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Abstract   

We  report  recurrent  somatic  structural  variations  (SVs)  involving  long  noncoding  RNA  (lncRNA)              

CCDC26  in  13%  of  Diffuse  Intrinsic  Pontine  Glioma  (DIPG)  patients.  We  validate  our  findings  using                 

whole  genome  sequencing  data  from  two  independent  patient  cohorts.   CCDC26  SVs  cause              

increased  expression  of   CCDC26  gene  in  patients.  In  addition,   CCDC26  expression  is  associated               

with  elevated  expression  of   MYC  and  proliferation  signature.  Our  findings  identify   CCDC26  as  a  novel                 

significantly  mutated  gene  in  DIPG  and  highlight  the  importance  of  structural  variations  in  pediatric                

brain   cancer.     

  

Main     

Diffuse  intrinsic  pontine  glioma  (DIPG),  the  most  frequent  brainstem  tumor  in  pediatric  patients,  is  one                 

of  the  most  devastating  childhood  cancers,  and  virtually  all  DIPG  patients  die  within  two  years  after                  

diagnosis.  Current  standard  of  care,  chemotherapy  followed  by  radiation,  yields  no  improvements  in               

survival.  There  is  an  unmet  need  for  the  identification  of  molecular  mechanisms  and  efficacious                

therapeutic  agents  to  improve  treatment  outcomes  for  DIPG  patients.  The  discovery  of  somatic               

histone  gene  mutations,  resulting  in  replacement  of  lysine  27  by  methionine  (K27M)  in  the  encoded                 

histone  H3  proteins,  in  DIPG  has  dramatically  improved  our  understanding  of  disease  pathogenesis               

and  stimulated  the  development  of  novel  therapeutic  approaches  for  the  treatment  of  DIPG 1 , 2 .  Past                

sequencing  analyses  of  DIPG  were  largely  focused  on  somatic  point  mutation  or  chromosome  copy                
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number  alteration 3 .  Structural  variation  (SV)  is  another  class  of  mutations  that  can  lead  to  duplication,                 

deletion  or  reordering  of  DNA  at  scales  ranging  from  single  genes  to  entire  chromosomes.  The  role  of                   

SVs  in  DIPG  is  poorly  understood.  To  address  this  issue,   we  analyzed  the  whole  genome  sequences                  

of  matched  tumor  and  normal  pairs  from  60  DIPG  patients.  These  patients  were  from  two                 

independent  cohorts:  one  from  the  CBTTC  OpenDIPG  project  ( n  =  45)  and  a  second  from  PNOS                  

project   ( n    =   15)   ( Methods ).   These   data   enable   a   gene-centric   approach   to   detect   SVs   in   DIPG.   

  

Strikingly,  we  discovered  recurrent  SV  mutations  at  lncRNA   CCDC26  in  13%  of  DIPG  patients  (8  out                  

of  60)  from  the  combined  cohorts  ( Fig.1a ).  The  role  of   CCDC26  in  cancer  is  not  well  understood.  It                    

was  implicated  in  childhood  acute  myeloid  leukemia  (AML)  because  of  altered  chromosome  copy               

numbers  in  AML  patients 4 .  We  examined  8  patients  with  recurrent   CCDC26  SVs  sample  by  sample.                 

We  found  6  out  of  8  patients  have   CCDC26  amplified  through  tandem  duplication.  To  delineate  critical                  

functional  region  of   CCDC26 ,  we  overlaid  sequences  altered  by  SVs  at   CCDC26  locus  and                

pinpointed  a  common  140kb  amplicon  at  chr8:129,523,594-129,662,989  on  hg38  reference  genome             

( Fig.1b ).  Notably,  the  common  amplicon  is  next  to  a  germline  SNP  (rs4295627)  associated  with                

1.3-fold  increased  risk  in  glioma  development 5 .  We  observed  three  samples  have  tandem  duplication               

breakpoints  intersecting  with  the  exon  region  of  two  neighboring  genes   GSDMC  and   FAM49B              

( Fig.1b ).  We  searched  for  gene  fusions  involving   CCDC26  and   GSDMC  or   FAM49B  using  RNA-Seq                

from  matched  samples.  In  patient  BS_1Q524P3B,  we  observed  a  gene  fusion  joining  transcripts  from                

CCDC26  exon  1  and   GSDMC  exon  7-14  ( Fig.1c ).   GSDMC  encodes  Gasdermin-C,  a  protein  coding                

gene  which  may  be  acting  by  homooligomerizing  within  the  membrane  and  forming  pores.  We                

observed  two  patients  (BS_CBMAWSAR  and  BS_FKQ7F6D1)  displaying  highly  amplified  DNA            

segments  involving  many  breakpoints  (>=100)  proximal  to   CCDC26 .  The  high  copy  numbers  changes               

linked  across  multiple  distant  chromosome  segments  suggest  ecDNA  (e.g.  double  minute,             

neochromosome)  as  underlying  structure  ( Fig.1e;  Fig.2c ) 6–8 .  ecDNA  has  been  reported  as  a              
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mechanism  which  can  lead  to  amplification  of  driver  oncogene  under  selection  pressure ,8 .  Consistent               

with  this,  we  observed  co-amplified  breakpoints  involving   CCDC26  on  chromosome  8  and   EGFR  on                

chromosome  7  In  patient  BS_CBMAWSAR  ( Fig.1f ).  We  also  observed  co-amplified  breakpoints             

involving    CCDC26    and    MYC    on   chromosome   8   in   patient   BS_FKQ7F6D1   ( Fig.2d ).   

  

To  study  the  functional  impact  of   CCDC26  SVs,  we  compared   CCDC26   expression  between  the                

samples  in  the  presence  and  absence  of  SVs  ( CCDC26 -SV  vs.   CCDC26 -WT)  using  RNA-Seq  from                

matched  samples.   CCDC26 -SV  samples  have  significantly  higher   CCDC 26  expression  than            

CCDC26 -WT  samples  ( Fig.2a ;  t-test  p<0.05)  indicating  a  functional  role  of   CCDC26  in  DIPG.  To                

identify  differential  genes  and  pathways  between   CCDC26 -SV  and   CCDC26 -WT,  we  performed             

differential  gene  expression  analysis  using  DESeq2 9  and  found   MYC  up-regulated  in   CCDC26 -SV              

samples  (p<0.005).  We  performed  Gene  Set  Enrichment  Analysis  (GSEA) 10  and  found  proliferation              

signatures  and  MYC  targets  enriched  in   CCDC26 -SV  samples  (FDR  q<0.1).  In  addition,   CCDC26               

expression   is   correlated   with    MYC    expression   in   our   cohorts   ( Fig.2b;    Pearson     correlation     p<0.005).     

Taken  together,  our  findings  identify   CCDC26  as  a  frequently  mutated  lncRNA  gene  in  DIPG.                

Expression  analysis  suggests   CCDC26  is  associated  with   MYC  and  proliferation  pathways.The             

detailed  molecular  mechanism  of   CCDC26  remains  to  be  elucidated.  Our  findings  highlight  the               

importance   of   studying   genome   structural   rearrangements   in   this   deadly   disease.   
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Methods   

Cohort   description   

The  60  DIPG  specimens  used  in  our  study  are  composed  of  radiologically  diagnosed  DIPG  from                 

Children's  Brain  Tumor  Tissue  Consortium  (CBTTC)  and  the  Pediatric  Pacific  Neuro-oncology             

Consortium  (PNOC).  The  raw  whole  genome  sequencing  and  RNA-seq  data  can  be  downloaded               

from  the  Gabriella  Miller  Kids  First  Data  Resource  Center  (KF-DRC).  The  CBTTC  is  a  collaborative,                 

multi-institutional  research  program  dedicated  to  the  study  of  childhood  brain  tumors.  The  Pacific               

Pediatric  Neuro-Oncology  Consortium  (PNOC)  is  an  international  consortium  dedicated  to  bringing             

new  therapies  to  children  and  young  adults  with  brain  tumors.  PNOC  collected  blood  and  tumor                 

biospecimens  from  newly  diagnosed  DIPG  patients  as  part  of  the  clinical  trial              

PNOC003/NCT02274987.   

Whole-genome   sequencing   analysis   

Paired-end  DNA-Seq  reads  were  aligned  to  hg38  (patch  release  12)  reference  genome  using               

BWA-MEM 11 .  Duplicates  were  marked  using  Samblaster 12 .  BAMs  were  merged  and  processed  using              

Broad's  Genome  Analysis  Toolkit  (GATK) 13 .   For  WGS  variant  calling,  Strelka2 14  was  used  to  call                

Indels  and  Mutect2 15  was  used  to  call  SNVs  using  default  parameters.  The  final  Strelka2  and  Mutect2                  

VCFs  were  filtered  for  PASS  variants  for  downstream  analysis.  For  structural  variant  (SV)  calls,                

Manta 16  was  used  using  hg38  as  reference  genome.  Manta  SV  output  was  annotated  using                

AnnotSV 17 .  The  docker  image  of  Whole  Genome  Sequence  Analysis  Workflow  can  be  found  in  the                 

KidsFirst   GitHub   repository.     

Gene   expression   analysis   

Paired-end  RNA-Seq  reads  were  aligned  using  ENSEMBL's  GENCODE  27  as  the  reference  genome.               

Transcript-  and  gene-level  expression  values  were  calculated  using  RSEM 18 .  Data  normalization  and              
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differential  gene  expression  were  done  by  DESeq2 9 .  Gene  set  enrichment  analysis  (GSEA) 10  was               

used   to   find   groups   of   enriched   genes   between   different   groups   of   samples.   

Gene   fusion   analysis   

Gene  fusions  were  called  using  Arriba 19 .  Gene  fusion  calls  from  Arriba  were  annotated  using                

FusionAnnotator  (https://github.com/FusionAnnotator)  followed  by  filtering  of  recurrent  fusion  artifacts           

and   transcripts   present   in   normal   tissue   using   a   blacklist   file   bundled   with   Arriba.     

Figures   and   Legends   

  

Figure  1.   Recurrent  structural  variants  of  CCDC26  in  DIPG  a)  Gene-centric  table  showing               

frequency  of   CCDC26  SVs  along  with  previously  reported  driver  mutations  in  DIPG  in  the  combined                 

cohorts;  b)  Common   CCDC26  amplicon  (indicated  by  grey  bar  in  the  top  panel)  altered  by  SVs;                  

supporting  reads  at  breakpoints  of   CCDC26  and   GSDMC  are  shown  in  the  bottom  panel;  c)  SV  and                   

copy  number  changes  associated  with   CCDC26-GSDMC  in  patient  BS_1Q524P3B;  d)  Structure  of              

gene  fusion   CCDC26 - GSDMC  identified  in  RNA-Seq  of  patient  BS_1Q524P3B;  e)  Circos  plots              

showing  clustering  of  breakpoints  at  chromosome  7  and  8  in  patient  BS_CBMAWSAR;  f)  SVs  (top                 

panel)  and  associated  high  copy  number  changes  (bottom  panel)  on  chromosome  7  and  8  in  patient                  

BS_CBMAWSAR.  Colored  curves  in  the  top  panel  encode  different  types  of  SVs  ( red :  tandem                

duplication;    blue :   deletion;    green :   5’Inversion;    orang e:   3’Inversion;    purple :   translocation).     

  

Figure  2.   Impact  of  CCDC26  SVs  on  gene  expression.  a)  Expression  of   CCDC26  in   CCDC26 -SV                 

vs.   CCDC26 -WT;   y- axis  indicate  log2-transformed  RSEM  gene  expression  value  measured  by             

RNA-Seq;  b)  Correlation  between   CCDC26  and   MYC  expression  (Pearson  correlation;  p<0.005);             

x- axis  and   y -axis  indicate  log2-transformed  RSEM  gene  expression  value  measured  by  RNA-Seq;  c)               

Circos  plots  showing  clustering  of  breakpoints  on  chromosome  8  in  patient  BS_FKQ7FD1;  d)  Detailed                
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view  of  SV  breakpoints  and  high  copy  number  changes  involving   CCDC26  and   MYC  on  chromosome                 

8   in   patient   BS_FKQ7FD1.   
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