier 
coefficients averaged over all response frequencies (FCavg) for a range of input modulation 
frequencies F.  (E) Normalized Fourier coefficients (FCF/FCavg). Dashed line indicates FCF/FCavg = 
1. (F) Scaled FCF/FCavg values from (E) such that FCF/FCavg = 1 for F = 5Hz. The dashed line 
indicates FCF/FCavg = 0.5, and intersects with each FCF/FCavg curve at the ½ cutoff. (G) The τm,I 
dependence of the ½ cutoff. Dashed line indicates the ½ cutoff for the feedforward E model. (H) 
Percent difference in the ½ cutoff relative to the feedforward E model as a function of τm,I. 
Circuit-level feedforward E/I input allows excitatory neurons to follow higher temporal 
frequencies than those receiving feedforward excitatory input alone, but the cut off frequency 
values are smaller than for the triad synapse, where the interneuron cell body integration does 
not intervene.  
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