Abstract
Marine algae viruses are important for controlling microorganism communities in the marine ecosystem and played fundamental roles during the early events of viral evolution. Here, we have focused on one major group of marine algae viruses, the ssDNA viruses from the Bacilladnaviridae family. We present the capsid structure of the bacilladnavirus, Chaetoceros tenuissimus DNA virus type II (CtenDNAV-II), determined at 2.3 Å resolution. A structure-based phylogenetic analysis supported the previous theory that bacilladnaviruses have acquired their capsid protein via horizontal gene transfer from a ssRNA virus. The capsid protein contains the widespread virus jelly-roll fold, but has additional unique features; a third β-sheet and a long C-terminal tail. Further, low-resolution reconstructions of the CtenDNAV-II genome revealed a partially spooled structure, an arrangement previously only described for dsRNA and dsDNA viruses. Together, these results exemplify the importance of genetic recombination for the emergence and evolution of ssDNA viruses and provide important insights into the underlying mechanisms that dictate genome organisation.
Competing Interest Statement
The authors have declared no competing interest.