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Abstract 

Individualized neoantigen specific immunotherapy (iNeST) requires robustly expressed 

clonal neoantigens for efficacy, but tumor mutational heterogeneity, loss of neoantigen 

expression, and variable tissue sampling present challenges. To characterize these potential 

obstacles, we combined multi-region sequencing (MR-seq) analysis of five untreated, 

synchronously sampled metastatic solid tumors with re-analysis of published MR-seq data from 

103 patients. Branching evolution in colorectal cancer and renal cell carcinoma led to fewer 

clonal neoantigens and to clade-specific neoantigens (those shared across a subset of tumor 

regions but not fully clonal), with the latter not being readily distinguishable in single tumor 

samples. Prioritizing mutations with higher purity- and ploidy-adjusted variant allele frequency 

enriched for globally clonal neoantigens (those found in all tumor regions), whereas estimated 

cancer cell fraction derived from clustering-based tools, surprisingly, did not. Neoantigen quality 

was associated with loss of neoantigen expression in the bladder cancer case, and HLA-allele 

loss was observed in the renal and non-small cell lung cancer cases. Our results show that 

indication type, multi-lesion sampling, neoantigen expression, and HLA allele retention are 

important factors for iNeST targeting and patient selection. 
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Introduction 

Tumor neoantigens are mutant peptide sequences that arise from expressed somatic 

mutations and can mediate anti-tumor T cell responses when presented on MHC molecules.  The 

vast majority of neoantigens correspond to private passenger mutations 1,2, meaning they are 

unique to a given tumor and have unknown functional consequences.  Several types of 

individualized cancer immunotherapies have been under development in recent years, with a 

major modality being neoantigen vaccines 3,4,5.  These immunotherapies typically utilize a single 

tumor biopsy for identification of tumor mutations, which are then translated into mutant peptide 

sequences that are fed into MHC binding/presentation prediction algorithms.  These predictions 

allow the selection of specific patient-derived tumor neoantigens, which then inform the design 

of a customized therapeutic (Fig. 1A) such as genetically modified neoantigen-specific T-cells or 

a neoantigen vaccine. 

It has been suggested that clonal neoantigens should be targeted for neoantigen-specific 

immunotherapies to be most effective and to limit tumor escape, as clonal neoantigens are by 

definition present in every tumor cell 6.  However, the clonal composition of metastatic solid 

tumors remains relatively under-explored, particularly in terms of neoantigen content across 

lesions.  Various MR-seq studies have explored somatic mutation distributions across tumor 

lesions in patients with metastatic disease 7,8,9,10, but these studies are often complicated by 

samples being taken at different surgical timepoints as well as by intervening treatments.  

Various groups have attempted to create computational approaches to identifying clonal 

mutations from single biopsies. However, unambiguously identifying clonal mutations from 

single tumor biopsies is a challenge due to technical limitations on mutation detection (e.g., 

suboptimal tumor tissue quality, or stromal or immune infiltration).  Identifying globally clonal 
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mutations shared across tumor lesions presents yet another challenge in the clinic due to clonal 

heterogeneity within lesions and diverse processes underlying metastatic seeding (i.e., possible 

polyclonal tumor evolution) 11.  Here we use the term “clonal” to refer to mutations inferred to be 

present in all tumor cells within a single sample or lesion, and the term “globally clonal” to refer 

to mutations empirically detected across tumor lesions regardless of their variant allele frequency 

(VAF).  In contrast to targetable oncogene alterations such as those in EGFR, ALK, PIK3CA, 

BRAF, which are typically globally clonal 12, it is unclear how often private passenger mutations 

are shared across tumor lesions.  Previous studies suggest that tumors with high heterogeneity 

due to branching evolution, where clones diverge from a common ancestor, should generally 

have a low proportion of globally clonal neoantigens 13,14,15, although tumors with high mutation 

loads may still have relatively high absolute numbers of clonal neoantigens.  We therefore 

sought to characterize neoantigens in primary and metastatic tumors from four solid tumor 

indications taken at a single point in time to address the feasibility and implications of targeting 

globally clonal neoantigens.   

Assuming that globally clonal neoantigens are preferable for individualized neoantigen 

specific immunotherapy (iNeST), several bioinformatics tools and approaches exist to estimate 

mutation clonality from tissue sequencing data.  Empirical methods for calculating cancer cell 

fraction (CCF) rely on prior knowledge of genome-wide copy number alterations (CNA) from 

tumor/normal sequencing data, as well as the associated tumor purity estimates.  These methods 

then normalize the VAF of each mutation to tumor purity and local copy number, with some 

using conditional probabilities to determine the exact adjustment needed on a mutation-by-

mutation basis 10,11. (We refer to the CCF estimates derived from empirical methods as “emp-

CCF”).  Separately, a number of computational tools have been developed that rely on Bayesian 
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clustering of tumor VAFs, adjusted for local copy number and tumor purity, to derive CCF for 

each mutation (which we refer to as “clust-CCF”) 16–18.  However, it remains unclear how well 

single-sample VAF, emp-CCF, or clust-CCF correlate with global mutation clonality across 

tumor lesions.  We therefore investigated whether these mutation abundance metrics, as derived 

from single tumor samples, could predict global mutation clonality using an MR-seq-based 

“truth set” of mutations from each patient.  We also explored whether single sample types (e.g., 

primary versus metastatic) had inherently better or worse predictive value for globally clonal 

mutations. 

Levels of neoantigen presentation by MHC-I are correlated with neoantigen expression, 

and higher levels of presentation may trigger immune responses that subsequently lead to 

downregulation or removal by the tumor of the mutant allele underlying these immunogenic 

neoantigens. To generate efficacious iNeST, it is therefore important to understand the 

prevalence and characteristics of such “neoantigen depletion” by tumors, and how to consider 

this factor in neoantigen selection for iNeST. Neoantigen depletion can occur via genetic loss of 

mutations or loss of mutant allele expression, or by loss of MHC-I presentation, via loss of HLA 

alleles, as described in previous MR-seq studies 14,15. Neoantigen loss through elimination in 

tumor subclones, chromosomal deletions and/or trucal alterations has been associated with 

changes in T-cell receptor clonality and could impact tumor response to immunotherapy 19.  

However, these various types of neoantigen depletion have not been systematically characterized 

in an unbiased fashion across lesions in metastatic tumors.  We therefore extended the work of 

previous studies to explore whether the metastatic solid tumors in our study showed any 

evidence of neoantigen depletion via any of the above mechanisms. Taken together, our findings 

suggest that indication-specific tumor evolution, emp-CCF, and neoantigen depletion are 
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important factors in neoantigen targeting, and that additional tumor sampling can help mitigate 

the limitations of single samples. Our findings have additional implications for the development 

of biomarker strategies for individualized cancer immunotherapies.  

  

Methods 

Clinical sample identification and pathology analysis 

Institutional Review Board approval was obtained from Northwestern University. All 

surgical resection cases diagnosed as colorectal adenocarcinoma (CRC), non-small cell lung 

carcinoma (NSCLC), urothelial bladder carcinoma (UBC) or renal cell carcinoma (RCC) 

between 1992 and 2018. Three or more regions from primary tumor, three or more regions from 

lymph node metastasis close to the tumor and three or more regions from metastasis distant from 

the tumor as well as paired normal tissue from a single surgical time point were identified from 

the pathology database at Northwestern Memorial Hospital. All patient identifiers were 

reassigned to protect anonymity. A surgical pathologist reviewed all slides associated with each 

case, established that regions were located more than >1 cm from each other based on the gross 

description and confirmed diagnoses based on morphologic and immunohistochemical findings. 

Estimated viable tumor content (% viable tumor/total epithelial surface area), percent tumor 

nuclei (%viable tumor nuclei/total nuclei) and percent tumor area necrosis (% necrosis/total 

tumor area) for each case were then estimated by an independent pathologist. Retrospective chart 

review was performed to identify and capture relevant clinical and demographic information 

[Table 1. Cohort description and patient metadata].  

  

AVENIO Millisect tissue harvest 
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We applied rigorous quality control analysis to our tissue input by selecting cases with 

ischemic times less than 2 hours and maximizing viable tumor input using AVENIO Millisect 

automated dissection for tumor enrichment on all cases. Five or forty-nine cases demonstrated 

low tumor content (tumor areas below 30mm2) and were removed from downstream analyses. 

These were mostly lymph node metastases. A tissue processing, sequencing and data analysis 

workflow overview is presented in Supplementary fig. 1. Formalin Fixed Paraffin Embedded 

(FFPE) tissue blocks were serially sectioned with 5 sections at 10µm, followed by 5 sections at 

4µm, collected onto Superfrost Plus positively charged slides (Thermo Scientific, Runcorn, UK) 

and allowed to dry at room temperature overnight. Serial section 6 (4µm) was baked at 60℃ for 

30 minutes and stained with Hematoxylin and Eosin (H&E) on an automated Leica Autostainer 

XL using a routine protocol. H&E stained slides were scanned on a NanoZoomer 2.0 HT whole 

slide imager (Hamamatsu, Bridgewater NJ) at 20X magnification. Scanned slide images were 

annotated by a pathologist for tumor regions of interests and digital masks were created as a 

dissection reference. 

Tissue sections were dissected using the reference mask image from serial section 6 to 

collect regions of interest using medium or large AVENIO Millisect milling tips (Roche 

Sequencing Solutions, Pleasanton, CA), collected with Molecular Grade Mineral Oil (Sigma-

Aldrich, St. Louis, MO) as dissection fluid and dispensed into nuclease-free 1.5mL Eppendorf 

tubes. Dissections from slides 1 through 5 were centrifuged for 10 minutes at 20,000rpm to pellet 

tissue. Portions of mineral oil were removed from the tissue pellets and pellets were pooled in a 

single 1.5mL Eppendorf tube and held for DNA and RNA dual extraction. Post AVENIO 

Millisect dissected tissue slides were baked at 60℃ for 30 minutes and stained with Hematoxylin 

and Eosin (H&E) on an automated Leica Autostainer XL using routine protocols and scanned on 
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a NanoZoomer 2.0 HT whole slide imager (Hamamatsu, Bridgewater NJ) at 20X magnification 

in order to confirm that selected tumor regions were successfully removed from the slides. DNA 

and RNA extraction was performed using the Qiagen AllPrep DNA/RNA tissue kit (Qiagen, 

Germantown, MD) at Q2 Solutions (Valencia, CA).  

 Tumor content ranged from 1 to 90% in tissue regions analyzed and tumor enrichment was 

performed on all cases using AVENIO Millisect for semi-automated dissection resulting in tumor 

input of 2.5-1950mm2 (Supplementary Table 1) that excluded any surrounding normal tissue and 

necrotic regions from capture and analysis (Supplementary fig. 2). Cases with input less than 

30mm2 were removed from the analysis. Matched normal tissue was dissected from separate tissue 

blocks in regions >5cm away from any tumor mass for DNA extraction. 

  

Multi-region sequencing and exome data analysis 

The quantity of isolated DNA and RNA was determined using a Qubit, and the quality 

and fragment lengths were confirmed using a BioAnalyzer.  DNA sequencing libraries were 

created with Agilent SureSelectXT and libraries were used for hybridization and capture with 

SureSelect All Exon V6 bait probes at Q2 Solutions (Valencia, CA).  Whole-exome sequencing 

(WES) coverage was approximately 75 million 100bp paired-end reads, yielding an average 

depth (before removing duplicate reads) of 150X per sample.  RNA sequencing (RNA-seq) 

libraries were generated using the RNA Access platform.  Sequencing coverage was 

approximately 50 million 50bp paired-end reads per sample.  DNA and RNA sequence read 

alignments were performed using GSNAP 20, which was run within the HTSeqGenie pipeline for 

sequence read alignment and QC (see 
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https://bioconductor.org/packages/release/bioc/html/HTSeqGenie.html). Full alignment statistics 

for RNA-seq can be found in Supplementary Table 5.  

Somatic mutation calling was performed using Strelka v1.0.14 21 and LoFreq 22, and a 

combined VCF file containing the union of calls from the two callers was generated for each 

sample.  Somatic mutation calls were carefully filtered using read coverage, VAF, allele 

frequency in normal sample (NAF), and ExAC (Exome Aggregation Consortium) GMAF (global 

minor allele frequency) criteria such that only high confidence mutations were included in 

downstream analyses.  To be included in downstream analysis, a mutation had to meet the 

following criteria: VAF >= 0.05 in at least one sample, a coverage minimum of 20 reads in at 

least one sample, a maximum ExAC GMAF of 0.01, and a maximum NAF of 0.01.  

Mutational signatures were generated using the MutationalPatterns R package 23. Clonal 

copy number analysis was performed using TitanCNA 24.  Identification of putative neoantigens 

was performed using custom code to annotate and translate in silico transcripts containing the 

mutations to mutant peptide sequences. HLA class I alleles were called from the matched normal 

exome sequencing data for each patient using HLA-HD 25.  Neoepitope presentation was then 

predicted for tumor-specific peptides of length 8-11 using the eluted-ligand mode of 

NetMHCpan-4.0 26.  

Sample and sequencing data quality control was performed using several metrics from 

the sequencing alignments, somatic mutation calls, and copy number calls. For each sample, the 

number of uniquely mapping reads and cumulative coverage distribution were first examined, 

followed by VAF distributions, and finally genome-wide logR signal for somatic copy number. 

Tumor samples that had compressed VAF distribution (median VAF < 0.1 and IQR < 0.5) or low 

median logR values when visualized in IGV were removed from the analysis. These QC 
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procedures led to the removal of four lymph node samples from the NSCLC case, as well as one 

primary tumor region from the CRC2 and RCC cases. All downstream analyses were performed 

using custom scripts in R. 

 

Phylogenetic analysis 

Mutation matrices were constructed for each patient by joining together the VAF values 

for the mutations called in each tumor region.  The VAF values were binarized to a discrete 

character set (0=absence and 1=presence of the mutation in the sample), and the binarized 

mutation matrices were used to plot heatmaps and to create mutational trees (fig. 2). The full set 

of input mutations passing the previously described filters was used. An additional “GL” 

(germline) sample was introduced as an out-group containing all zeroes, setting the ancestral 

state of all the tumor mutations. Tumor mutational phylogenies were constructed with the R 

package phangorn 27. For each patient, a maximum parsimony tree was generated using the 

parsimony ratchet method 28 implemented in the function phangorn::pratchet(). Branch lengths 

were determined by the Hamming distance between all the samples involved in a tree as an input 

to the non-negative least squares method implemented in the function phangorn::nnls.phylo().  

Finally, bootstrapping to estimate the confidence of the tree topology values was performed by 

re-sampling 100 trees from the data using the function ape::boot.phylo() from the ape R package 

29.  Tree plotting was then performed using standard R functions. 

 

Global clonality analysis and VAF/CCF comparisons 

 A mutation was called “global” if it was found in all regions of a given tumor.  The 

percent global for mutations in each tumor sample was calculated as: 
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Eq (1) .  .
. .( )

 × 100  

 

In contrast, the total global fraction (equivalent to the percentage of all unique mutations in a 

tumor that are shared across all tumor regions) was calculated as: 

 

Eq (2) .  
.  .(  )

  

 

VAF was calculated using the standard approach per mutant site:  

 

Eq (3) .  
.  

  

 

emp-CCF was calculated following the method of Turajlic et al. 10 : 

 

Eq (4)  × (  × (1 )  (  × ) )
 × 

 

 

where p is estimated tumor purity from TitanCNA, CNn is the total copy number for the 

overlapping segment in the matched normal sample (assumed to be 2 in all cases), CNt is the 

total copy number for the overlapping segment in the tumor sample, and CNm is the copy number 

of the mutant allele.  An important exception was that CNm was assigned a fixed integer value for 

each mutation, using the MajorCN value for the overlapping segment from TitanCNA. In 

calculating emp-CCF, there were approximately 100 mutations across the five cases where the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.434617doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?ocTkgI
https://doi.org/10.1101/2021.03.15.434617


12 

tumor purity integer CNA values appeared incorrect, and there was no clear way to determine the 

correct integer copy number (these mutations were removed from the analysis). Additionally, 

there were approximately 50 mutations where VAF, local copy number, and/or tumor purity 

were incorrect and the CCF values were slightly greater than 1 (we adjusted these to emp-

CCF=1). 

Clust-CCF was determined by providing the combined somatic mutation calls (union) 

from Strelka and LoFreq and the CNA calls from TitanCNA to phyloWGS v1.0-rc2 18.  

PhyloWGS was run with standard parameters, including 1,000 burn-in samples and 2,500 

MCMC samples.  The highest likelihood tree was then taken, and the resulting phi values for 

each cluster were converted to clust-CCF values using phi/max(phi).  

 

Neoantigen depletion analysis and RNA expression signatures 

Quantification of neoantigenic allele expression was performed using custom R and 

Python code to count variant and reference allele-containing read pairs. The Python code made 

use of pysam (https://github.com/pysam-developers/pysam), which wraps samtools 30. The ratio 

of variant-containing read pairs to total read pairs was multiplied by the gene-level RPKM to 

estimate a variant-containing RPKM. To assess neoantigen expression as a function of 

neoantigen presentation, the variant allele counts, as well as the variant RPKM values, were 

compared for neoantigens with ELmut <= 2 (presented) and those with ELmut > 2, using Mann-

Whitney U tests. Where appropriate, correction for multiple testing was performed using the 

method of Benjamini and Hochberg 31. 

RNA-seq data was used to estimate the relative infiltration of B cells, dendritic cells, 

macrophages, neutrophils, NK cells, CD4 T cells, CD8 T cells, CD8 T-effector cells, Th1 cells, 
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and Th2 cells in tumor samples.  Gene expression signatures were derived for these cell types 

using the Danaher et al. method 32.  The mean cross-sample-normalized expression values of cell 

type signature genes was then used as a proxy for the relative infiltration of each cell type. The 

correlation of the CD8 T cell signature and the IHC CD8 density estimates was then assessed. 

 

IHC analysis 

Immunohistochemistry (IHC) was performed on 4um thick formalin-fixed, paraffin-

embedded tissue sections mounted on glass slides. IHC for PD-L1 clone SP263 (Roche Tissue 

Diagnostics, Tuscan, AZ, cat 790-4905) was performed on the Ventana Benchmark XT platform.  

The slides were pretreated with CC1 for 64 min followed by primary antibody incubated for 16 

minutes at 37℃. The antibody was detected with the OptiView DAB IHC Detection Kit.  

PanCK (vendor) and CD8 (vendor) duplex chromogenic IHC was performed using 

established methods on the Ventana Discovery Ultra. The fraction of viable tumor cells (%) that 

express membrane PD-L1 were quantified. The overall immune phenotype was classified as 

desert, inflamed, excluded based on the predominant (>10%) location of CD8 positive cells in 

relation to the tumor. Automated slide assessment was performed quantitatively using 

Visiopharm analysis software. Tissue area that was positive for the panCK was used to generate 

an epithelial tumor mask and the relative surface area of CD8 positive cells within stromal and 

epithelial tumor compartments was determined using Visiopharm software applications. CD8 

density as absent (0), low (1), moderate (2) or high (3) in intratumoral panCK positive areas and 

intratumoral panCK negative (stromal) areas was captured and calculated as an H-score.  

  

Results 
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MR-seq analysis reveals distinct evolutionary modes across indications and clade-specific 

neoantigens 

We reasoned that characterizing mutation presence/absence and mutation expression 

across tumor regions could yield insights into how neoantigens and their related properties are 

distributed across lesions in metastatic cancer patients. We therefore used MR-seq to identify 

somatic mutations (WES), to determine their expression levels (RNA-seq), and to predict 

neoantigens from the in silico translated mutant peptide sequences across tumor regions. We 

sequenced 42 tumor regions across 5 patients, including 15 primary regions and 27 regions from 

metastases, as well as a matched normal sample distant from the tumor from each patient (Table 

1). Following sample quality control procedures, 36 tumor regions with WES and 35 tumor 

regions with RNA-seq were used for downstream analyses. Somatic mutation analysis revealed 

the expected patterns of base substitution and mutational signatures previously established for 

each indication (Supplementary Fig. 3) 33,34,35–37. Several known driver mutations and CNAs 

commonly associated with each indication were identified in each tumor (Fig. 2A, 

Supplementary Fig. 4), and these alterations were generally globally present across tumor 

samples. 

Phylogenetic analysis of binarized somatic mutations from each tumor identified striking 

cross-indication differences in how mutations were or were not shared across tumor lesions. 

While the term “truncal” can be used to describe individual mutations or overall phylogenies, we 

use it to describe a mode of tumor evolution in which a single clone grows out and persists 

through metastasis. In contrast, “branching” refers to a mode of evolution in which multiple 

mutationally distinct tumor clones grow out early in tumor development.  (See Fig. 1B.)  The 

CRC2 and RCC cases followed a branching evolutionary mode, with low proportions of globally 
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clonal mutations (Fig. 2A and B).  The early branching in these cases led to a relative dearth of 

globally clonal neoantigens, with 15 in CRC2 and nine in RCC.  In contrast, the NSCLC and 

UBC cases followed a predominantly truncal evolutionary mode, with higher proportions and 

absolute numbers of globally clonal mutations (Supplementary Table 2).  The CRC1 case 

appeared intermediate between these two groups of cases.  These results are generally consistent 

with previous findings in these indications 9,38,39.   

Notably, the CRC2 and RCC cases each harbored sets of clade-specific shared mutations 

(or in evolutionary terms, a “synapomorphies”) that were shared by distinct tumor lesions and 

regions.  In the RCC case, there were 36 clade-specific mutations (10 clade-specific 

neoantigens): 28 mutations (7 neoantigens) were exclusive to the liver met, and 8 mutations (3 

neoantigens) were exclusive to the IVC met.  In the CRC2 case, there were 74 clade-specific 

mutations (15 clade-specific neoantigens): 14 mutations (3 neoantigens) were exclusive to the 

LN1, LN2, OM, and SN mets, 28 mutations (5 neoantigens) were exclusive to the primary 

regions, LN3 and liver met, and an additional 32 mutations (7 neoantigens) were exclusive to the 

liver met.  Thus, considering clade-specific neoantigens in addition to globally clonal 

neoantigens would effectively double the total set of neoantigens shared across tumor regions in 

both of these cases.  

  

Globally clonal neoantigen numbers and proportions vary consistently across indications 

MR-seq provides an ability to measure both the total numbers and proportions of globally 

clonal neoantigens across indications.  We reanalyzed 103 published MR-seq cases from several 

studies to determine how the abundance of global mutations varied across the same four 

indications 9,38,40–43.  We found that the total numbers of global mutations varied nearly seven-
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fold across indications, with RCC on the low end (median, 26) and NSCLC on the high end 

(median, 173) (Fig. 3).  We then inferred which of these mutations would represent likely 

neoantigens, and found that the median number of global neoantigens in these indications ranged 

from 12.8 in RCC to 86.5 in NSCLC.  CRC and UBC fell in between, with UBC tumors having 

more global mutations and neoantigens and CRC tumors having fewer.  A caveat of this analysis 

is that we were not able to match disease stage across indications, with NSCLC in particular 

having almost no published metastatic MR-seq cases. 

 

Proportions of globally clonal mutations differ when sampling single primary versus single 

metastatic tumor sites 

Because most neoantigen-specific immunotherapies rely on up-front identification of 

somatic mutations from tumor sequencing data, we sought to understand how well a given tumor 

sample could capture globally clonal mutations.  To address this, we considered the set of 

mutations found in all samples from a given patient to represent the globally clonal set and then 

asked what percentage of the mutations found in a given tumor sample were in that set (Fig. 4A, 

see Eq. 1 in Methods). We note that the percentage of mutations that are global per sample 

(“percent global”) is equivalent to the predictive value of that tumor sample for the identification 

of globally clonal mutations. Thus, a tumor sample with 60% global mutations would yield a 

~60% probability of identifying a global mutation when choosing randomly. Samples with a 

higher percentage of global mutations should therefore have an inherently higher likelihood of 

yielding global neoantigen targets for immunotherapy. 

The percent global for each sample tended to vary across samples and patients and was 

also associated with indication (Fig. 4A). Across the five cases, the median percent global varied 
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from 20% in the RCC case to 70% in the NSCLC case. Percent global was also negatively 

correlated with the number of mutations per sample, suggesting that samples with fewer 

mutations may yield a higher proportion of global neoantigens on average. In the CRC1 and 

NSCLC cases, primary samples tended to have fewer mutations and higher percent global, 

whereas metastasis samples tended to have more mutations and lower percent global. Although 

this trend did not clearly hold across the other cases, it was notable that all but one primary 

sample had at or above the median percent global mutations across all five cases.  Finally, the 

lymph node metastases in the NSCLC case likely suffered from severe mutation under-detection 

due to inadequate tumor input secondary to low tumor area in the sample (Supplementary Fig. 2 

and Supplementary Table 1).  

         It has been suggested that sequencing a second tumor sample can help enrich global 

mutations 44. We tested how consistently second samples would enrich for global mutations 

using mutation set analysis (Supplementary Fig. 5). We found that although a second sample 

would help at least modestly in all five cases, it led to the best enrichment of global mutations in 

the CRC1 case, which had numerous singleton mutations, or mutations found in only one tumor 

region, in some samples. In the CRC2 and RCC cases that demonstrated a moderate number of 

singleton mutations, sequencing a second sample would enrich both global mutations and clade-

specific mutations. The NSCLC case harbored relatively few singleton mutations across samples, 

and a second sample would have only marginal benefit. Sequencing an additional tumor sample 

in some indications could therefore help, but does not readily allow one to distinguish clade-

specific mutations from global mutations. 
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VAF and emp-CCF, but not clust-CCF, can enrich for globally clonal neoantigens in single 

tumor samples 

Having established the percent global mutations found in each sample, we next asked 

whether standard mutation abundance metrics, as determined from single samples, could be used 

to enrich for global mutations. We compared single-sample VAF to the number of regions in 

which a mutation was present.  As expected, higher VAF was significantly associated with 

mutation presence in multiple regions across all five cases (Fig. 4B).  Global mutations had 

median VAF ranging 1.2-2.5-fold higher than that of singleton mutations, suggesting that VAF 

alone could enrich global mutations in single tumor samples. We next compared emp-CCF to the 

number of regions in which a mutation was present. Higher emp-CCF was significantly 

associated with mutation presence in multiple regions across all five cases, and global mutations 

had median emp-CCF ranging 1.4-2.7-fold higher than that of singleton mutations (Fig. 4C). 

This suggested that emp-CCF may be marginally better at enriching for singleton mutations than 

VAF, but with important technical caveats related to tumor purity and local copy number 

estimation (see Methods).    

We next compared clust-CCF to the number of regions in which a mutation was present.  

Surprisingly, clust-CCF values were poorly associated with mutation presence in multiple 

regions, and median clust-CCF was not substantially higher among global mutations compared 

with singletons except in the RCC case (Fig. 4D). Although many somatic mutations had to be 

dropped from this analysis due to the requirement for overlapping copy number segments in all 

tumor regions (see Methods), we note that this did not explain the poor association of clust-CCF 

with global mutation clonality, as VAF from the same subset of mutations was still robustly 

associated with global mutation presence across all five cases (Fig. 4E). 
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Additionally, we noticed that the presence of even minimal mutant allele expression 

significantly enriched for globally clonal mutations (Supplementary Table 2).  Across all five 

cases, comparisons of the total global fraction (see Eq. 2 in Methods) for expressed mutations 

versus for all mutations suggested that the presence of mutant allele expression in a tumor 

sample provided a robust enrichment of global mutations (CRC1: OR=3.7, p=10-5; CRC2: 

OR=2.3, p=5x10-4; NSCLC: OR=1.8, p=2x10-3; RCC: OR=3.0, p=9x10-4; UBC: OR=2.5, p=10-4 

by Fisher’s exact test). 

 

Evidence for PD-L1 and CD8 heterogeneity  

         It has long been recognized that levels of CD8+ T cell infiltration and PD-L1 expression 

within the tumor microenvironment provide important information regarding patient prognosis 

and likelihood of response to treatment. While thorough investigations into each of these 

biomarkers across several indications has been done45,46, to our knowledge, analysis of 

differences across primary and metastatic regions at a single time point has not been performed. 

We therefore investigated tumor CD8 levels and CD8+ T cell localization as well as PD-L1 

tumor and immune cell expression by immunohistochemistry. We detected significant PD-L1 

tumor and immune cell expression heterogeneity across both primary and metastatic regions and 

in some tumors in multiple indications (Fig. 5C, D). In the UBC case in particular, regional PD-

L1 variability was present and would have impacted histopathologic classfication based on 

standard scoring algorithms for UBC, an indication where scoring could impact treatment 

decisions; however, only one region for this case (a lymph node metastasis with less than 25% 

tumor cell PD-L1 expression) would have produced scores leading to a different treatment 

decision for the patient. Intraepithelial and intrastromal CD8 density was also heterogeneous 
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across regions, but primary or metastatic regions tended to demonstrate similar levels of 

intraepithelial or intrastromal CD8 cell infiltration in some cases (Fig. 5A, B). Interestingly in 

the RCC case, CD8 intraepithelial and intrastromal content was higher in regions of tumor 

thrombus and metastatic regions compared to primary regions, which could support branching 

evolution in the development of these distinct regions or represent less well-established 

immunosuppression (Fig 5A, B).  Estimated neoantigen load was not significantly correlated to 

tumor intraepithelial CD8 levels assessed by H-score (Fig. 5E), with the RCC case being a 

possible exception.  

 

Neoantigen depletion in NSCLC, RCC, and UBC cases occurs via distinct mechanisms 

Previous studies have suggested that neoantigens can become depleted in untreated 

tumors via genomic deletion or expression down-regulation to enable tumor escape following 

immune recognition 15.  We systematically examined the five metastatic cases for evidence of 

neoantigen depletion by mutation loss via copy number alterations (genomic deletion or LOH 

spanning the mutation), loss of mutant allele expression, and genetic loss of class I HLA alleles.  

We first looked for neoantigenic mutations (those giving rise to peptides with minimum ELmut 

scores <2) with overlapping copy number loss alterations in multiple tumor regions.  We 

required that either the mutation VAF be reduced in regions harboring the CNA loss, or that the 

CNA be in mutually exclusive tumor regions relative to the neoantigenic mutation.  Overall there 

were relatively few instances of genetic neoantigen loss, although at least one neoantigenic 

mutation found in one tumor region of the NSCLC primary was lost from a metastasis region as 

well as other primary regions due to copy number loss (Supplemental Table 3).  Similarly there 

were a few neoantigens that were present in the RCC primary tumor but lost in all regions of the 
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liver metastasis.  These apparent neoantigen losses represented a small proportion of the total 

neoantigens in these cases, and overall neoantigenic mutations were not enriched in regions of 

CNA loss relative to all nonsynonymous mutations.  This observation held true whether RNA-

seq support for the alternative allele was disregarded (Supplementary Table 3A), or required 

(Supplementary Table 7A).  

We next looked for expression depletion of neoantigens using two approaches.  We first 

looked for variable mutant allele expression across regions of each tumor (lower mutant allele 

expression for mutations encoding neoantigens in a subset of tumor regions), and then asked if 

there was a clear trend where non-primary regions had significantly lower expression than 

primary regions.  We did not find substantial evidence for neoantigen expression depletion using 

this approach.  We next looked for association of mutant allele expression with neoantigenic 

status, and we found a significant trend in the UBC case where neoantigenic mutations had 

consistently lower expression across tumor regions than non-neoantigenic mutations (Fig. 6A 

and B).  This trend could be observed either in aggregate or when looking across individual UBC 

tumor regions, and was statistically significant in three of eight regions (Supplementary Fig. 6A).  

One of eight regions retained statistical significance after correction for multiple testing 

(Supplementary Table 6A).  With use of raw alternative allele-supporting read counts as an 

alternative metric, 7/8 of the comparisons were significant after multiple testing correction 

(Supplementary Fig. 6B, Supplementary Table 6B).   These results suggested that the UBC 

tumors may have employed neoantigen expression depletion as a mechanism to evade immune 

surveillance.  We identified 14 candidate neoantigens that were shared across tumor regions and 

appeared to mediate the depletion effect, as when these neoantigens were removed the trend 

largely disappeared in all tumor regions (Supplementary Table 3, Supplementary Fig. 7).  
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Notably, we did not observe similar neoantigen depletion trends in any of the other four cases 

(Supplementary Fig. 8).  We also found a consistent gene expression signature of inflammation 

in the UBC samples composed of dendritic cells and CD4 T cells (Fig. 6C), consistent with 

immune-based selection driving neoantigen loss as has been previously observed 15 despite 

heterogeneity in the CD8-based IHC classification.  We looked for evidence of similar 

neoantigen depletion in two independent UBC cohorts, the TCGA BLCA cohort 36 and the 

IMvigor210 clinical trial cohort 47.  In the IMvigor210 cohort, tumors with putative neoantigen 

expression depletion were present but relatively rare (5-8%, Supplementary Fig. 9 A-C).  This 

rarity was not surprising as most tumors may harbor only one or two strongly immunogenic 

neoantigens, whereas a tumor would need to have several immunogenic neoantigens undergoing 

expression downregulation for neoantigen depletion to be detected following this approach.  The 

signal of neoantigen depletion was also potentially present but less apparent in the TCGA BLCA 

cohort (Supplementary Fig. 9 D-F). 

Finally, we looked across the five cases for evidence of loss of neoantigen presentation 

via HLA allele loss, which has been shown to be prevalent in NSCLC (McGranahan Cell 2017).  

Using a custom method for detecting HLA loss, we observed clonal single-allele loss of HLA-

A/B/C genes in the NSCLC tumor via copy neutral LOH, and non-clonal single-allele loss of 

HLA-A/B/C in the liver metastasis of the RCC tumor via genomic deletion (Supplementary Fig. 

10).  The NSCLC tumor was only modestly and somewhat heterogeneously immune-cell 

infiltrated (as assessed by RNA-seq and IHC) across regions (Fig. 6C), and it also did not have 

especially high tumor mutation burden (6.5-7.5 muts/Mb across regions).  Interestingly, the 

immune phenotype of the RCC liver metastasis was inflamed by both IHC and RNA-seq, 

consistent with the metastasis-specific HLA loss occurring as a result of immune recognition 
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specific to that lesion. 

  

Discussion 

iNeST relies on detecting and targeting somatic cancer mutations or neoantigens, but the 

factors underlying effective neoantigen targeting for anti-tumor activity are still coming into 

focus.  Here we have provided insight into how intratumoral heterogeneity and patterns of tumor 

evolution across indications impact neoantigen-specific therapies.  Overall our study suggests 

that a thorough understanding of region-to-region genetic variation in tumors may be important 

both to maximize the efficacy of iNeST neoantigen targeting strategies and to inform biomarkers 

for cancer immunotherapy. 

It is commonly assumed that, to ensure efficacy, iNeST should preferentially target clonal 

neoantigens, as they occur in all tumor cells.  Our results suggest that a more nuanced “clonality 

strategy” may be necessary.  They highlight that the prevalence of clade-specific neoantigens in 

certain indications, the utility of emp-CCF to enrich for globally clonal neoantigens from single 

tumor samples, and the possibility of reduced expression levels of immunogenic neoantigens are 

all important considerations.  Our cross-indication phylogenetic analyses demonstrate that 

focusing on clonal neoantigens would likely be effective in metastatic NSCLC and UBC, as 

these indications have an abundance of clonal neoantigens.  Owing to the high number of clonal 

neoantigens in melanoma, we expect this to hold true in that indication as well.  However, in 

indications with lower neoantigen loads and in which early branching evolution is common, such 

as RCC and CRC, tumors tend to harbor small numbers of clonal neoantigens.  The early 

branching evolution of these tumors can lead to relatively large numbers of clade-specific 

neoantigens, representing over half of all shared neoantigens in two of the tumors in our study 
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(CRC2 and RCC). Thus, our results suggest that prioritizing high VAF mutations based on single 

sample sequencing in order to target clonal neoantigens would overlook many targetable clade-

specific neoantigens that were not present in that sample, particularly in RCC and CRC. 

The standard clonality metric, CCF, can be calculated either empirically using linear 

normalization of VAF to tumor purity and copy number, or with informatics tools that rely on 

Bayesian clustering of VAF and also generally adjust for tumor purity and local copy number.  

In our comparisons of these metrics, VAF and emp-CCF appeared largely equivalent, with emp-

CCF having marginally better association with global mutation clonality (Fig. 4B and C).  An 

important caveat is that CCF was not evaluable for some mutations and need for post hoc 

adjustments in calculating emp-CCF due to the requirement for overlap of mutations and CNA 

calls, and also due to potentially incorrect estimation of VAF, integer CNA values, and/or tumor 

purity (CNm in Eq. 4, see Methods).  In most tumors, only a small percentage of mutations 

require VAF adjustment by local copy number.  This points to a tradeoff between achieving 

quantification accuracy for that small fraction of mutations (which requires manual intervention 

and is very laborious), or potentially simplifying the process of global mutation enrichment and 

simply relying on VAF alone.  In contrast, clust-CCF performed poorly in our comparisons with 

global mutation clonality (Fig. 4D and E).  We suggest that the analytical process (including 

VAF and copy number estimation by upstream tools) and the clustering methodology of most 

clonality estimation tools is brittle and susceptible to frequent errors in subclone quantification or 

mutation assignment given noisy and variable sequencing data.  Even with the enriched tumor 

material, as well as carefully curated sample and data quality, clust-CCF still under-performed in 

predicting global mutation clonality.  An important distinction between emp-CCF and clust-CCF 

that may partly explain this poor performance is that clust-CCF values within a single sample are 
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effectively discrete whereas emp-CCF values remain continuous.  This discretization, when 

combined with reduced “VAF resolution” due to sample quality issues inherent to FFPE 

material, may lead to the poor correlation between clust-CCF and the number of regions in which 

a mutation is present.  A potential biological confounder of this analysis is polyclonal tumor 

evolution, whereby metastases are seeded by multiple clones from the primary tumor leading to 

the presence of “shared subclonal” mutations across lesions 11.  However, this biological 

phenomenon is expected to reduce the clonality-predictive value of both VAF and CCF.  

Therefore, either VAF alone or emp-CCF can be used to enrich clonal mutations and 

neoantigens, and future work is needed toward predictive metrics for globally clonal mutations 

that result from formally modeling tumor evolutionary processes. 

Our finding that samples with fewer mutations tend to enrich for globally clonal 

mutations suggests that there may be a general tradeoff between sensitivity for mutation 

detection and enriching for globally clonal mutations.  The lymph node samples in the NSCLC 

case illustrate how poor sample quality or insufficient tumor material can lead to the appearance 

of globally clonal mutation enrichment while in fact many globally clonal mutations go 

undetected.  Similarly, samples with higher numbers of mutations may capture late-emerging 

subclones, which can sometimes seed metastases.  On the one hand this can lead to these samples 

having lower proportions of global mutations, but on the other hand it could in some patients 

point to clade-specific neoantigens.  Understanding when distinct subclones will emerge as 

metastases will be key.  

Single tumor samples are most commonly used for biomarker exploration and therapeutic 

development in iNeST. Our focus on specimen quality assurance, extensive sampling and tumor 

enrichment afforded us a data set capable of shedding more light on the impact of regional 
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sampling in the detection of neoantigens. We found that targeting primary tumors over 

metastases would give us the highest likelihood of identifying globally clonal neoantigens across 

indications. Sequencing a second sample would further improve clonal neoantigen detection 

across indications with the greatest impact in indications demonstrating increased branching. 

Additionally, samples with low tumor content tended to suffer from mutation under-detection 

due to insufficient tumor input. Lymph node metastases were regions most likely to demonstrate 

small tumor regions resulting in insufficient tumor content or area of harvest for mutation 

detection in our data set. Therefore, we show that iNeST efforts to target clonal neoantigens may 

benefit from sampling primary tumor regions that provide the highest level of tumor content 

and/or acquiring a second sample in certain indications (when clinical decision making allows 

it). 

Our systematic characterization of neoantigen quality scores, neoantigen expression, and 

HLA loss in five metastatic tumors revealed distinct mechanisms with the potential to impact 

iNeST efficacy.  We found minimal evidence for genetic loss of neoantigens via CNA in the five 

multi-region cases.  However, given the limited number of patients examined, genetic neoantigen 

loss may still occur and further studies with larger sample sizes are warranted.  The statistically 

significant neoantigen expression depletion observed in the UBC case, and the related trends in 

two additional UBC cohorts, suggested that in some patients certain neoantigens may show 

decreased expression due to immune surveillance and concomitant negative selection imposed 

on the tumor.  The selective depletion of neoantigenic mutations and the resulting depletion 

across all tumor regions suggested that the neoantigen depletion in this UBC tumor may have 

been established early in tumor development and largely maintained into metastatic disease.  

Notably, only 1-5% of neoantigens are thought to be truly immunogenic 48, and so it may be that 
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only specific neoantigens detected by the immune system relatively early in tumor development 

are subject to such expression depletion and that such immune detection is variable across 

patients.  We identified HLA loss occurring both clonally in the NSCLC case and specific to the 

liver metastasis in the RCC case.  Although both the IVC tumor thrombus and the liver 

metastasis had an immune-inflamed CD8 IHC phenotype, the liver metastasis did have the 

highest number of neoantigens overall, suggesting one possible reason for the observed HLA 

loss.  Further studies are needed to explore whether presentation of specific neoantigens by 

tumor cells leads to neoantigen depletion subsequent to immune detection, and to determine 

whether such neoantigen depletion impacts tumor response to immunotherapy. 

We note that depending on the level and type of neoantigen depletion or HLA loss, one 

might expect that a given tumor might be primed for response to immunotherapy due to the 

presence of expanded neoantigen-specific T-cells prior to therapy (if neoantigen presentation is 

reduced just below a threshold required for a robust anti-tumor response), or the tumor might be 

rendered refractory to immunotherapy if neoantigen presentation is reduced to a point where it 

cannot readily be restored.  Thus, it remains unclear whether neoantigens that have been subject 

to immune-based depletion constitute good targets for individualized immunotherapies.  

However, we note that in our study and in previous studies, tumors with signs of immune-editing 

via neoantigen depletion or HLA allele loss tend to be immune inflamed, consistent with the 

possibility that these tumors could remain responsive to iNeST or checkpoint inhibitor therapy.  

Taken together, our results suggest the following may be necessary to ensure iNeST efficacy 

across indications: (1) consider the likely mode of tumor evolution per indication and the 

inclusion of clade-specific neoantigens in indications with branching evolution such as RCC, and 

(2) consider neoantigens of various expression levels, and (3) consider the presence/absence of 
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the presenting HLA allele in the tumor when prioritizing neoantigen targets.  Our efforts to 

characterize neoantigen qualities and presentation function anticipate a broader and deeper 

collective effort to understand how selective pressures sculpt the tumor neoantigen landscape and 

ultimately to associate hallmark patterns of neoantigen depletion with potential for response to 

immunotherapy treatments. 
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Figure Legends and Tables 

Fig. 1: An example of an iNeST workflow, and neoantigen heterogeneity analysis by MR-Seq. 

(A) Individualized neoantigen-specific immunotherapy (iNeST) targets neoantigens, which are 

unique to an individual’s tumor.  A neoantigen vacccine is an example of an iNeST.  (B) 

Mutational heterogeneity in metastatic disease settings may pose a problem for iNeST targeting 

and efficacy.  Mutation/neoantigen clonality varies across indications, with melanoma and 

NSCLC having low heterogeneity (highly clonal), and CRC, RCC, and breast cancer having high 

heterogeneity (low clonality).  Predominantly primary tumors have been studied in non-

metastatic disease setting, so the benefit of global mutation clonality prediction from standard 

clonality metrics determined using single tumor samples is unclear. 

 

Table 1: Clinical sample demographics for MR-Seq data generation. Case and indication 

breakdown with regions sequenced and patient demographics are shown.  Multi-region exome 

and RNA sequencing, and IHC analysis, were performed on at least three regions from a primary 

tumor, three regions of a metastatic tumor, and matched normal tissue sampled at a single 

surgical time point. 

 

Fig. 2: Evolutionary analysis reveals clade-specific neoantigens in CRC2 and RCC cases. (A) 

Somatic mutation calls were used to create sorted binarized mutation heatmaps for each case. (B) 

The mutation data were also used to reconstruct mutational phylogenies of each tumor. The early 

branching evolutionary pattern in RCC and CRC2 cases contrasts with a more truncal pattern in 

the NSCLC and UBC cases. For the RCC and CRC2 cases, the green and blue arrows in (A) and 

circles in (B) indicate clade-specific mutations shared across multiple tumor regions. P = 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.434617doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.434617


36 

primary, LN = lymph node, LV = liver met, OM = omental met, SN = satellite nodule, C = chest 

wall met, IV = tumor thrombus, U = uretal mass, GL = germline. 

 

Fig. 3: Absolute numbers of global mutations across indications. The absolute numbers of global 

mutations per tumor were determined from published MR-seq studies.  The analysis was limited 

to cases with at least three tumor regions. The five cases from the present study are indicated by 

red triangles. Note that all published NSCLC were non-metastatic and there was some 

intervening treatment in the UBC studies. Mutation data were collected from Hu Nat Gen 2019, 

Jamal-Hanjani NEJM 2017, Gerlinger Nat Gen 2014, Lamy Cancer Res 2016, Faltas Nat Gen 

2016, Heide J Pathol 2019. Median global neoantigens were inferred by multiplying the 

observed ratio of neoantigens to mutations in the current study by the median number of 

mutations in the published studies, in an indication-specific fashion. *The number of global 

neoantigens in the UBC case in the present study is lower than expected due to many 

neoantigenic mutations not being expressed (see Supplementary Table 2 and Fig. 6). 

 

Fig. 4: Predictive value of individual tumor samples for globally clonal mutations, and 

comparison of VAF, emp-CCF, and clust-CCF with mutation presence across tumor regions. (A) 

MR-Seq can inform tissue sampling for iNeST. The “percent global” statistic can also be used as 

a measure of predictive value for each tumor region for globally clonal mutations (those found in 

all regions). Primary samples generally had higher predictive value for clonal mutations than 

metastasis samples did. Mets tended to have more mutations (p=0.03), consistent with later clone 

emergence. Some lymph node samples suffered from severe under-detection of mutations due to 

inadequate tumor tissue area, and were removed from all analyses (see Methods). (B) Variant 
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allele frequencies (VAF) are plotted for mutations found in different numbers of regions for each 

case.  The VAF distribution for singleton mutations (those found in just one region) are at the 

left-most x-axis position , and the VAF distribution for globally clonal mutations (those found in 

all regions) are at the right-most x-axis position of each box plot as the number of regions 

increases from left to right on the x-axis.  The p-value from a Kruskal-Wallis test (VAF ~ 

num_regions) is indicated in parentheses next to each case name, as well as the ratio of median 

VAF for clonal mutations divided by the median VAF for singleton mutations (“m.r.”). (C) 

Empirical cancer cell fractions (emp-CCF), as calculated using Equation 4 (see Methods) are 

plotted for mutations found in different numbers of regions for each case.  Results from similar 

analyses as performed in (B) are shown, with p-values from Kruskal-Wallis tests (emp-CCF ~ 

num_regions). (D) Cancer cell fractions (CCF) determined by phyloWGS are plotted for 

mutations found in different numbers of regions for each case.  Results from similar analyses as 

performed in (B) and (C) are shown, with p-values from Kruskal-Wallis tests (clust-CCF ~ 

num_regions) and the ratio of median clust-CCF for global mutations divided by the median 

VAF for singleton mutations (“m.r.”).  (E) Variant allele frequencies (VAF) from the set of 

mutations passed to phyloWGS are plotted for mutations found in different numbers of regions 

for each case.   

 

Fig. 5: PD-L1 and CD8 IHC heterogeneity across indications. (A) Intratumoral CD8 T-cell 

density and (B) intratumoral stroma CD8 T-cell density across regions of each tumor by IHC H-

score demonstrate that heterogeneity across regions may influence interpretations from single 

region analysis. (C) PD-L1 positive tumor cells across cases by IHC (SP263 clone) show that 

region-to-region variation in PD-L1 IHC signal can impact interpretation of immune phenotype 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.434617doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.434617


38 

for a tumor, but this would have impacted a treatment decision in only one UBC region that 

shows less than 25% of tumor cells positive. (D) The percent of tumor area occupied by PD-L1 

positive tumor associated immune cells (immune cells present, ICP) across cases were generally 

less heterogeneous but demonstrated large differences in a few regions. (E) Neoantigen load 

correlation to tumor intraepithelial CD8 levels assessed by H-scores across regions for each case 

lacked statistical significance.  

 

Fig. 6: Neoantigen expression depletion and high immune inflammation across tumor regions in 

UBC case. (A) Sorted binary heatmap shows predicted neoantigens from the UBC case. There 

was no obvious relationship between neoantigen quality scores and neoantigen 

clonality/truncality. (B) In the UBC case, neoantigenic mutations (“neo”) had reduced mutant 

allele expression relative to non-neoantigenic mutations (“non-neo”).  This trend was observed 

across all tumor regions, and was significant in 3/8 regions. (C) RNA expression signature 

analysis for immune cell types across tumor regions for each case. The CD8 IHC category is 

indicated at top, along with the type of tumor region. There was a consistent signature of 

inflammation across most UBC tumor samples related to dendritic cells and CD4 T-cells. *Note 

that RNA-seq failed for RCC primary samples, but the CD8 IHC phenotype for these regions 

was desert. 
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Table 1. 

Case Number of 
regions

Region details Age 
(years)

Gender Comment

CRC1 6
3 primary, 2 LN met,     

1 liver met
53 Female

MSS; KRAS 
mutant

CRC2 10
3 primary, 3 LN met, 

omental met, 2 liver met
44 Male MSS

UBC 8
3 primary, 3 ureteral 

mass, 3 LN met
80 Male

RCC 9
3 primary, 3 IVC, 

3 liver 
met

62 Female
IVC tumor 
thrombus

NSCLC 12
3 primary, 3 chest wall 

met, 2+4 LN met
66 Male
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Lo et al. Supplementary Figures: 

Supplementary Fig. 1: Tissue processing, MR-seq and data analysis workflow. H&E and 

unstained slides were generated to annotate the tumor region and perform tumor enrichment 

using the AVENIO Millisect prior to nucleic acid extraction, sequencing and analysis as shown 

to identify all somatic mutations and subsequently predict neoantigens. 

Supplementary Fig. 2: Tumor enrichment using AVENIO Millisect semi-automated tissue 

dissection. Annotated digital masks (A, B) were created from H&E slides to mask tumor regions 

(B, C) and applied to serially sectioned unstained slides for milling of selected areas for tumor 

enrichment. H&E stained post-dissection slides (E, F) demonstrates tumor regions that were 

successfully dissected for entry into nucleic acid extraction and sequencing. 

Supplementary Table 1. Region types, captured metrics and rationale for region exclusion, when 

relevant. 

Supplementary Table 2. Numbers of total versus global mutations, expressed mutations, and 

neoantigens in the five multi-region cases. 

Supplementary Fig. 3: Mutation class frequencies and somatic mutation signatures across tumor 

regions. (A) Somatic mutation counts and SNV mutation flanking nucleotide contexts for all 

tumor regions of all patients. (B) Relative contribution of established somatic signatures 

(Alexandrov et al 2013) to the SNV mutational spectra of each region across all patients. 
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Supplementary Fig. 4: Copy number analysis of the five multi-region cases. (A) Copy number 

analysis of the CRC1 tumor samples.  IGV plot of median logR values for copy number 

segments from TitanCNA.  Specific CNAs with known association with CRC are indicated. (B) 

Copy number analysis of the CRC2 tumor samples.  IGV plot of median logR values for copy 

number segments from TitanCNA.  Specific CNAs with known association with CRC are 

indicated. (C) Copy number analysis of the RCC tumor samples.  IGV plot of median logR 

values for copy number segments from TitanCNA.  Specific CNAs with known association with 

RCC are indicated. (D) Copy number analysis of the NSCLC tumor samples.  IGV plot of 

median logR values for copy number segments from TitanCNA.  Specific CNAs with known 

association with NSCLC are indicated. (E) Copy number analysis of the UBC tumor samples.  

IGV plot of median logR values for copy number segments from TitanCNA.  

Supplementary Fig. 5: UpSetR analyses to address how and when sequencing a second biopsy 

would help to identify clonal mutations.  A second biopsy can eliminate “singleton” mutations, 

enriching for clonal mutations.  At the same time, sample quality is key to ensure sensitive 

mutation detection.  (A) The CRC1 and UBC cases would benefit from two biopsies, eliminating 

the singleton mutations highlighted by the blue arrows (the CRC1 case is shown).  (B) In the 

CRC2 and RCC cases, a second biopsy would enrich for clonal mutations, but cannot distinguish 

clade-specific from clonal mutations (the CRC2 case is shown).  (C) The NSCLC would have 

minimal benefit from a second biopsy due to few singletons or lesion-specific mutations. 

Supplementary Table 3: CNA based neoantigen loss in the five multi-region cases, without 
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regard for RNAseq support of mutations. (A) Summary table showing numbers of mutations lost 

via genomic deletion or LOH events in each case, along with the proportion of them that are 

putatively neoantigenic. As a comparator, the proportion of all mutations that are putatively 

neoantigenic is included. (B-F) Enumeration of mutations that exhibited mutual exclusivity with 

LOH events in individual cases - CRC-1, CRC-2, UBC, RCC, and NSCLC respectively. 

Supplementary Fig. 6. (A) Analysis of mutant allele expression versus neoantigen status for all 

somatic mutations across UBC tumor regions, and (B) analysis of alt-allele read counts versus 

neoantigen status for all somatic mutations across UBC tumor regions. 

Supplementary Table 4. Candidate neoantigens mediating the expression depletion effect across 

UBC tumor regions. 

Supplementary Fig. 7. Analysis of mutant allele expression versus neoantigen status after 

removing the 14 candidate neoantigens mediating the expression depletion effect across UBC 

tumor regions. 

Supplementary Fig. 8. (A) Analysis of mutant allele expression versus neoantigen status for all 

somatic mutations across CRC1 tumor regions, and (B) analysis of alt-allele read counts versus 

neoantigen status for all somatic mutations across CRC1 tumor regions. (C) Analysis of mutant 

allele expression versus neoantigen status for all somatic mutations across CRC2 tumor regions, 

and (D) analysis of alt-allele read counts versus neoantigen status for all somatic mutations 

across CRC2 tumor regions. (E) Analysis of mutant allele expression versus neoantigen status 
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for all somatic mutations across NSCLC tumor regions, and (F) analysis of alt-allele read counts 

versus neoantigen status for all somatic mutations across NSCLC tumor regions. (G) Analysis of 

mutant allele expression versus neoantigen status for all somatic mutations across RCC tumor 

regions, and (H) analysis of alt-allele read counts versus neoantigen status for all somatic 

mutations across RCC tumor regions. 

Supplementary Fig. 9: Evidence for neoantigen expression depletion in the TCGA BLCA and 

IMvigor210 bladder cancer cohorts. (A) The relationship between neoantigen status and mutant 

allele expression was examined for UBC patients in the IMvigor210 cohort (n=243). The 

difference in median expression for neoantigenic (“neo”) mutations versus median expression for 

non-neoantigenic (“non-neo”) mutations was determined for each patient. Barplot shows the 

number of patients with a negative sign or a positive sign from this ∆median analysis, with a 

Chi-square p-value from a test of the proportions. There were 11 patients with only neo or non-

neo mutations and these were excluded from the analysis.  (B) The table shows the specific 

numbers of patients with each ∆median sign along with the numbers of patients that individually 

showed significant differences in their “neo” versus “non-neo” expression levels (by a Wilcoxon 

rank-sum test). (C) Scatter plot of tumor neoantigen burden (“TNB”) versus ∆median for each 

patient.  Note the leftward trend of ∆median, indicative of samples with neoantigen expression 

depletion. (D) and (E) The relationship between neoantigen status and mutant allele expression 

was examined for UBC patients in the TCGA BLCA cohort (n=202).  Similar analyses are 

shown as in (A) and (B). 

Supplementary Fig. 10: Allele-specific copy number alterations in HLA-I genes across all tumor 
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regions. (A) Single allele HLA loss was detected for the HLA-A/B/C genes in all NSCLC 

samples, and in the liver metastasis samples from the RCC case.  (*) indicates there was a signal 

of HLA loss that fell just below the significance threshold. (B) Tumor/normal log ratios across 

chromosome 6p and the HLA region.  Purple lines indicate segment means for the non-HLA 

exons as determined by the copynumber::pcf() function in R.  Labeled points at right indicate the 

allele-specific tumor/normal log ratios for both alleles of all HLA-I and HLA-II genes.  Note that 

the HLA-A/B/C loss event occurs only in the liver metastasis sample (LV1), and not in the 

primary (P1) or IVC tumor thrombus (IVC1) sample. 

Supplementary Table 5. RNA-seq alignment statistics. 

Supplementary Table 6. P-values and within-patient adjusted P-values for region-level 

neoantigen vs non-neoantigen expression comparisons using A) alt RPKM or B) alt-allele read 

counts. 

Supplementary Table 7: CNA based neoantigen loss in the five multi-region cases, requiring that 

included mutations have at least two alt-allele-supporting RNAseq reads in at least one sample. 

(A) Summary table showing numbers of mutations lost via genomic deletion or LOH events in

each case, along with the proportion of them that are putatively neoantigenic. As a comparator, 

the proportion of all mutations that are putatively neoantigenic is included. (B-F) Enumeration of 

mutations with RNAseq support that exhibited mutual exclusivity with LOH events in individual 

cases - CRC-1, CRC-2, UBC, RCC, and NSCLC respectively. 
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Supplementary Table 1.

Case
Tissue 

Regions

Primary 
(P)\Metastatic 
(M) or Normal 
(N)

% Tumor 
Area

%Tumor 
Nuclei

% Tumor 
necrosis

Harvested 
Area (mm2)

Rationale for 
cases excluded

RNA 
(ug)

DNA 
(ug)

CRC-1

LV M 20 10 80 1612.5 2.800 2.170

CO P 5 3 1 369 1.378 0.763

CO P 1 0.1 1 563.1 2.302 0.998

CO P 5 25 0 652 3.724 1.478

LN N N/A N/A N/A 291.7 0.924 0.610

LN M 2 0.5 50 91.8 0.286 0.183

CRC-2

CO P 25 10 1 440.5 2.794 2.856

CO P 20 15 10 791 5.516 3.480

CO P 5 0.1 0 571

VAF distribution, 
low copy number 
signal

4.032 3.720

OM M 20 60 0 520 2.016 0.926

LN M 1 0.01 20 308.1 2.565 1.867

LN M 2 0.01 10 45.1 0.137 0.129

LN M 80 50 60 569.5 2.033 1.502

LV M 45 10 15 530.5 3.192 2.064

LV M 25 20 50 491.5 1.775 0.826

LV N N/A N/A N/A 1307.5 9.408 5.952

CO P 5 3 5 926.5 6.440 3.706

UBC

LN M 5 1 0 20.5 0.286 0.122

LN M 25 10 30 497 4.508 3.974

LN M 10 1 2 295.5 1.686 2.894

UR M 20 50 5 400 4.816 2.083

UR M 30 30 1 500 7.112 4.296

KD P 15 50 2 391.5 5.292 2.251

KD P 60 30 35 1025 4.172 3.082

KD P 10 5 30 271 1.014 0.528

KD N N/A N/A N/A 1088.5 1.193 1.354

RCC

KD P 50 30 60 516 < LOD 0.105

KD P 40 5 75 433 < LOD 0.085

KD P 1 0.1 98 941

VAF distribution, 
low copy number 
signal

< LOD 0.115

LV M 10 8 0 79 0.924 0.282

LV M 25 15 0 201 2.542 0.931

LV M 15 25 0 101 1.182 0.479

BVV M 20 40 25 397 1.182 0.749

BVV M 85 85 0 861.5 1.338 1.531

BVV M 30 80 0 212 0.812 0.231

LV N N/A N/A N/A 556.5 5.348 0.878

NSCLC

LU P 95 90 2 1472 12.432 4.445

LU P 40 20 8 721 5.768 1.982

LU P 90 40 10 1950 1.434 5.040

LN M 25 2 0 62.5

VAF distribution, 
low copy number 
signal

0.711
0.4027

2

LN M 5 1 0 22.5
Low input 
material

< LOD 0.048

SOT M 20 50 5 511 4.592 2.040

SOT M 25 40 5 315.5 5.656 1.862

SOT M 30 50 2 271 2.587 0.830

LN M 25 5 0 24.5
Low input 
material

1.333 0.931

LN M 15 0.1 5 19
Low input 
material

0.655 0.442

LN M 2 0.01 0 2.5

Low input 
material, not 
sequenced

<LOD 0.015

LN M 5 0.5 0 9.9

Low input 
material, not 
sequenced

<LOD 0.049

LU N N/A N/A N/A 1505 0.857 2.813
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Supplementary Table 2.

All mutations

Nonsynonymous 
mutations

(missense or frameshift) Expressed mutations

Expressed 
nonsynonymous 

mutations Neoantigenic mutations
Expressed neoantigenic 

mutations

patient total global
global 

fraction total global
global 

fraction total global
global 

fraction total global
global 

fraction total global
global 

fraction total global
global 

fraction

CRC1 262 74 0.28 131 44 0.34 57 34 0.60 35 26 0.74 107 39 0.36 31 23 0.74

CRC2 425 78 0.18 201 36 0.18 113 39 0.35 63 20 0.32 160 28 0.18 51 15 0.29

NSCLC 397 201 0.51 166 101 0.61 153 100 0.65 84 59 0.70 134 84 0.63 66 49 0.74

RCC 375 31 0.08 153 16 0.10 89 19 0.21 52 10 0.19 129 15 0.12 46 9 0.20

UBC 259 88 0.34 117 50 0.43 111 62 0.56 60 35 0.58 91 34 0.37 42 22 0.52

total 1718 472 0.27 768 247 0.32 523 254 0.49 294 150 0.51 621 200 0.32 236 118 0.50

total global fraction
(per tumor)

# muts present in all regions

# unique muts across all regions
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clonal amp 
(chr7)

clonal del 
(chr8p)

clonal del 
(chr18)

A

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.434617doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.434617


Supplementary Fig. 4B.

clonal del 
(chr3p)

clonal amp 
(chr8q)

clade-specific del
(chr13, 14)

B

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.434617doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.434617


Supplementary Fig. 4C.

clonal del 
(chr3p)

C

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.434617doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.434617


Supplementary Fig. 4D.
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Supplementary Fig. 5
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Supplementary Table 3A, B
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Supplementary Table 3C
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Supplementary Table 3D
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Supplementary Table 3E
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Supplementary Table 3F
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Supplementary Fig. 6
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Supplementary Table 4

chrom pos ref alt gene mut_peptide min_el_mut n_regions expr_regions

2 162396927 C T KCNH7 IVVAILGKNDIFEEMVHLYAKPGKS 0.0208 8 LN1,LN2,LN3,U1,U2,P1,P2,P3

2 178718119 G A TTN QCKVDGTPEIRIFWYKEHTKLRSAP 0.1764 8 LN1,LN2,LN3,U1,U2,P1,P2,P3

13 87676004 G T SLITRK5 NNLFRFVPLTHLYLRGNRLKLLPYV 0.2527 8 LN1,LN2,LN3,U1,U2,P1,P2,P3

6 31871375 C T SLC44A4 QQGISGLIDSLNTRDISVKIFEDFA 0.5174 8 LN1,LN2,LN3,U1,U2,P1,P2,P3

17 29969201 G A EFCAB5 MLTQVEKKKVLTKADTPSKFDPINY 0.8164 8 LN1,LN2,LN3,U1,U2,P1,P2,P3

12 8059594 C G C3AR1 DFYGDPLENRSLQNIVQPPGEMNDR 0.92 8 LN1,LN2,LN3,U1,U2,P1,P2,P3

6 39879403 G A DAAM2 LPLPQDPYPSSDIPLRKKRVPQPSH 0.9732 8 LN1,LN2,LN3,U1,U2,P1,P2,P3

5 159084705 T A EBF1 QAIVYEGQDKNPVMCRVLLTHEIMC 1.2098 8 LN1,LN2,LN3,U1,U2,P1,P2,P3

19 13877273 G T NANOS3 MGTFDLWTYYLGLAHLVRALS 0.0115 7 LN1,LN2,LN3,U2,P1,P2,P3

1 111414895 T C OVGP1 LTPVGHQSVTPVGHQSVSPGGTTMT 1.6476 7 LN1,LN2,U1,U2,P1,P2,P3

5 180792305 G A MGAT1 DLEVAPDFFEYFWATYPLLKADPSL 0.0884 6 LN1,LN3,U1,P1,P2,P3

11 116772934 C G BUD13 MAAAPPLSKAQYLKRYLSGADAG 0.752 6 LN2,LN3,U1,U2,P1,P2

19 48462126 C A KCNJ14 PPPAPCFSHVASLLAAFLFALETQT 0.0148 5 LN2,LN3,U2,P1,P3

17 7673334 C G TP53 KPLDGEYFTLQDHTSFQKENC 0.1465 5 LN1,LN2,LN3,P1,P2
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Supplementary Fig. 7
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Supplementary Fig. 8
M

ut
an

t a
lle

le
 e

xp
re

ss
io

n

A B

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.434617doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.434617


Supplementary Fig. 8
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Supplementary Fig. 8
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Supplementary Fig. 8
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Supplementary Fig. 9
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Supplementary Fig. 9
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Supplementary Fig. 10
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Supplementary Table 5
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Supplementary Tables 6A,B
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Supplementary Tables 7A,B 
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Supplementary Tables 7D,E,F 
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