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Functional neuroimaging research on depression has traditionally
targeted neural networks associated with the psychological aspects
of depression. In this study, instead, we focus on alterations of sen-
sorimotor function in depression. We used resting-state functional
MRI data and Dynamic Causal Modeling (DCM) to assess the hypoth-
esis that depression is associated with aberrant effective connec-
tivity within and between key regions in the sensorimotor hierarchy.
Using hierarchical modeling of between-subject effects in DCM with
Parametric Empirical Bayes we first established the architecture of
effective connectivity in sensorimotor cortices. We found that in (in-
teroceptive and exteroceptive) sensory cortices across participants,
the backward connections are predominantly inhibitory whereas the
forward connections are mainly excitatory in nature. In motor cor-
tices these parities were reversed. With increasing depression sever-
ity, these patterns are depreciated in exteroceptive and motor cor-
tices and augmented in the interoceptive cortex: an observation that
speaks to depressive symptomatology. We established the robust-
ness of these results in a leave-one-out cross validation analysis
and by reproducing the main results in a follow-up dataset. Interest-
ingly, with (non-pharmacological) treatment, depression associated
changes in backward and forward effective connectivity partially re-
verted to group mean levels. Overall, altered effective connectivity
in sensorimotor cortices emerges as a promising and quantifiable
candidate marker of depression severity and treatment response.
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The search for the neurological bases of depression has1

provided many important insights, yet we are far from a2

comprehensive, translatable understanding (1–4). This war-3

rants further research and, possibly, new approaches.4

Neuroimaging research on depression largely focuses on5

complex affective and psychological components of depression,6

the prefrontal cortex and limbic formation being two of the7

most investigated brain regions (5). At the network level,8

apart from the fronto-limbic circuitry, default mode network,9

cognitive control network, and corticostriatal circuits are some10

of the major neurocircuits that are known to be involved in11

depression (6–19).12

However, depression is an embodied phenomenon and is13

known to cause alterations in several sensorimotor functions.14

Persons suffering from depression, for example, are known to15

have reduced visual contrast sensitivity (20), impaired audi-16

tory processing of non-speech stimuli (21), and increased pain17

tolerance for exteroceptive stimulation (22). In addition to18

these exteroceptive alterations, depression has been shown to 19

cause interoceptive changes like decreased pain tolerance for in- 20

teroceptive stimulation (22) and reduced heartbeat perception 21

accuracy (23). The psychomotor retardation (reduced speed, 22

slow speaking rate, delayed motor initiation, body immobil- 23

ity, loss of facial expression (24)) is a prominent feature of 24

depression. Indeed, psychomotor retardation has been played 25

an important role in the descriptive characterization of depres- 26

sion and melancholia since their nosological inception (24–29). 27

Darwin (30) described overt psychomotor symptoms in sad 28

people who “no longer wish for action but remain motionless 29

and passive, or may occasionally rock themselves to and fro”. 30

In the following decades, scholars such as Emil Kraepelin de- 31

veloped the concept further and established its clinical utility 32

(25, 26). Among later researchers, Carl Wernicke (31), Karl 33

Kleist (32) and Karl Leonhard (33) contributed to our refined 34

understanding of psychomotor abnormalities. Lastly, rumina- 35

tion, an important feature of depression (34), has prominent 36

sensorimotor components. 37

Although there are a few neuroimaging studies of sensori- 38

motor changes in depression, our understanding of sensory and 39

motor function of brain is undergoing a paradigm shift. Spear- 40

headed by predictive coding and related theoretical frame- 41
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works, there is an emerging consensus among neuroscientists42

that perception is not a simple ‘bottom-up’ mechanism of43

progressive abstraction of sensory input (35–37). Bottom-up,44

top-down and intrinsic neuronal message passing play distinct45

but crucial roles. This general idea is also applicable to mo-46

tor function (see active inference (38)). Motivated by these47

novel insights, we analysed effective connectivity (spectral dy-48

namic causal modelling (39)) in resting state functional MRI49

data among hierarchical sensorimotor regions in unmedicated50

depression patients and neurotypical individuals. For extero-51

ceptive perception, effective connectivity among the lateral52

frontal pole - one of the terminal regions of sensory relays -53

and primary visual, auditory, and somatosensory cortices was54

considered. Effective connectivity between anterior and pos-55

terior insula was characterised for interoception and between56

supplementary motor area and primary motor cortex was anal-57

ysed for motor function (Figure 4). Both group mean effective58

connectivity and connections showing significant association59

with Beck Depression Inventory (BDI) scores (40) (after con-60

trolling for age and sex) were identified. In a leave-one-out61

cross-validation (41) - using parametric empirical Bayesian -62

the effect size was estimated. A subset of participants, who63

were either treated with cognitive behaviour therapy (42),64

neurofeedback therapy (43) or not treated were scanned again65

a few months later and same analysis was implemented, with66

the addition of treatment effect as a covariate.67

Results68

The primary experiment.69

Accuracy of DCM model estimation. The accuracy of DCM es-70

timates of effective connectivity for individual participants71

was excellent. Across participants, the minimum percentage72

variance-explained by DCM - when fitted to the observed73

(cross spectra) data - were 73.55%, 68.84%, and 55.00% for74

left motor, exteroceptive, and interoceptive networks, respec-75

tively. For right hemisphere ROIs, these values were 63.2%,76

50.79%, and 30.75%. In general, for most participants variance77

explained was 80% or more.78

Effective connectivity. Results are displayed in Figure 1 and de-79

tailed further in supplementary Figure 180

Group mean effective connectivity: The mean effec-81

tive connectivity among sensorimotor regions is depicted in82

Figure 1 (a) and (b). Among extensive network of connections83

in both hemispheres,the most consistent pattern emerged in84

the forward and backward effective connectivity. In sensory re-85

gions (exteroceptive and interoceptive), backward connections86

were inhibitory, whereas forward connections were excitatory87

(exception: SSC to FP1 connection). In motor regions, oppo-88

site was true (backward: excitatory, forward: inhibitory).89

Changes in effective connectivity with BDI scores:90

The connections that showed an association with BDI scores91

are shown in Figure 1 (c) and (d). As with mean connectivity,92

the severity associated changes were most consistent in (ex-93

trinsic or between region) forward and backward connections94

across both hemispheres. For exteroceptive and motor cortices,95

with increasing BDI scores top-down and bottom-up effective96

connectivity show changes in the opposite direction with re-97

spect to group level estimation. For example, in exteroceptive98

sensory regions (with one exception, see below) bottom-up99

connections become more negative and top-down connections100

become more positive (i.e., disinhibition). In motor regions, 101

top-down connections become more negative and bottom-up 102

connections become more positive. In interoceptive regions 103

top-down inhibitory influences are enhanced. 104

Effective connectivity analysis for left auditory re- 105

gions: One notable exception to general pattern of changes in 106

exteroceptive sensory regions with BDI scores was found in left 107

auditory regions. Here top-down inhibitory and bottom-up 108

excitatory influences were enhanced with depression. One 109

possible explanation is that this effect reflects enhanced ru- 110

mination and self-speech in depression (please note that the 111

left auditory cortex is specialized for speech perception). To 112

further probe this hypothesis we implemented spectral DCM 113

analysis among left thalamus, Broca’s area, left A1, and left 114

FP1 regions. We found that left A1 was driven mainly by 115

Broca’s area rather than the left Thalamus (see second sub- 116

figure below). We will return to this observation in discussion. 117

Cross Validation

Table 1. Leave-one-out cross validation: results from the primary
study

Network Correlation p Value
Left Motor 0.11 0.198
Left Exteroceptive 0.35 0.002
Left Interoceptive -0.08 0.720
Right Motor 0.08 0.275
Right Exteroceptive -0.15 0.874
Right Interoceptive 0.11 0.185

118

In a leave-one-out cross-validation, among all six networks, 119

the left exteroceptive network was found to predict BDI scores 120

at a significant level of α = 0.05 (see Table 1). When in- 121

dividual connections were considered, three connections of 122

left exteroceptive network, namely left V1 to FP1 (corr=0.23, 123

p-value=0.036), left A1 to SSC (corr=0.22, p-value=0.045), 124

left SSC to A1 (corr=0.23, p-value=0.03) were found to have 125

significant predictive power for BDI scores. Note that these 126

measures of effect size correspond to out of sample measures 127

(i.e., the effect sizes one would see using effective connectivity 128

estimates from new participants). 129

The follow-up experiment. 130

Accuracy of DCM model estimation. As in primary analyses, the 131

accuracy of DCM predictions for individual participants was 132

excellent for the follow up study. The minimum percentage 133

variance-explained by DCM model estimation across partic- 134

ipants were 57.14%, 76.90%, and 73.33% for left motor, ex- 135

teroceptive, and interoceptive networks and 76.02%, 68.70%, 136

and 44.06% for right motor, exteroceptive, and interoceptive 137

networks. For most of the participants variance explained was 138

80% or more. 139

Change in BDI scores. The BDI scores of participants during 140

the first and the second sessions are plotted in Figure 2. As 141

evident from the figure, for most of the participants in the 142

treatment as well as no treatment group, BDI scores improved 143

with time; however, improvement was more prominent in the 144

treatment group. This was also corroborated by statistical 145

testing. The paired samples Wilcoxon test indicated that BDI 146

scores during the first session were statistically significantly 147

higher than the second session for both groups at significance 148
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Fig. 1. Effective connectivity in the primary study (left and right hemispheres). (a),(b): Group mean effective connectivity in sensory and motor networks. Arrow colours code
nature of connections red, excitatory; blue, inhibitory. (c),(d): Connections showing significant association with Beck depression inventory (BDI) scores in sensory and motor
networks. Arrow colours code direction of connectivity changes relative to the group mean: red, increased; blue, decreased. (e): Connections showing significant association
with Beck depression inventory (BDI) scores in a network composed of left thalamus, left primary auditory cortex, Broca’s region and left lateral frontal pole. For all subfigures
line thickness is kept constant and does not code for the effect size. For the exact values of the estimated connectivity parameters see supplementary Figure 1. Colours of the
planes denote position of the node in cortical hierarchy. Green is higher than blue, red is higher than both blue and green. SMA: supplementary motor area, MC: primary motor
cortex, FP1: lateral frontal pole, V1: primary visual cortex, A1: primary auditory cortex, SSC: primary somatosensory cortex, AI: anterior insula, PI: posterior insula. Bro:
Broca’s region. Thal: Left thalamus. The images were created using tikz-network (https://github.com/hackl/tikz-network) package in LATEX.
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Fig. 2. Violin plots of the Beck depression inventory (BDI) scores in (a) no treatment and (b) treatment groups across sessions. A violin plot is a box plot with the width of the
box proportional to the estimated density of the observed data.

level α = 0.05. However, at significance level α = 0.01, this149

held true only for the treatment group (p-value = 0.009491)150

but not for the no treatment group (p-value = 0.01176).151

Effective connectivity. Results are displayed in Figure 3 and are152

further detailed in supplementary Figure 2.153

Group mean effective connectivity: Overall, the main154

pattern of mean effective connectivity was reproduced by the155

follow up analysis. The backward connections in exteroceptive156

and interoceptive cortices are inhibitory and forward connec-157

tions are excitatory. The opposite pattern was observed in158

bilateral motor cortices.159

Changes in effective connectivity with BDI scores:160

Like mean effective connectivity, the changes in effective con-161

nectivity between hierarchical cortical regions with increasing162

depression severity follow the same pattern found in the pri-163

mary analysis: with increasing BDI scores the top-down and164

bottom-up mean effective connectivity is enhanced in the in-165

teroceptive network and is diminished in exteroceptive and166

motor networks.167

Changes in effective connectivity with treatment:168

With treatment, top-down and bottom-up effective connec-169

tivity revert towards group mean levels, i.e., in the extero-170

ceptive network, top-down effective connections become more171

inhibitory and bottom-up connections becomes more excita-172

tory; whereas in the motor network top-down connections173

became more excitatory. In the interoceptive network, no174

change in top-down or bottom-up effective connectivity sur-175

vived at the 95% threshold set for the posterior probability of176

the estimated parameters.177

Cross Validation

Table 2. leave-one-out cross validation: results from the follow-up
study

Network Correlation p Value
Left Motor -0.19 0.812
Left Exteroceptive -0.09 0.665
Left Interoceptive 0.17 0.211
Right Motor 0.15 0.237
Right Exteroceptive -0.02 0.540
Right Interoceptive -0.17 0.795

178

In a leave-one-out cross-validation, none of the effective179

connections were found to predict BDI scores at a significant180

level of α = 0.05 (see Table 2).181

Discussion 182

Overall, the most exciting findings from our study are the 183

average backward (top-down) and forward (bottom-up) effec- 184

tive connectivity in sensory and motor cortices that showed 185

consistent patterns across hemispheres and sessions and con- 186

sistent changes with depression severity and treatment. The 187

backward effective connections in exteroceptive and interocep- 188

tive sensory networks were predominantly inhibitory in nature 189

while forward connections were predominantly excitatory (ex- 190

cept SSC to FP1 connections in primary experiment). The 191

opposite pattern was observed in bilateral motor networks. 192

With increased depression scores, this pattern is weakened 193

in exteroceptive and motor networks and is strengthened in 194

the interoceptive network. Interestingly, with treatment, a 195

partial recovery towards the group average was observed. In 196

leave-one-out cross validation analysis, connections in left exte- 197

roceptive networks were found to have sufficiently large effect 198

size to predict whether somebody has a high or a low BDI 199

score. 200

There is a growing recognition that the depression is asso- 201

ciated with dysfunction of distributed brain networks rather 202

than of individual brain regions (44, 45). Four networks have 203

been the focus of most of the published research in this area: 204

the affective network (AN), reward network (RN), default 205

mode network (DMN), and cognitive control network (CCN). 206

Hyperconnectivity among the regions of AN (12, 14) and DMN 207

(6, 10, 13, 16, 46) has been consistently reported in depres- 208

sion. Enhanced resting state functional connectivity in AN 209

and DMN has been postulated to be associated with negative 210

affectivity and maladaptive rumination in depression patients. 211

Hypoconnectivity in RN (7, 17, 18) and CCN (9, 11, 47) has 212

been another consistent finding in depression (but also see 213

(8, 48) for divergent findings). Anhedonia and ineffective cog- 214

nitive control over emotional processing seen in depression 215

have been attributed to diminished interactions among the 216

regions of RN and CCN, respectively. 217

As evident from above, the affective and psychological 218

components of depression have been the prime focus of neu- 219

robiological research on depression. Yet, several sensorimotor 220

interventions including light, music, tone, physical exercise are 221

well known to modulate mood and depressive symptoms (49). 222

Association of depression with visual (50, 51) or hearing im- 223

pairment (52–54) is also well established. Depression, in turn, 224

gives rise to several sensorimotor alterations. Some of them, 225

for instance, psychomotor retardation or agitation and feelings 226
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Fig. 3. Effective connectivity in the follow-up study (left and right hemispheres). (a),(b): Group mean effective connectivity. Arrow colours code nature of connections red,
excitatory; blue, inhibitory. (c),(d): Connections showing significant association with Beck depression inventory (BDI) scores. Arrow colours code direction of connectivity
changes relative to the group mean: red, increased; blue, decreased. (e),(f): Connections showing significant association with treatment (treatment vs no treatment). Arrow
colours code direction of connectivity changes relative to the group mean: red, increased; blue, decreased. For all subfigures line thickness is kept constant and does not
code for the effect size. For the exact values of the estimated connectivity parameters see supplementary Figure 2. Colours of the planes denote position of the node in
cortical hierarchy. Green is higher than blue, red is higher than both blue and green. SMA: supplementary motor area, MC: primary motor cortex, FP1: lateral frontal pole, V1:
primary visual cortex, A1: primary auditory cortex, SSC: primary somatosensory cortex, AI: anterior insula, PI: posterior insula. The images were created using tikz-network
(https://github.com/hackl/tikz-network) package in LATEX.
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of fatigue are part of the diagnostic criteria for depression227

(55). Besides, there is a repertoire of subjective feelings that228

depressed patients experience. These include pain in several229

parts of the body, chest discomfort, feeling cold or nauseous,230

heaviness of limbs, feeling of emptiness, to mention a few (56).231

These feelings change the subjective experience of one’s own232

body and one’s sense of relatedness with the world outside.233

There are only a few neuroimaging studies that indepen-234

dently examined functional connectivity in sensory and motor235

networks as biomarkers for depression. Among them, one236

recent study (57) found reduced within and between-network237

functional connectivity in auditory and visual networks asso-238

ciated with depression. In another study, Kang et al. (58)239

demonstrated that the primary somatosensory area-thalamic240

functional connectivity is abnormal in major depressive disor-241

der. Moreno-Ortega et al. (59) showed that including resting242

state functional connectivity within the visual network in243

the analysis greatly increases the predictive power for the244

treatment response to electroconvulsive therapy in depression245

compared to model consisting of only AN and DMN.246

However, our understanding of neuronal mechanisms un-247

derlying sensory perception is going through a major shift.248

There is an emerging consensus that perception is not a pas-249

sive ‘bottom-up’ mechanism of progressive abstraction from250

sensory input and both bottom-up and top-down connectivity251

between hierarchically organized brain regions play crucial252

roles in perception. This recognition has led to several theo-253

retical frameworks highlighting the importance of top-down254

information flow in the context of sensory perception. The255

most prominent of them - predictive coding (35–37) - has256

also been extended to motor function (see active inference257

(38)). These novel insights motivated us to analyse effective258

connectivity among hierarchical brain regions in sensory and259

motor cortices. In contrast to data-driven approaches (e.g.,260

functional connectivity analyses) mentioned above, ours is261

a model-based approach informed by theoretical frameworks262

and empirical knowledge of functional architectures. In motor263

regions we chose primary motor area and supplementary motor264

area. The later is responsible for planning complex movements265

of the contralateral extremities and is posited to occupy a266

higher level of hierarchy in the motor system. Similarly, in267

interoceptive cortex we chose posterior and anterior insula268

based on known role of the insula in interoception and a poste-269

rior to anterior hierarchical organization in the insula (60, 61).270

For exteroception, we selected three primary sensory cortices:271

visual, auditory, and somatosensory and the lateral frontal272

pole - the terminal relay station for exteroceptive sensory273

information (62, 63).274

A consistent and intriguing finding from our study is top-275

down inhibitory and bottom-up excitatory average effective276

connectivity in sensory cortices; a pattern that reverses in277

motor cortices. The pattern in sensory cortices is consistent278

with the role of top-down predictions explaining away pre-279

diction errors at lower levels, via interactions with inhibitory280

interneurons in canonical microcircuits (as proposed by the281

predictive coding framework). In other words, although long-282

range connections in the brain are excitatory (i.e., glutamater-283

gic), backward connections may preferentially target inhibitory284

interneurons in superficial and deep layers to evince an overall285

decrease in neuronal message passing. In predictive coding,286

this is often read as ‘explaining away’ prediction errors at lower287

levels in sensory cortical hierarchies (64). However, the com- 288

pletely opposite pattern was observed in the motor network. 289

Descending excitatory connections in the motor system may 290

reflect one of two things. First, it could be a reflection of the 291

fact that ascending prediction errors in the executive motor 292

system may play a small role – because these prediction errors 293

are thought to be resolved through cortical spinal reflexes; i.e., 294

through action (38). Put simply, in sensory hierarchies exte- 295

roceptive prediction errors are caused by bottom-up sensory 296

input, which are resolved by (inhibitory) top-down predictions. 297

Conversely, in motor hierarchies prediction errors are generated 298

by (excitatory) top-down proprioceptive predictions, which are 299

resolved by motor reflexes at the level of the spinal-cord. An 300

alternative explanation is that descending predictions include 301

predictions of precision that may mediate things like attention 302

and sensory attenuation (65–67). In this instance, there can 303

be an explaining away of certain prediction errors, while there 304

precision may be increased, resulting in an overall excitatory 305

drive. In other words, some descending predictions may be 306

of proprioceptive gain that mediates the selection of intended 307

movements. In this context it is noteworthy that descending 308

predictions of precision play an important role in active infer- 309

ence accounts of psychiatric conditions – in which the synaptic 310

pathophysiology and psychopathology can be accounted for 311

by a failure of sensory attenuation; namely, the attenuation or 312

suspension of the precision of sensory prediction errors. This 313

failure of attention and attenuation has been used to explain 314

several conditions, including autism, schizophrenia, Parkin- 315

son’s disease and depression (68–72). The current results are 316

particularly prescient in relation to formulations of depression 317

and mood disorder in terms of active inference; namely, how 318

actions are selected by inferring ‘what to do next’. Clark, 319

Watson and Friston (71) review the evidence for depression as 320

a computational pathology in the proprioceptive and intero- 321

ceptive (behavioural and autonomic) domain. They conclude 322

“emotional states reflect the precision associated with neuro- 323

biological predictions over interoceptive states”. The current 324

results are consistent with this formulation but draw special 325

attention to proprioceptive predictions in the sensorimotor 326

system. In this setting, the attenuation of descending effective 327

connectivity – to the executive motor cortex with increasing 328

depression severity – is consistent with a failure to deploy sen- 329

sorimotor precision appropriately during action selection. In 330

turn, this is consistent with a failure to form precise (subper- 331

sonal) beliefs about ‘what to do next’, at higher levels in the 332

sensorimotor hierarchy. An extreme example of the ensuing 333

psychomotor poverty may be the bradykinesia of Parkinson’s 334

disease, which has a clear neuromodulatory (dopaminergic) 335

aetiology. Please see (73) for further discussion. 336

In line with the marked consistency of the patterns of aver- 337

age effective connectivity - across hemispheres and sessions - 338

the changes in effective connectivity with depression severity 339

were also conserved across sessions and corroborate well with 340

depressive symptomatology. Instead of categorically dividing 341

participants into patients and neurotypical subjects, we exam- 342

ined (across participants) variation of effective connectivity 343

with depression severity as assessed by the Beck Depression 344

Inventory. This leverages the heterogeneity within each group 345

that might contain useful clinical information (74). With in- 346

creasing depression severity, the patterns found in top-down 347

and bottom-up connections at the group level are weakened 348
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in exteroceptive (except the left auditory cortex-see below)349

and motor cortices and strengthened in the interoceptive cor-350

tex. Depreciation in exteroceptive networks is in line with351

the reduced visual contrast sensitivity (20) and impaired au-352

ditory processing of non-speech stimuli (21). Psychomotor353

poverty or retardation is a prominent feature of depression354

(24) that might well be reflected in the weakening of motor355

network effective connectivity. The enhancement in the inte-356

roceptive network is consistent with increased interoceptive357

(e.g., pain) sensitivity (22) in depression. On the contrary, a358

few studies reported a subtle but non-significant association359

of depression with decreased interoceptive awareness like re-360

duced heartbeat perception accuracy (75, 76). However, small361

sample sizes and/or inclusion of individuals with mild or co-362

morbid presentations of depression may undermine this claim363

(77, 78). Moreover, Pollatos,Traut-Mattausch, Eva and Rainer364

(23) found that a negative relationship between depression365

and heartbeat perception accuracy is only present in those366

with relatively higher trait anxiety. Thus, it might reflect an367

interaction of anxiety with depression. Furthermore, Dunn,368

Dalgleish, Ogilvie and Lawrence (79) found that heartbeat369

perception accuracy was affected in mild depression but, para-370

doxically, was not affected in more severely depressed group371

thus further complicating the association.372

One notable exception - to general pattern of changes in373

effective connectivity within exteroceptive network with BDI374

scores - was found in left auditory regions. Here top-down375

inhibitory and bottom-up excitatory influences were enhanced376

with depression. One possible explanation is that this reflects377

enhanced rumination and self-speech in depression; noting378

that left auditory cortex is specialized for speech perception379

(80). Rumination is implicated in the development, severity380

and maintenance of depression and other psychiatric disorders381

(81–83). Given the central role of rumination in depression,382

it has been considered a key target in modern cognitive and383

behavioural therapies (84). One of the most salient features of384

rumination is that it is mostly expressed in a verbal modality385

(85–87). In other words, while ruminating, we are mostly386

talking to ourselves silently. Thus, enhancement of effective387

connectivity within auditory network, with increasing BDI388

scores, might reflect depressive rumination during the acquisi-389

tion of resting-state scans. To further probe this hypothesis390

we implemented spectral DCM effective connectivity analy-391

sis among left thalamus, Broca’s area, left A1 and left FP1392

regions. Broca’s area, also known as the left inferior frontal393

gyrus (LIFG), is involved in production of both outer and in-394

ner speech (e.g., (88)). We hypothesized that if the change in395

the pattern of effective connectivity with increasing depression396

severity is associated with rumination, left auditory area (A1)397

would be driven mainly by Broca’s area. Conversely, if it re-398

flects some form of aberrant sensory processing, left thalamus399

will be main driver of left A1 (89). DCM analysis demon-400

strated that with increasing BDI score effective connectivity401

from left Broca’s area to left A1 becomes more excitatory but402

there is no significant change in effective connectivity from403

left Thalamus to left A1, thus providing an indirect support404

for the rumination hypothesis. It is noteworthy here that a405

previously published report of the same data found that the406

independent component - representing the left auditory net-407

work - also included the insular cortex in the depression group408

but not in the healthy participants. Based on several lesion409

(90–94) and neuroimaging (95, 96) studies, the left insula has 410

been proposed as a brain region involved in motor control of 411

speech production including pre-articulatory motor responses 412

(97–99). This lends further support to depressive rumination 413

conjecture. 414

The model comparison discussed above furnishes clear evi- 415

dence for changes in a number of extrinsic (between region) 416

and intrinsic (within region) connections that underwrite de- 417

pression, as scored with the BDI. One might ask whether these 418

changes can be used diagnostically in individual patients. In 419

other words, are the underlying effect sizes sufficiently large 420

to predict whether somebody has a high or a low BDI score. 421

This question goes beyond whether there is evidence for an 422

association and addresses the utility of connectivity phenotyp- 423

ing for personalised medicine. One can address this using out 424

of sample estimates of the effect size using cross validation 425

under a parametric empirical Bayesian scheme (41). In other 426

words, one can establish the predictive validity by withholding 427

a particular subject and ask whether one could have predicted 428

the BDI score given the effective connectivity estimates from 429

that subject. This question can be posed at the level of a single 430

connection or sets of connections. For example, when looking 431

at single connections, three connections in the left hemisphere 432

all showed a significant out of sample correlation with BDI 433

score. This suggests that a nontrivial amount of variance in the 434

BDI score could be explained by effective connectivity. This 435

variance explained increased when considering the left extero- 436

ceptive network – attaining a correlation coefficient of 0.35 or, 437

an R-squared of about 10% (which was extremely significant 438

p < 0.001). Although relatively small from a psychological per- 439

spective, this is almost an order of magnitude greater than the 440

variance can be explained by genomic phenotypes (100, 101). 441

Clinicopathological significance of effective connectivity in 442

sensory and motor cortices is further supported by the DCM 443

analysis of treatment-associated changes in connectivity in the 444

follow up study. Several top-down and bottom-up connections 445

in bilateral exteroceptive and motor cortices were found to be 446

associated with treatment. More importantly, the parity of 447

these connections is opposite to the connections showing an 448

association with depression severity, suggesting a prognostic 449

relevance of these connectivity measures. Remarkably, none of 450

the feedforward or feedback connections in the interoceptive 451

cortex was found to be associated with treatment, but the 452

clinical significance of this finding is unknown. Taken together, 453

the patterned alterations in bidirectional connectivity with 454

BDI scores and treatment offer a strong case for effective 455

connectivity in sensory and motor cortices as a biomarker for 456

depression. 457

A few words on the computational method used in the cur- 458

rent work. DCM was introduced originally to model neuronal 459

responses to external perturbation (e.g., sensory stimulation or 460

task demands). DCM for resting state fMRI was subsequently 461

introduced in Stochastic DCM (102). Stochastic DCMs dif- 462

fer from deterministic DCMs by allowing for physiological 463

noise due to endogenous stochastic fluctuations in neuronal 464

and vascular responses, known technically as system or state- 465

noise.The opportunity to model endogenous (autonomous) 466

fluctuations opened the door to identify the functional archi- 467

tectures (effective connectivity) subtending endogenous fluc- 468

tuations observed in resting-state studies. A more efficient 469

approach for resting state data was subsequently introduced 470
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which is based on fitting observed complex fMRI cross spec-471

tra (39) (For more details see Materials and Methods). This472

later approach, known as spectral DCM, was employed in the473

present study.474

Findings from the current study should be appreciated475

within the context of certain limitations. Although our study476

sample was modestly large for neuroimaging measures - and477

we undertook steps like cross-validation and replication of the478

main results to ensure the generalizability of our findings -479

replication in an independent sample would be an important480

next step. Secondly, in the context of connectivity analysis,481

there are several potential confounding factors other than482

age and sex of the participants that we have not controlled483

for. For example, level of anxiety in individuals could affect484

top-down information flow in the brain (103). Anxiety is485

also a common comorbidity found in depression patients (104).486

None of our participants reported to be diagnosed with anxiety487

disorders. However, the presence of subclinical anxiety was488

not ruled out or controlled for. We will consider testing489

for the association of anxiety with effective connectivity in490

sensory and motor networks in a companion paper. A third491

limitation of our study is that the analysis relied solely on492

BDI scores of depression. There are a large number of rating493

scales for assessing depression severity: some are observer494

rating scales, for example the Hamilton Depression Rating495

Scale (HDRS) and the Montgomery-Åsberg Depression Rating496

Scale (MADRS), others are self-rating scales (for example BDI).497

Each scale has its own advantages and limitations (105). Thus,498

the present neuroimaging findings could be further validated499

with a combination of observer rating scales and objective500

behavioural measures of depression (e.g. (106)).501

In summary, our results advance our mechanistic under-502

standing of depression pathophysiology. Traditional accounts503

of depression (e.g. Beck’s (107) cognitive model) have ne-504

glected bodily symptoms (79). The present work re-establishes505

depression as an embodied phenomenon by demonstrating that506

effective connectivity in sensory and motor cortices affords a507

promising neural signature of depression. It also establishes508

the generalizability and predictive validity of this novel marker509

– and may portend a new avenue of research into the neural510

underpinnings and therapeutic interventions of depression and511

other mental health conditions.512

Materials and Methods513

Participant characteristics. Fifty-one adult patients (mean age: 32.78514

years, SD: 8.89, 38 females, 13 males) with a diagnosis of mild de-515

pressive episode or moderate depressive episode according to ICD-10516

and twenty-one adult individuals (mean age: 33.8 years, SD: 8.5,517

15 females, 8 males) with no history of neurological or psychiatric518

illness participated. Depressed participants were either referred519

by a qualified psychiatrist or invited through advertisement in a520

popular local newspaper and then assessed by the same psychiatrist.521

Inclusion criterion were first diagnosed mild or moderate depres-522

sive episode and age between 18 and 55 years. Exclusion criteria523

were: previous depressive episodes, bipolar depression, seasonal524

depression, depression secondary to other psychiatric or somatic525

condition, serious risk of suicide, serious neurological and psychi-526

atric comorbidities, alcohol or other substance abuse or dependence,527

lifetime history of psychotic disorders, contraindications to MRI,528

extremely impaired vision, IQ score below 70, any psychotropic529

medication (including antidepressants), and any medication alter-530

ing blood pressure (that could influence fMRI signal). Healthy531

participants were volunteers recruited by word of mouth or via532

advertisement in social networks. Inclusion and exclusion criteria533

for healthy volunteers were the same, except for the presence of 534

depressive episodes. The depressed and neurotypical participants 535

did not differ in level of intelligence (mean (SD) Raven’s Progressive 536

Matrices test score, for neurotypicals: 105.9(16.5), for depression 537

patients: 103.7(14.6)). All participants gave informed consent in 538

accordance with the Declaration of Helsinki. Ethical review board 539

of Research Institute of Molecular Biology and Biophysics approved 540

the study. Beck depression inventory evaluation could not be done 541

on four patients and three neurotypical participants. Consequently, 542

sixtyfive participants were included in the final analysis. 543

Twenty-nine depression patients from the primary study were 544

included in the follow-up study ( gap between two sessions, minimum: 545

56 days, maximum: 234 days). Among them fifteen individuals 546

received no treatment, eight received cognitive behavioural therapy 547

(CBT) and six received neurofeedback therapy (NFBT). BDI scores 548

could not be retrieved for one participant during the first scan 549

and for four participants during the second scan and subsequently 550

twenty-four participants were included in the final analysis. We 551

checked for systemic differences between participants who attended 552

both the sessions and who dropped out. A Mann-Whitney test 553

failed to show between-group differences in age, IQ, and emotional 554

variables at a significance level of 0.05. At the same significance level, 555

the chi-square analyses failed to show significant differences between 556

two groups in terms of sex ratio and mild/moderate depression 557

ratio. 558

It is noteworthy here, data from a subset of participants from 559

the present study has been published (46, 108, 109). However, those 560

works mainly employed a data-driven approach based on indepen- 561

dent component analysis (ICA) decomposition of the whole-brain 562

data and correlation based (undirected) functional connectivity 563

analysis unlike the current study that tests a specific hypothesis 564

by investigating (directed) effective connectivity in functionally 565

characterised brain regions. 566

Brain MRI acquisition. The fMRI acquisition was carried out in the 567

International Tomography Center, Novosibirsk. Imaging data were 568

acquired with an Ingenia (Philips) 3T scanner using a 32-channel 569

dStream HeadSpine coil (digital). The structural and functional 570

images had the following parameters: 571

Structural MRI: T1 3D TFE, Field of View: 250× 250× 280 mm3, 572

TR/TE=7.5/3.7 ms, Flip Angle= 8°, Voxel size: 1× 1× 1 mm3. 573

Functional MRI: T2* Single shot SPIR EPI, Field of View: 574

220× 220 mm2, TR/TE=2500/35 ms, Flip Angle= 90°, Voxel size: 575

2× 2× 5 mm3, 25 slices. 576

During the resting state sequence (duration: four minutes each), 577

participants were instructed to lie still and motionless in the scanner 578

with their eyes closed while letting their mind wander. 579

Preprocessing. The pre-processing and statistical analysis of fMRI 580

data were executed with the SPM12 v7771 toolbox (Statistical Para- 581

metric Mapping, http://www.fil.ion.ucl.ac.uk/spm). The initial five 582

scans were discarded to allow the magnetization to stabilize to a 583

steady state. Prior to statistical analysis, images were slice-time 584

corrected, realigned with the mean image, motion corrected, coreg- 585

istered with the corresponding T1-weighted images, normalized to 586

a Montreal Neurological Institute (MNI, https://www.mcgill.ca) 587

reference template and resampled to 4× 4× 5 mm3. During mo- 588

tion correction, 2nd-degree B-Spline interpolation was used for 589

estimation and 4th-degree B-Spline for reslicing. Coregistration 590

used mutual information objective function while normalization used 591

4th-degree B-Spline interpolation. Images were smoothed with a full- 592

width at half-maximum (FWHM) Gaussian kernel 4× 4× 10 mm3 593

and further denoised by regressing out several nuisance signals, 594

including the Friston-24 head motion parameters and signals from 595

cerebrospinal fluid and white matter. Temporal high pass filtering 596

above 1/128 Hz was employed to remove low-frequency drifts caused 597

by physiological and physical (scanner related) noises. 598

Spectral Dynamic Causal Modelling and Parametric Empirical Bayes. 599

The Spectral DCM approach using DCM12.5 as implemented in 600

SPM12 v7771 (http://www.fil.ion.ucl.ac.uk/spm) was used to es- 601

timate the effective connectivity within each network. Dynamic 602

causal modelling (DCM) is Bayesian framework that infers the 603

causal architecture of distributed neuronal systems from the ob- 604

servable BOLD (blood-oxygen-level-dependent) activity recorded 605
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Fig. 4. Regions of interest for (a) Motor, (b) Exteroceptive, and (c) Interoceptive
networks. SMA: supplementary motor area, MC: primary motor cortex, FP1: lateral
frontal pole, V1: primary visual cortex, A1: primary auditory cortex, SSC: primary
somatosensory cortex, AI: anterior insula, PI: posterior insula. The images were
created using MRIcroGL(https://www.nitrc.org/projects/mricrogl/) program.

in fMRI. It is primarily based on two equations. First, the neu-606

ronal state equation models the change of a neuronal state-vector in607

time, depending on modulation of connectivity within a distributed608

system and experimental perturbations. Second, an empirically609

validated hemodynamic model that describes the transformation610

of neuronal state into a BOLD response. For task fMRI, external611

stimuli usually forms the external perturbation component. For612

resting-state fMRI, in the absence of external stimuli – a stochastic613

component capturing neural fluctuations is included in the model614

and the neural state equation can be represented as615

ẋ(t) = f
(
x(t), θ

)
+ v(t) [1]616

where ẋ is the rate of change of the neuronal states x, θ represents617

unknown parameters (i.e., intrinsic effective connectivity) and v(t)618

is the stochastic process modelling the random neuronal fluctuations619

that drive the resting-state activity. The observation equation could620

be written as:621

y(t) = h
(
x(t), φ

)
+ e(t) [2]622

Here, y(t) is the observed BOLD activity, φ are the unknown623

parameters of the (haemodynamic) observation function, and e(t) is624

the stochastic process representing the measurement or observation625

noise.626

Spectral DCM offers a computationally efficient inversion of the627

stochastic model for resting state fMRI. Spectral DCM simplifies the628

generative model by replacing the original BOLD time-series with629

their second-order statistics (i.e., cross spectra). This allows circum-630

venting estimation of time varying fluctuations in neuronal states631

by estimating their covariance, which is time invariant. In other632

words, the problem of estimating hidden neuronal states disappears633

and is replaced by the problem of estimating their correlation func-634

tions of time or spectral densities over frequencies (and observation635

noise) where a scale free (power law) form is used (motivated from636

previous works on noise in fMRI (110) and underlying neuronal637

activity (111, 112)) as follows:638

gv

(
ω, θ

)
= αvω

−βv

ge

(
ω, θ

)
= αeω

−βe

[3]639

Here, {α, β} ⊂ θ are the parameters controlling the amplitudes and640

exponents of the spectral density of the neural fluctuations. Finally,641

standard Bayesian model inversion (i.e. Variational Laplace) is used642

to infer the parameters of the models from the observed signal. A643

detailed mathematical treatment of spectral DCM can be found in644

(39) and (113).645

Time series for DCM analysis were extracted for each region of 646

interest by taking the first principal components of the time series 647

from all voxels included in the masks for that region. Masks were 648

defined according to SPM Anatomy toolbox (114). The regions of 649

interest for each network are depicted in Figure 4. We also adjusted 650

data for “effects of interest", thus effectively mean-correcting the 651

time series. 652

At the first level, fully-connected models (i.e., between all nodes 653

plus self-loops) were estimated for each subject individually, sepa- 654

rately for bilateral exteroceptive, interoceptive and motor networks. 655

A basic diagnostic of the success of model inversion is to look 656

at the average percentage variance-explained by DCM model es- 657

timation when fitted to the observed (cross spectra) data. We 658

implemented this diagnostic test across participants. 659

At the second (group) level, we used parametric empirical Bayes 660

(PEB) — a between-subjects hierarchical Bayesian model over pa- 661

rameters — which models how individual (within-subject) connec- 662

tions relate to different between-subjects effects (41, 115)(Friston, 663

Zeidman and Litvak, 2015; Friston et al., 2016). Unlike a classical 664

test (e.g., t-test), it uses the full posterior density over the parame- 665

ters from each subject’s DCM – both the expected strength of each 666

connection and the associated uncertainty (i.e., posterior covariance) 667

– to inform the group-level result. The group mean, by default, is 668

the first regressor or covariate. In the primary study, BDI scores, 669

age, sex are the next three regressors. Age and BDI scores were 670

mean-centred (across all subjects) to enable the first regressor to 671

be interpretable as the mean. In the follow up study, treatment 672

(treatment received vs not treated) was included as the fifth regres- 673

sor. To evaluate how regions in the network of interest interact, we 674

used Bayesian model comparison to explore the space of possible hy- 675

potheses (or models). Candidate models were obtained by removing 676

one or more connections to produce nested or reduced forms of the 677

full model. As there is large number of possible nested models in the 678

model space, the search algorithm used Bayesian model reduction 679

(BMR) (41) that enables an efficient (greedy) search of the model 680

space. BMR prunes connection parameters from the full model and 681

scores each reduced model based on the log model-evidence or free 682

energy. The process continues until there is no further improvement 683

in model-evidence. The parameters of the selected models from 684

this search procedure were then averaged, weighted by their model 685

evidence (Bayesian Model Averaging) (116). 686

Leave-one-out validation analysis. Finally, we tested whether the 687

severity of depression could be predicted based on the modulation 688

of effective connectivity. In other words, was the effect size large 689

enough to have predictive validity. We chose connections that 690

survived a threshold of 95 % posterior probability (very strong 691

evidence) in the previous analysis (primary study). We used a 692

leave-one-out scheme as described in (41). A parametric empirical 693

Bayesian model was estimated while leaving out a subject, and was 694

used to predict the BDI score of the left out subject, based on the 695

specific connections chosen. The Pearson’s correlation between the 696

predicted score and known score was calculated. 697

Data and code availability. Our analysis code is 698

available on GitHub (https://github.com/dipanjan- 699

neuroscience/depression2021). Imaging data are available on Open- 700

Neuro (https://openneuro.org/datasets/ds002748/versions/1.0.3 & 701

https://openneuro.org/datasets/ds003007/versions/1.0.0). 702
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