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Abstract 15 

Germicidal potential of specific wavelengths within the electromagnetic spectrum is an 16 

area of growing interest. While ultra-violet (UV) based technologies have shown 17 

satisfactory virucidal potential, the photo-toxicity in humans coupled with UV associated 18 

polymer degradation limit its use in occupied spaces. Alternatively, longer wavelengths 19 

with less irradiation energy such as visible light (405 nm) have largely been explored in 20 

the context of bactericidal and fungicidal applications. Such studies indicated that 405 21 

nm mediated inactivation is caused by the absorbance of porphyrins within the 22 

organism creating reactive oxygen species which result in free radical damage to its 23 

DNA and disruption of cellular functions. The virucidal potential of visible-light based 24 

technologies has been largely unexplored and speculated to be not effective given the 25 

lack of porphyrins in viruses. The current study demonstrated increased susceptibility of 26 
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lipid-enveloped respiratory pathogens of importance such as SARS-CoV-2 (causative 27 

agent of COVID-19) as well as the influenza A virus to 405nm, visible light in the 28 

absence of exogenous photosensitizers, indicating a potential porphyrin-independent 29 

alternative mechanism of visible light mediated viral inactivation. Given that visible light 30 

is generally safe to humans, our results support further exploration of the use of visible 31 

light technology for the application of continuous decontamination in areas within 32 

hospitals and/or infectious disease laboratories, specifically for the inactivation of 33 

respiratory pathogens such as SARS-CoV-2 and Influenza A. 34 

Key words – Visible light, 405nm, Virucidal, SARS-CoV-2, Influenza, inactivation 35 
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 47 

Introduction 48 

The severe-acute respiratory syndrome corona virus 2 (SARS-CoV-2), the causative 49 

agent of the COVID-19 pandemic, is a member of the beta-coronavirus family and it 50 

emerged at the end of 2019 in the Hubei province in Wuhan China1. By late February 51 

2021, more than 112 million cases had been reported while accounting for 52 

approximately 2.5 million deaths, underscoring the rapid dissemination of the virus on a 53 

global scale2. As a complement to standard precautions such as handwashing, 54 

masking, surface disinfection, and social distancing, other enhancements to enclosed 55 

spaces such as improved ventilation and whole-room disinfection are being considered 56 

by segments beyond acute healthcare such as retail, dining, and transportation3.  57 

Initial guidance from health authorities such as the CDC and WHO on environmental 58 

transmission focused on contaminated surfaces as fomites4. Data pertaining to the 59 

survival of SARS-CoV-2 and other related coronaviruses to date has indicated that 60 

virions are able to persist on fomites composed of plastic5, wood6, paper5, metal7 and 61 

glass8 potentially up to nine days. Recent studies have suggested that SARS-CoV-2 62 

may also remain viable approximately at least three days in such surfaces and another 63 

two studies showed that at room temperature (20-25°C), a 14-day time-period was 64 

required to see a 4.5-5 Log10 of the virus9, 10. 65 

Since the start of the pandemic, transmission of the virus by respiratory droplets and 66 

aerosols has become an accepted method of transmission although the relative impact 67 

of each mode of transmission is the subject of much debate.  Nevertheless, enclosed 68 
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spaces with groups of people exercising or singing have been associated with 69 

increased transmission.  The half-life survival of SARS-CoV-2 in this type of 70 

environment has been estimated between 1-2 hours6, 11, 12.   71 

Taking this information into consideration, several methods have been evaluated to 72 

effectively inactivate SARS-CoV-2. Chemical methods, which focus on surface 73 

disinfection, utilize 70% alcohol and bleach and their benefits are well established. 74 

These methods are also episodic (or non-continuous) meaning that in-between 75 

applications, the environment is not being treated13.  76 

In addition to chemicals, one of the most utilized methods for whole-room disinfection is 77 

germicidal ultra-violet C (UVC; ~254 nm)14. This technology is well established15 and 78 

has been shown to inactivate a range of pathogens including bacteria16, fungi17 and 79 

viruses18. The mechanism of action of UVC is photodimerization of genetic material 80 

such as RNA (relevant for SARS-CoV2 and IAV) and DNA (relevant for DNA viruses 81 

and bacterial pathogens, among others)19.  Unfortunately, this effect has been 82 

associated with deleterious effects in exposed humans such as photokeratoconunctivitis 83 

in eyes and photodermatitis in skin20. For these reasons, UVC irradiation requires safety 84 

precautions and cannot be used to decontaminate fomites and high contact areas in the 85 

presence of humans21. 86 

Germicidal properties of violet-blue visible light (380-500 nm), especially within the 87 

range of 405 to 450 nm wavelengths have been appreciated as an alternative to UVC 88 

irradiation in whole-room disinfection scenarios where it has shown reduction of 89 

bacteria22, 23 in occupied rooms and reductions in surgical site infections24. Although 405 90 

nm or closely related wavelengths have been shown to be less germicidal than UVC, its 91 
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inactivation potential has been assessed in pathogenic bacteria such as Listeria spp 92 

and Clostridium spp24, 25, and in fungal species such as Saccharomyces spp and 93 

Candida spp26 . It is thought that the underlying mechanism of blue-light mediated 94 

inactivation is associated with absorption of light via photosensitizers such as 95 

porphyrins which results in the release of reactive oxygen species (ROS) 27, 28. The 96 

emergence of ROS is associated with direct damage to biomolecules such as proteins, 97 

lipids and nucleic acids which are essential constituents of bacteria, fungi and viruses. 98 

Further studies have shown that ROS can also lead to the loss of cell membrane 99 

permeability mediated by lipid oxidation29. Given the lack of endogenous 100 

photosensitizers such as porphyrins in virions, efficient decontamination of viruses (both 101 

enveloped and non-enveloped) may require the addition of exogenous 102 

photosensitizers23. With the use of media suspensions containing both endogenous 103 

and/or exogenous photosensitizers, inactivation of viruses such as feline calcivirus 104 

(FCV)30, viral hemorrhagic septicemia virus (VHSV)31 and murine norovirus-132 has 105 

demonstrated the virucidal potency of 405 nm visible light. Of note, most studies virus 106 

inactivation studies have been performed in media containing porphyrins. In the current 107 

study, we show the impact of 405 nm irradiation on inactivation of SARS-CoV-2 and 108 

influenza A H1N1 viruses without the use of photosensitizers, supporting the possible 109 

use of 405 nm irradiation as a tool to confer continuous decontamination of respiratory 110 

pathogens such as SARS-CoV-2 and influenza A viruses. We further show the 111 

increased susceptibility of lipid-enveloped viruses for irradiation in comparison to non-112 

enveloped viruses, further characterizing the virucidal effects of visible light. 113 

Materials and methods. 114 
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405 nm Exposure System  115 

The visible light disinfection product used in this study was Indigo-Clean from Kenall 116 

Manufacturing. The product form factor selected was a 6” downlight (M4DLIC6) to allow 117 

for use within a BSL-3 rated containment hood.  Within the hood, the distance between 118 

the face of the fixture and the sample was 10”- much less than the normal 1.5m used in 119 

normal, whole-room disinfection applications. The output of the fixture was modified 120 

electronically during its manufacture to match this difference and ensure that the 121 

measurements would represent the performance of the device in actual use.  For the 122 

range of output used in this study, multiple discrete levels were created using pulse 123 

width modulation within the LED driver itself.  These levels were made to be individually 124 

selectable using a simple knob on the attached control module.  125 

As expected, the amount of visible light within the 400nm-420nm bandwidth is a 126 

measurement of the “dose” delivered to the target organism, measured in mWcm-2, is 127 

used to quantify this relationship similar to that used in UV disinfection applications.  128 

To fully examine this effect, a range of irradiance values were used representing actual 129 

product deployment conditions in occupied rooms. The lowest value (0.035 mWcm-2) 130 

represents a single-mode, lower wattage used in general lighting applications while the 131 

highest value (0.6 mWcm-2) represents a dual-mode, higher wattage used in critical care 132 

applications such as an operating room. 133 

The device was placed in a rig to ensure a consistent distance (10”) between the fixture 134 

and the samples. The output of the fixture in the test rig was measured using a Stellar-135 

RAD Radiometer from StellarNet configured to make wavelength and irradiance 136 
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measurements from 350nm-1100nm with < 1nm spectral bandwidth using a NIST 137 

traceable calibration. To ensure that the regular white light portion of the illumination 138 

(which is non-disinfecting) was not measured, the measurement was electronically 139 

limited to a 1nm bandwidth over the 400nm-420nm range. The normalized spectral 140 

profile is shown in Fig. 1 below.  The absolute value of the measurement was 141 

determined using a NIST traceable calibration as previously described. 142 

 143 

 144 

Figure 1. Normalized spectral power distribution for Indigo-Clean M4DLIC6 145 

showing peak irradiance at 405nm. 146 
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Cells and viruses 148 

Vero-E6 cells (ATCC® CRL-1586™, clone E6) were maintained in Dulbecco's Modified 149 

Eagle Medium (DMEM) complemented with 10% heat-inactivated Fetal Bovine Serum 150 

(HI-FBS; PEAK serum), penicillin-streptomycin (Gibco; 15140-122), HEPES buffer 151 

(Gibco; 15630-080) and MEM non-essential amino-acids (Gibco; 25025CL) at 37°C with 152 

5% CO2. Vero-CCL81 (ATCC® CRL-81™) cells and MDCK cells (ATCC® CCL-34) 153 

were cultured in DMEM supplemented with 10% HI-FBS and penicillin/streptomycin at -154 

37oC with 5% CO2. All experiments involving SARS-CoV2 (USA-WA1/202, BEI 155 

resource – NR52281) were conducted within a biosafety-level 3 (BSL3) containment 156 

facility at Icahn school of medicine at Mount Sinai by trained workers upon authorization 157 

of protocols by a biosafety committee. Amplification of SARS-CoV-2 viral stocks was 158 

done in Vero-E6 cell confluent monolayers by using an infection medium composed of 159 

DMEM supplemented with 2% HI-FBS, Non-essential amino acids (NEAA), Hepes and 160 

penicillin-streptomycin at 37°C with 5% CO2 for 72 hours. Influenza A virus used here 161 

was generated using plasmid based reverse genetics system as previously described33. 162 

The backbone used in the study was A/Puerto Rico/8/34/Mount Sinai(H1N1) under the 163 

GenBank accession number AF389122. IAV-PR8 virus was grown and titrated in MDCK 164 

as previously described33. As a non-enveloped virus, the cell culture adapted murine 165 

Encephalomyocarditis virus (EMCV; ATCC® VR-12B) was propagated and titrated in 166 

Vero-CCL81 cells with DMEM and 2% HI-FBS and penicillin-streptomycin at 37°C with 167 

5% CO2 for 48 hours34.  168 

405nm inactivation of viruses 169 
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The SARS-CoV-2 virus was exclusively handled at the Icahn school of Medicine BSL-3 170 

and studies involving IAV and EMCV were handled in BSL-2 conditions. Indicated PFU 171 

amounts were mixed with sterile 1X PBS and were irradiated in 96 well format cell 172 

culture plates in triplicates. In these studies, A starting dose of 5x105 PFU for SARS-173 

CoV-2 and starting doses of 1x105 PFU for IAV and EMCV were used. The final 174 

volumes for inactivation were 250 μl per replicate. The untreated samples were 175 

prepared the same way and were left inside the biosafety cabinet isolated from the 176 

inactivation device at room temperature. The plates were sealed with qPCR plate 177 

transparent seal and an approximate 10% reduction of the intensity was observed due 178 

to the sealing film. The distance from the lamp and the samples was measured to be 179 

10”. All samples were extracted at indicated times and were frozen at -80°C and were 180 

thawed together for titration via plaque assays. 181 

Plaque assays  182 

Confluent monolayers of Vero-E6 cells in 12-well plate format were infected with 10-fold 183 

serially diluted samples in 1X phosphate-buffered saline (PBS) supplemented with 184 

bovine serum albumin (BSA) and penicillin-streptomycin for an hour while gently 185 

shaking the plates every 15 minutes. Afterwards, the inoculum was removed, and the 186 

cells were incubated with an overlay composed of MEM with 2% FBS and 0.05% Oxoid 187 

agar for 72 hours at 37°C with 5% CO2. The plates were subsequently fixed using 10% 188 

formaldehyde overnight and the formaldehyde was removed along with the overlay. 189 

Fixed monolayers were blocked with 5% milk in Tris-buffered saline with 0.1% tween-20 190 

(TBS-T) for an hour. Afterwards, plates were immunostained using a monoclonal 191 

antibody against SARS-CoV2 nucleoprotein (Creative-Biolabs; NP1C7C7) at a dilution 192 
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of 1:1000 followed by 1:5000 anti-mouse IgG monoclonal antibody and was developed 193 

using KPL TrueBlue peroxidase substrate for 10 minutes (Seracare; 5510-0030). After 194 

washing the plates with distilled water, the number of a plaques were counted. Plaque 195 

assays for IAV and EMCV were done in a similar fashion. For IAV, confluent 196 

monolayers of MDCK cells supplemented with MEM-based overlay with TPCK-treated 197 

trypsin was used. For EMCV, Vero-CCL81 cells were used to do plaque assays in 6 198 

well plate format. Plaques for IAV and EMCV were visualized using crystal violet. Data 199 

shown here is derived from three independent experimental setups.  200 

Results. 201 

Dose and time dependent inactivation of SARS-CoV-2 in the absence of 202 

photosensitizers. 203 

The lowest irradiation dose of 0.035 mWcm-2 was applied for SARS-CoV-2 and when 204 

compared to the initial input (T0) of ~5x105 PFU, a reduction of 55.08% was seen as 205 

early as 4 hours and after 24 hours of irradiation, an inactivation of 90.17% 206 

(approximately 10 times reduction in infectivity) was observed for SARS-CoV-2 via 207 

plaque assays (Figure 2A). A slightly higher dose of 0.076mWcm-2 resulted in a 208 

reduction of 98.22% (56 times) after 24 hours when compared to the original input at T0 209 

(Figure 2B). Subsequent increase of the irradiation dose to 0.150 mWcm-2 resulted in a 210 

reduction of 63.64% after 4 hours which then reached 96.21% after 12 hours. Irradiation 211 

for 24 hours at 0.150 mWcm-2 suggested a total reduction of 99.61% (256 times) for 212 

SARS-CoV-2 (Figure 2C). As a final experiment, a high irradiation dose of 0.6 mWcm-2 213 

was used to assess the inactivation potential within a much shorter time frame. 214 

Irradiation for one hour resulted in a reduction of 71.52% which reached 91.15% after 215 
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four hours and 99.74% (385 times) after 8 hours in comparison to the initial input (T0) 216 

(Figure 2 D and E). All experimental conditions demonstrated the stability of untreated 217 

SARS-CoV-2 which was left at room temperature in PBS, as shown by the marginal 218 

reduction of viral titer over time.  219 

 220 

Figure 2. Dose and time dependent inactivation of SARS-CoV-2 virus in PBS by 405 nm irradiation. A. A dose of 0.035 221 

mWcm-2 or B. a dose of 0.076 mWcm-2 or C. a dose of 0.150 mWcm-2 or D. a dose of 0.6 mWcm-2 was applied to irradiate samples 222 

at 405 nm over a course of 24 while sampling at 4, 8, 12 and 24 hours (for A, B and C) or over a course of 8 hours while sampling at 223 

1, 2, 4 and 8 hours (D) was done in independent triplicates. Blue bars indicate treated samples and red bars correspond to the 224 

untreated equivalent that was left at the biosafety cabinet under the same conditions while not subjecting to irradiation. Data shown 225 

as PFUml-1 in triplicate assessed by plaque assay. E. Plaque phenotype comparison from one independent experiment at an 226 

irradiation dose of 0.6 mWcm-2. Fixed and blocked plaques were immunostained using anti-NP antibody before developing using 227 

TrueBlue reagent.  228 
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Influenza A virus is susceptible to 405 nm inactivation in the absence of 229 

photosensitizers. 230 

Given the observations derived from SARS-CoV-2, a separate inactivation study using a 231 

different lipid-enveloped RNA virus was conducted by using influenza A Puerto Rico 232 

(A/H1N1/PR8-Mount Sinai) virus strain. Irradiation with a high dose of 0.6 mWcm-2 233 

suggested a time dependent reduction of infectivity of 31.11%, 63.33%, 81.56% and 234 

98.49% (66 tiems) at 1, 2, 4 and 8 hours respectively (Figure 3A and 3B).  235 

 236 

Figure 3 Inactivation of Influenza A virus in PBS by 405 nm irradiation. A. A dose of 0.6 mWcm-2 was applied to irradiate 237 

samples at 405 nm over a course 8 hours while sampling at 1, 2, 4 and 8 hours (done in independent triplicates). Blue bars indicate 238 

treated samples and red bars correspond to the untreated equivalent that was left at the biosafety cabinet under the same 239 

conditions while not subjecting to irradiation. Data shown as PFUml-1 in triplicate assessed by plaque assay. B. Plaque phenotype 240 

comparison from one independent experiment at an irradiation dose of 0.6 mWcm-2. Fixed and blocked plaques were stained using 241 

crystal violet.  242 

The stability of IAV virus at room temperature for a period of 8 hours was found to be 243 

the negligible in untreated IAV spiked PBS samples (Figure 3A). 244 

Encephalomyocarditis virus (EMCV) as a model non-enveloped virus indicates 245 

reduced susceptibility to 405 nm inactivation in the absence of photosensitizers. 246 
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In order to better understand the effect of the lipid-envelope in viral inactivation by 405 247 

nm irradiation, we used a non-lipid enveloped RNA virus derived from the 248 

Picornaviridae family. EMCV virus was irradiated at a high dose of 0.6 mWcm-2 similar 249 

to SARS-CoV-2 and IAV.  250 

 251 

Figure 4. Encephalomyocarditis virus (EMCV) in PBS shows reduced susceptibility to 405 nm irradiation. A. A dose of 0.6 252 

mWcm-2 was applied to irradiate samples at 405 nm over a course 8 hours while sampling at 1, 2, 4 and 8 hours (done in 253 

independent triplicates). Blue bars indicate treated samples and red bars correspond to the untreated equivalent that was left at the 254 

biosafety cabinet under the same conditions while not subjecting to irradiation. Data shown as PFUml-1 in triplicate assessed by 255 

plaque assay. B. Plaque phenotype comparison from one independent experiment at an irradiation dose of 0.6 mWcm-2. Fixed and 256 

blocked plaques were stained using crystal violet. 257 

 258 

In this case however, a total reduction of 9.1% (approximately 2 times) in comparison to 259 

the initial input (T0) after 8 hours of irradiation was observed (Fig 4A and 4 B) indicating 260 

a lower rate of inactivation in contrast to the lipid-enveloped RNA viruses tested in this 261 

study. The plaque reduction at 8 hours did not indicate the same dramatic reduction as 262 

observed with the latter studies. 263 

Discussion 264 

The ongoing SARS-CoV-2 pandemic has affected the day-to-day functions in the entire 265 

world, raising concerns not only with regards to therapeutics but also in the context of 266 
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virus survivorship and decontamination35. Taking into consideration the rapid spread of 267 

SARS-CoV-2 from person to person by droplets, aerosols, and fomites, whole-room 268 

disinfection systems can be viewed as a supplement to best practices for interrupting 269 

transmission of the virus.   270 

Given the ongoing COVID-19 pandemic, we wanted to explore the impact of 405 nm 271 

enriched visible light technology on inactivation of respiratory pathogens such as SARS-272 

CoV-2 and influenza A virus. 273 

Without the use of exogenous photosensitizers, we were able to show that irradiation 274 

with low intensity (0.035 mWcm-2) visible light yielded a total of 55.08% inactivation after 275 

four hours and a total of 90.17% inactivation of SARS-CoV-2 after 24 hours. A slightly 276 

higher dose (0.076 mWcm-2) resulted in 98.22% inactivation after 24 hours while an 277 

irradiation dose of 0.150 mWcm-2 showed a reduction of 63.64% and 99.61% after four 278 

hours and 24 hours of irradiation, respectively. Finally, increasing the dose to 0.6 279 

mwcm-2 yielded 99.74% after eight hours, indicating a both time and dose dependent 280 

inactivation of infectious viruses. We selected conventional plaque assays as the read 281 

out to specifically estimate infectious virus titers upon disinfection. Methods based in the 282 

quantification of viral RNA via PCR based techniques might be misleading as they 283 

detect viral RNA from both infectious and noninfectious virions.  284 

SARS-CoV-2 is a lipid-enveloped virus composed of a ssRNA genome and our data 285 

indicates its susceptibility to visible light mediated inactivation. To further confirm these 286 

observations, we used influenza A virus. which is another human respiratory virus with a 287 

lipid envelop and an RNA genome. Upon irradiating for 1 hour at 0.6 mWcm-2, we 288 

observed a total reduction of 31.11% for the influenza A virus compared to the reduction 289 
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of 71.52% for SARS-CoV-2 under the same conditions. While both viruses have lipid 290 

envelopes, there is clearly a difference here that will require further study. One possible 291 

explanation is the difference in the virion size creating a physically smaller cross-section 292 

for absorption. (IAV ~120 nm and SARS-CoV-2 ~200 nm)36, 37. Nevertheless, both 293 

viruses were largely inactivated after eight hours- 98.49% for IAV and 99.74% for 294 

SARS-CoV-2. Intriguingly, it was observed that both RNA viruses were able to remain 295 

stable at room temperature for at least 24 hours, indicating minimal decay which is 296 

consistent with previous studies35, 38. We next irradiated a non-enveloped RNA virus, 297 

EMCV. Previous results for visible light against non-enveloped viruses demonstrated 298 

the need for external photosensitizers such as artificial saliva, blood, feces, etc30, 35. 299 

Without a porphyrin containing medium, we expected little to no inactivation when this 300 

virus was irradiated with visible light. For these measurements, we used the highest 301 

available irradiance of 0.6 mWcm-2. As anticipated, we observed only a 9.1% 302 

inactivation after eight hours, however, this appears to be with the statistical precision of 303 

the measurement based on the results obtained from shorter irradiations (1, 2, and 4 304 

hours). For comparison, a study involving the M13-bacteriophage virus (a non-305 

enveloped virus) showed a 3-Log reduction using an irradiance of 50mWcm-2 (almost 306 

100 times greater than the highest irradiance used in this study) for 10 hours at 425 nm 307 

further supporting the idea that non-enveloped viruses may require higher doses of 308 

visible light39. 309 

Our study was conducted using a neutral liquid media composed of PBS without any 310 

photosensitizers and we were able to show that visible light can indeed inactivate lipid-311 

enveloped viruses, differing from the theory that states that photosensitizers are a 312 
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requirement for inactivation. Other studies which used visible light based irradiation 313 

have shown similar results in the absence of photosensitizers, indicating the possibility 314 

of an alternative inactivation mechanism23, 25, 30. Studies have proposed two theories for 315 

this observation. The first being that small amounts of 420-430 nm emitted from the 316 

source is contributing to the viral inactivation 40. This theory most likely doesn’t apply 317 

here as the spectrum of light used contains very little irradiance at these wavelengths. 318 

The other theory involves the presence of UV-A (390 nm) created as a byproduct. This 319 

wavelength is known to create oxidative stress upon viral capsids41.  320 

The results obtained suggest that the performance of visible light against SARS-CoV-2 321 

is similar to organisms commonly found in the environment such as S. aureus.  322 

Previous studies have shown that the visible light irradiance levels used in this study 323 

(0.035 mWcm-2 to 0.6 mWcm-2) reduce bacteria levels in occupied rooms and improve 324 

outcomes for surgical procedures. It is therefore reasonable to conclude that visible light 325 

might be an effective disinfectant against SARS-CoV-2. More importantly, this 326 

disinfection can operate continuously as it is safe for humans based upon the exposure 327 

guidelines in IEC 6247142. This means that once it has been in use for a period of time, 328 

the environment will be cleaner and safer the next time it is occupied by humans.  329 

One limitation of this study is that the inactivation assays were performed in static liquid 330 

media as opposed to aerosolized droplets. While the use of visible light in air 331 

disinfection has been briefly studied where it was shown that its effectiveness increased 332 

approximately 4-fold43, further studies involving dynamic aerosolization are needed to 333 

better understand the true potential of visible light mediated viral inactivation.   334 
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In any case, our study shows the increased susceptibility of enveloped respiratory viral 335 

pathogens to 405 nm mediated inactivation in the absence of photosensitizers. The 336 

irradiances used in this study are very low and might be easily applied to safely and 337 

continuously disinfect occupied areas within hospitals, schools, restaurants, offices and 338 

other locations. 339 
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