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Summary 
 
Shift workers and many other groups experience irregular sleep-wake patterns. This can 
induce excessive daytime sleepiness that decreases productivity and elevates the risk of 
accidents. However, the degree of daytime sleepiness is not correlated with standard sleep 
parameters like total sleep time, suggesting other factors are involved. Here, we analyze real-
world sleep-wake patterns of shift workers measured by wearables with a newly developed 
user-friendly computational package that simulates homeostatic sleep pressure – the 
physiological need for sleep – and the circadian rhythm. This reveals that shift workers who 
align sleep-wake patterns with their circadian rhythm have lower daytime sleepiness, even if 
they sleep less. The alignment, quantified by a new parameter, circadian sleep sufficiency, can 
be increased by dynamically adjusting daily sleep durations according to varying bedtimes. 
Our computational package provides flexible and personalized real-time sleep-wake patterns 
for individuals to reduce their daytime sleepiness and could be used with wearable devices to 
develop smart alarms. 
 
Introduction 
 
In our modern 24-h society, approximately 20% of the working population is engaged in shift 
work but more than 80% of the population has a shift work-like lifestyle with atypical light 
exposure (Sulli et al., 2018). Irregular sleep-wake patterns cause shift work disorder with 
symptoms including fatigue, sleepiness, insomnia, and poorer mental agility (Drake et al., 2004; 
Foster, 2020). In particular, excessive daytime sleepiness (EDS) reduces performance efficiency, 
increases the risk of work-related injuries, and is a significant public health problem (James et 
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al., 2017; Slater and Steier, 2012). One way to reduce EDS could be to increase sleep duration. 
However, significant correlations between sleep durations or the other standard sleep parameters, 
including sleep efficiency and sleep latency, with daytime sleepiness of shift workers have not 
been identified (Gumenyuk et al., 2015; Kato et al., 2012). Furthermore, there have also been 
no connections identified between EDS and broader clinical features or features measured by 
polysomnography, i.e., in-depth sleep studies (Eiseman et al., 2012). This suggests the 
involvement of other, unknown factors in mediating the effects of irregular sleep-wake patterns. 

 

The effect of irregular sleep-wake patterns on sleepiness has also been investigated with 
mathematical models (Abel et al., 2020; Van Dongen, 2004). While the details between the 
models differ, they are mainly based on the two-process model (Borbély, 1982), which simulates 
sleep-wake patterns according to interactions between homeostatic sleep pressure (the 
physiological need for sleep, which appears to be mainly determined by the level of somnogens 
such as cytokines, prostaglandin D2 (PGD2), and adenosine (Shi and Ueda, 2018; Skeldon et 
al., 2017)) and the circadian (~24 h) rhythm of the master clock in the suprachiasmatic nucleus. 
By simulating homeostatic sleep pressure and the circadian rhythm, the models successfully 
predicted subjective sleepiness and fatigue measured during long-lasting sleep deprivation in 
laboratory studies (Daan et al., 1984; Postnova et al., 2018; Puckeridge et al., 2011; Van Dongen, 
2004), and irregular real-world work schedules (Moore-Ede et al., 2004; Van Dongen, 2004). 
While these model predictions suggested work schedules avoiding strenuous activities during 
times of high sleepiness to improve performance and minimize risks (Moore-Ede et al., 2004; 
Postnova et al., 2014), their widespread application is challenging without continual 
reinforcement (i.e., forcing a specific schedule) (Czeisler et al., 1982). Importantly, shift workers 
even with similar work schedules have dramatically different sleep-wake patterns and thus 
different daytime sleepiness (Vetter et al., 2015). This demonstrates a need for personalized and 
flexible sleep-wake schedules to prevent EDS.  

 

Here, we analyzed the relationship between daytime sleepiness and real-world sleep-wake 
patterns of individual shift workers measured by wearable wrist actigraphy. Specifically, to 
analyze the complex individual sleep-wake patterns by simulating underlying homeostatic sleep 
pressure and the circadian rhythm, we developed a publicly accessible user-friendly 
computational package based on a physiologically-based mathematical model of sleep-wake 
cycles (Phillips et al., 2010; Skeldon et al., 2017; Swaminathan et al., 2017). This analysis 
revealed that as sleep-wake patterns became more aligned with an individual’s circadian rhythm, 
daytime sleepiness decreased, even if total sleep times were similar. To effectively investigate 
this relationship, we developed a new sleep parameter that we call Circadian Sleep Sufficiency 
(CSS). CSS was strongly correlated with daytime sleepiness, unlike other standard sleep 
parameters. CSS can be increased by adaptively adjusting daily sleep duration according to the 
personal choice of bedtime day-by-day rather than by forcing a specific work and sleep-wake 
pattern, thus providing a flexible and personalized solution to reduce daytime sleepiness. The 
personalized sleep-wake patterns can be provided in real-time when the user-friendly 
computational package developed in this study is linked with wearable devices. 

 

Results 
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Daytime sleepiness is not significantly correlated with standard sleep parameters 

We measured the activity and light exposure of 21 rotating nurses from Samsung Medical Center 
(SMC) every 2-min over 13 days using wrist activity monitors (Figure 1A and Table S1). Then, 
in each 2-min epoch, the status of the participants was categorized as either wake and active, 
wake and rest, sleep and active, or sleep and rest with Actiware-Sleep software whose accuracy 
has been validated previously (Edinger et al., 2004; Kushida et al., 2001). This allowed us to 
calculate six major standard sleep parameters: time in bed (TIB), sleep latency (SL), total sleep 
time (TST), wakefulness after sleep onset (WASO), number of awakenings (#Awak) and sleep 
efficiency (SE). We expected that as daily sleep duration (i.e., TST) increased, shift workers 
would be getting as much sleep as they needed, and this would decrease their daytime sleepiness, 
which was measured by the Epworth sleepiness scale (ESS). However, TST was not 
significantly correlated with daytime sleepiness (𝑃𝑃 = 0.50 ; Figure 1B). In particular, the 
daytime sleepiness of shift workers who had similar TST (6-7 h) differed dramatically. The other 
sleep parameters were also not significantly correlated with daytime sleepiness (Figures 1C, 1D, 
and S1A-S1D). The partial correlation between the standard sleep parameters and daytime 
sleepiness controlling for demographics of nurses (e.g., Age, BMI and the number of shift 
schedules) is also not significant (Table S1 and Figure S1E). Similarly, a previous study has also 
reported that the standard sleep parameters may not have a strong correlation with the daytime 
sleepiness of shift workers (Kato et al., 2012). This indicates the need for a different approach 
to analyze dynamic and complex sleep-wake patterns of shift workers. 

 

A mathematical model is adopted to analyze dynamic sleep-wake patterns  

To analyze the sleep-wake patterns of shift workers systematically, we modified a 
physiologically-based mathematical model of human sleep-wake cycles (Phillips et al., 2010; 
Skeldon et al., 2017; Swaminathan et al., 2017) (see Transparent Methods). In the model, the 
activity of sleep- and wake-promoting neurons, and thus sleep timing and duration, are 
determined by the interaction between the homeostatic sleep pressure and the circadian rhythm 
(Figures S2 and S3). The homeostatic sleep pressure describes the physiological need for sleep, 
which increases during wake and dissipates during sleep (black line; Figure 2A). The circadian 
rhythm, entrained to the external day-night cycle, determines the sleep and wake thresholds 
(yellow lines; Figure 2A). When the homeostatic sleep pressure increases above the circadian 
sleep threshold, the transition from wake to sleep is triggered (Figure 2A (i)). Thus, the model 
would naturally fall asleep whenever the homeostatic sleep pressure is higher than the circadian 
sleep threshold (i.e., in the gray ‘sleep region’; Figure 2A). To simulate wakefulness in the sleep 
region, similar to when shift workers work through the night, we modified the model to 
incorporate a ‘forced wakefulness’ (Figure 2A (ii) and Figure S4) (Phillips and Robinson, 2008; 
Postnova et al., 2014). When the homeostatic sleep pressure passes below the circadian sleep 
threshold (i.e., in the white ‘potential wake region’; Figure 2A), the transition from sleep to 
wake can occur naturally without forced wakefulness (Figure 2A (iii) and Figure S5). When the 
homeostatic sleep pressure further decreases below the circadian wake threshold (Figure 2A 
(iv)), the transition from sleep to wake is actively triggered. To simulate sleep (e.g. oversleeping 
or nap) in this case when the model would be naturally awake, we modified the model to 
incorporate a ‘forced sleep’ (Figure 2A (v) and Figure S4) (Phillips and Robinson, 2008; 
Postnova et al., 2014). Note that due to the lower level of the circadian sleep threshold during 
the night compared to the day (Figure 2A), falling asleep during the night occurs at a lower level 
of homeostatic sleep pressure (i.e., easier to sleep).  
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A new sleep parameter, circadian sleep sufficiency, is strongly correlated with daytime 
sleepiness 

With the modified mathematical model, we developed a publicly accessible user-friendly 
computational package (Figure S6) that simulates an individual’s homeostatic sleep pressure 
based on real-world sleep-wake patterns (blue shade; Figure 2B) that were mainly estimated by 
the wrist activity monitor (see Transparent Methods). Specifically, for the individual illustrated 
in Figure 2, the simulated homeostatic sleep pressure increased and decreased during wake and 
sleep, respectively, as expected (black line; Figure 2C). In particular, the homeostatic sleep 
pressure became extremely high after night shift work before the second sleep episode. 
Furthermore, the computational package estimated the light signal transmitted to the circadian 
clock based on the measured light exposures of the participant over time (yellow line; Figure 
2B), and then simulated the circadian variation of the sleep threshold entrained to these light-
dark cycles (yellow line; Figure 2C). The overall level of the simulated sleep threshold increased 
when exposed to light during the day or during the night shift, which inhibits falling asleep.  

 

Based on the homeostatic sleep pressure and the sleep threshold simulated with the 
computational package, the duration of necessary sleep needed to wake up without effort can be 
predicted. Specifically, when people fall asleep, the computational package predicted how long 
they need to sleep so that their homeostatic sleep pressure decreased below their sleep threshold 
(into the potential wake region; Figure 2C) and thus they could wake up without effort (i.e., 
without forced wakefulness). We defined “circadian necessary sleep” as the sleep episode with 
the minimum duration required so that awakening occurs in the potential wake region (gray 
striped bars; Figure 2C). The duration of circadian necessary sleep depends on when individuals 
fall asleep and the subsequent intersection between their homeostatic sleep pressure and their 
sleep threshold, which are linked with their circadian rhythm. In the example in Figure 2C, the 
duration of the first sleep episode (black bar) is shorter than the duration of the predicted 
circadian necessary sleep (gray striped bar). This represents a situation when the individual 
wakes up before his/her homeostatic sleep pressure falls below the sleep threshold – i.e., forced 
wakefulness. We refer to this sleep episode as “circadian insufficient sleep” throughout the study. 
In contrast, the duration of the second sleep episode is longer than the duration of the predicted 
circadian necessary sleep for that cycle, meaning that the individual awakens several hours after 
their need for sleep has fallen below their sleep threshold. This is referred to as “circadian 
sufficient sleep” throughout the study.  

 

We hypothesized that having circadian insufficient sleep – i.e., sleep accompanied by forced 
wakefulness– causes EDS. To investigate this, we compared the sleep-wake patterns of three 
shift workers who had considerably different daytime sleepiness measured by ESS despite 
having similar TST (6.65-6.98 h). Specifically, we categorized their daily sleep episodes (black 
bars; Figure 3A) as either circadian sufficient sleep (blue shade; Figure 3A) or circadian 
insufficient sleep (pink shade; Figure 3A) after comparing with their predicted circadian 
necessary sleep (gray striped bars; Figure 3A). The fractions of circadian sufficient sleeps in 
total sleep episodes were dramatically different between the three shift workers (from 81.25 to 
69.23 to 50%) although they all had similar TST. Notably, as the fraction of circadian sufficient 
sleeps decreased, daytime sleepiness measured by ESS increased from 4 to 9 to 15 (Figure 3A).  
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To investigate this further in all the data recorded from the SMC participants, we developed 
a new sleep parameter, circadian sleep sufficiency (CSS), defined as the fraction of circadian 
sufficient sleeps in total sleep days during the study period. Indeed, over all the individuals, 
although there was some variation, CSS was significantly correlated with daytime sleepiness 
(𝑃𝑃 = 0.02; Figure 3B) unlike the other standard sleep parameters (Figure 1B-1D and Figure 
S1A-S1D). To the best of our knowledge, CSS is the first statistically significant sleep parameter 
for daytime sleepiness. Furthermore, CSS had a higher correlation with daytime sleepiness (𝜌𝜌 =
−0.50) than any other standard sleep parameter previously discussed (Figure 1B-1D and Figure 
S1A-S1D). In particular, in 9 participants, despite having similar TST (6-7 h), as CSS increased, 
daytime sleepiness decreased (gray dots; Figure 3B).  

 

Sleep-wake patterns aligned with the circadian rhythm increase circadian sleep sufficiency 

The duration of predicted circadian necessary sleep changed dramatically depending on the 
sleep onset time and previous sleep history (gray striped bars; Figure 3A). Thus, we further 
investigated how circadian necessary sleep was determined so that we could identify the sleep-
wake patterns increasing CSS and thus decreasing daytime sleepiness. After regular 7-h sleep-
wake patterns between 23:00 h and 06:00 h, we considered sleep onset occurring at the usual 
time (23:00 h; solid line; Figure 3C) compared to sleep onset delayed by 12-h (11:00 h; dotted 
line; Figure 3C). Unexpectedly, despite a dramatically increased homeostatic sleep pressure, the 
mathematical model predicted that the duration of circadian necessary sleep needed after the 
delayed sleep onset (patterned bar; Figure 3C) is much shorter than the duration of circadian 
necessary sleep needed after regular sleep onset (striped bar; Figure 3C). This shorter duration 
of circadian necessary sleep was due to the higher level of the sleep threshold during the day 
compared to the night, which is determined by the circadian rhythm (yellow lines; Figure 3C). 
That is, during the day, even after a short sleep, the homeostatic sleep pressure drops lower than 
the sleep threshold, and thus one can wake up without effort. Indeed, as sleep onset was delayed 
from 23:00 h to 11:00 h (Figure 3D), the duration of the predicted circadian necessary sleep 
gradually decreased by ~3.6 h. This indicates that the circadian rhythm is the key determinant 
of circadian necessary sleep. The importance of circadian rhythmicity has also been shown in 
previous studies reporting a decrease in sleep duration after sleep deprivation (Åkerstedt and 
Gillberg, 1981; Daan et al., 1984; Phillips and Robinson, 2008).   

 

As circadian necessary sleep was mainly determined by the circadian rhythm, we 
hypothesized that sleep-wake patterns aligned with the circadian rhythm increase CSS and thus 
reduce daytime sleepiness. To investigate this, we simulated two different 3-day sleep-wake 
patterns. One follows three 6-h sleep episodes across three days regardless of sleep onset time, 
which is referred to as fixed sleep (Figure 4A). In the other simulation, sleep duration was 
adjusted according to the circadian phase of sleep onset, which is referred to as circadian sleep 
(Figure 4B). Despite having the same average sleep duration and sleep onset times, in the fixed 
sleep simulation only one sleep episode was categorized as circadian sufficient sleep (Figure 
4A), while in the circadian sleep simulation all sleep episodes were circadian sufficient sleeps 
(Figure 4B). As a result, for the two circadian insufficient sleeps in the fixed sleep simulation, 
an awakening occurred before the homeostatic sleep pressure decreased below the sleep 
threshold (i.e., forced wakefulness). In real life, this situation can occur for example when using 
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an alarm clock, or be caused by a disease, or stress (Foster, 2020; James et al., 2017; Skeldon et 
al., 2017; Van Dongen, 2004). Thus, after awakening from a circadian insufficient sleep, it takes 
some time for the individual to reach their potential wake region, where awakening would have 
occurred without effort (patterned bars; Figure 4A), and thus they may feel increased daytime 
sleepiness. In contrast, an individual awakening from circadian sufficient sleep is already in 
their potential wake region (patterned bars; Fig. 4A). Furthermore, after circadian sufficient 
sleep, the homeostatic sleep pressure was lower than after circadian insufficient sleep, and thus 
these individuals could be awake for longer before reaching their sleep threshold (e.g. ~32 min 
is longer before the third sleep; Figure 4A and 4B). Thus, the time awake in the potential wake 
region was ~8 h longer in the circadian sleep simulation compared to the fixed sleep simulation 
despite having the same average sleep duration (Figure 4C). This indicates that when the sleep-
wake pattern is aligned with the circadian rhythm, the actual wake time is more likely to be 
aligned with the time of the potential wake region, and the duration of the potential wake region 
increases. As a result, there is less need for forced wakefulness, which may reflect daytime 
sleepiness. 

 

Sleep-wake patterns aligned with the circadian rhythm reduce daytime sleepiness 

To investigate whether the better alignment of sleep with the circadian rhythm was associated 
with reduced daytime sleepiness, we analyzed the sleep-wake patterns of the shift workers 
from SMC. Specifically, we investigated whether a negative relationship between sleep onset 
time and sleep duration, as predicted by the mathematical model (Figure 3D), was stronger in 
the group without EDS (ESS≤10) compared to the group with EDS (ESS>10). For this 
comparison, we considered data only from shift workers having similar TST (6-7 h). 
Furthermore, sleep episodes before a day shift (7:00-15:30 h) whose wake onsets were usually 
triggered by an alarm clock, were excluded in this analysis to focus on the dependence of 
sleep duration on the circadian rhythm rather than forced sleep restriction following previous 
studies (Åkerstedt and Gillberg, 1981). As predicted, in the group without EDS, when sleep 
onset was delayed, which occurs often in shift workers, sleep duration clearly decreased 
following the circadian rhythm (𝛼𝛼 = −0.69; Figure 4D). This relationship was weaker in the 
group with EDS (𝛼𝛼 = −0.29; Figure 4E). This indicates that shift workers who aligned their 
sleep duration with their circadian rhythm had reduced daytime sleepiness (Figure 5). This 
provides personalized and flexible sleep-wake schedules reducing daytime sleepiness (Figure 
5). 
 
Discussion  
 
We developed a user-friendly computational package that simulates the homeostatic sleep 

pressure and the circadian rhythm according to activity and light exposure, measured by wrist 
actigraphy (Figure 2 and Figure S6). Using this package, we found that shift workers whose 
sleep-wake patterns were aligned with their circadian rhythm had lower daytime sleepiness 
(Figures 3 and 4). Specifically, when they slept according to the computed duration of circadian 
necessary sleep, which was mainly determined by the circadian phase of bedtime, their sleep-
wake patterns matched with their natural sleep-wake patterns (Figure 5). In this way, they awoke 
in the potential wake region when they would feel less sleepy and thus have lower daytime 
sleepiness (Figure 5). As these results were based on a retrospective study, it will be important 
to perform a prospective study investigating whether improving the alignment of sleep-wake 
patterns with the circadian rhythm reduces daytime sleepiness of individuals. The sleep-wake 
patterns aligned with the circadian rhythm were highly variable depending on various personal 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.435366doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435366


 7 

factors including average sleep duration, bed time, and environmental light exposure (e.g., 
Figure 3A). Importantly, our computational package can provide personalized and flexible 
sleep-wake schedules reducing daytime sleepiness. 

 

With the computational package provided in this work, we were able to calculate the new sleep 
parameter CSS. As CSS quantifies the fraction of sleep episodes after which one can wake up 
without effort, it increases when sleep-wake patterns are better aligned with the circadian 
rhythm (Figures 4A and 4B). CSS showed a strong correlation with daytime sleepiness (Figure 
3B) unlike standard sleep parameters such as TST and SL (Figure 1B-1C), indicating the 
importance of the circadian rhythm to understand daytime sleepiness, as has been emphasized 
in previous studies (Mairesse et al., 2014; Postnova et al., 2018; Puckeridge et al., 2011; Van 
Dongen, 2004). Importantly, the role of the circadian rhythm to understand complex aspects of 
sleep can be conveniently investigated with CSS. For instance, CSS can be used to investigate 
whether the circadian rhythm is a major source of inter-individual variations in sleep qualities 
and sleepiness depending on work schedules (Czeisler et al., 1982; Dunster et al., 2018; Vetter 
et al., 2015) and chronotypes (Vetter et al., 2015). Furthermore, the irregular sleep-wake patterns 
accompanied with the circadian misalignment have been considered as a major risk factor for 
insomnia, obesity, and cancer (James et al., 2017; Kecklund and Axelsson, 2016). How the risk 
of getting these diseases depends on sleep-wake patterns can also be effectively investigated 
with CSS.  

 

Recent advances in wearable technology enable accurate real-time tracking of sleep-wake 
pattern and the circadian rhythm, which are critical components of our computational package 
(Cheng et al., 2021; Forger and Walch, 2020; Kim et al., 2020). A plethora of wearables have 
been developed to track sleep-wake patterns (Perez-Pozuelo et al., 2020). Recently, wearable 
devices measuring skin temperature and rest-activity successfully track the individual 
circadian rhythm during daily routine (Komarzynski et al., 2018). Even heart rate (Gao et al., 
2014) and hormonal changes (Bariya et al., 2018), which are important factors for inferring 
the circadian rhythm, can also be tracked with wearables. The incorporation of these 
wearables and recently developed personalized sleep-wake mathematical models 
(Ramakrishnan et al., 2015) with our computational package can lead to the development of a 
smart alarm (Perez-Pozuelo et al., 2020). This will provide real-time personalized wake times, 
which align individual sleep-wake patterns with the circadian rhythm and thus reduce daytime 
sleepiness for those most suffering from it, including shift workers (Kato et al., 2012), patients 
of delayed sleep-wake phase disorder (Joo et al., 2017), Parkinson’s disease (Videnovic et al., 
2017) or cancer (Sun et al., 2011).  
 
Limitations of the study 
In this work, we developed the new sleep parameter CSS which has a significant correlation 
with daytime sleepiness of shift workers which was measured by ESS. Although ESS is one of 
the most widely used metrics to measure daytime sleepiness, it is a subjective metric. Future 
work will test whether CSS is still significantly correlated with daytime sleepiness measured 
with objective metrics such as psychomotor vigilance task or multiple sleep latency test. 
Additionally, when CSS is calculated, we did not consider the degree of circadian sleep 
sufficiency due to the relatively small size of data (e.g., 1h and 3h shorter sleep than circadian 
necessary sleep are considered as the same circadian insufficient sleep). It will be an important 
future work to identify a function describing the relationship between daytime sleepiness and 
the degree of circadian sleep sufficiency with large data.  
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Resource Availability 
Lead Contact 

Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the Lead Contact, Jae Kyoung Kim (jaekkim@kaist.ac.kr). 
 
Materials Availability 

This study did not generate new unique reagents. 
 
Data and Code Availability 

SMC data that support the findings of this study are available from the Lead Contact upon 
request. The MATLAB codes of the computational package are available in the following 
database: https://github.com/Mathbiomed/CSS. The GitHub repository will be made public 
when the manuscript is accepted. 

 

Methods 

All methods can be found in the accompanying Transparent Methods supplemental file. 
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Figure Legends 
 
Figure 1. No significant correlation between standard sleep parameters and daytime 
sleepiness of shift workers. (A) Using activity (black vertical lines) and light exposure (yellow 
line) measured by the wrist actigraphy, the status of participants over time was categorized as 
either wake and active (black shade), wake and rest (pink shade), sleep and active (gray shade), 
or sleep and rest (blue shade) with Actiware-Sleep software, and then the six standard sleep 
parameters were calculated. TIB: time in bed; SL: sleep latency; TST: total sleep time; WASO: 
wakefulness after sleep onset; #Awak: number of awakenings; SE: sleep efficiency. (B and C) 
Scatter plots of TST (B) and SL (C) versus ESS of shift workers (𝑛𝑛 = 21). See Figure S1A-S1D 
for scatter plots of the other sleep parameters. Shift workers with similar TST (e.g. 6-7 h; B) had 
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dramatically different daytime sleepiness. The line represents the least-square fitting line. 𝜌𝜌 
and 𝑃𝑃  denote the Spearman’s rank correlation coefficient and p value of Spearman’s rank 
correlation test, respectively. (D) Correlations between the six standard sleep parameters and 
daytime sleepiness of shift workers were weak and not significant.  

 

Figure 2. Sleep episodes are categorized as either circadian sufficient or circadian 
insufficient with a physiologically-based mathematical model of sleep-wake cycles. (A) In 
the mathematical model, the homeostatic sleep pressure (black line) dissipates during sleep and 
increases during wake. When it becomes higher than the circadian sleep threshold (yellow solid 
line), a transition from wake to sleep occurs (i). When the model would naturally fall asleep in 
the sleep region (gray region), forced wakefulness is needed to simulate wakefulness (ii). On 
the other hand, when homeostatic sleep pressure falls below the circadian sleep threshold and 
thus the model is in the potential wake region (white region), wakefulness can be simulated 
without forced wakefulness (iii). When the homeostatic sleep pressure falls below the circadian 
wake threshold (yellow dotted line), a transition from sleep to wake actively occurs (iv). In this 
case, forced sleep is required to simulate sleep (v). See Figures S2-S5 for details. Gray and 
yellow shades on top indicate the night (22:00-6:00 h) and the day (6:00-22:00 h), respectively. 
(B and C) The computational package based on the mathematical model simulated homeostatic 
sleep pressure (black line; C) according to sleep-wake patterns (blue shade; B), which were 
estimated by measured activity (black vertical lines; B). It also simulated the circadian variation 
of the sleep threshold (yellow line; C) by estimating the light signal reaching the circadian clock 
based on measured light exposure (yellow line; B). Then, the minimum sleep duration required 
to wake-up specifically in the potential wake region (i.e., the circadian necessary sleep; gray 
striped bars; C) was calculated for each sleep episode. Compared to circadian necessary sleep, 
longer or shorter sleep episodes (black bars; C) are referred to as circadian sufficient or circadian 
insufficient sleep, respectively. Gray and yellow shades on top of (B) indicate the night (22:00-
6:00 h) and the day (6:00-22:00 h), respectively. 

 

Figure 3: CSS is significantly correlated with the daytime sleepiness of shift workers. (A) 
Sleep-wake patterns of shift workers with similar TST but different ESS. Daily sleep episodes 
(black bars) whose duration is longer or shorter than the duration of circadian necessary sleep 
(gray striped bars) are categorized as either circadian sufficient sleep (blue shade) or circadian 
insufficient sleep (pink shade), respectively. As the fraction of circadian sufficient sleeps (i.e., 
CSS) decreased, daytime sleepiness (ESS) increased. D, E, N, and O denote the day shift (7:00-
15:30 h), the evening shift (15:00-23:30 h), the night shift (23:00-7:30 h), and days off, 
respectively. (B) CSS had a strong and significant correlation with ESS. The line represents the 
least-square fitting line with the slope of 𝛼𝛼. 𝜌𝜌 and 𝑃𝑃 denote the Spearman’s rank correlation 
coefficient and p value of Spearman’s rank correlation test, respectively. (C) After regular 7-h 
sleep-wake patterns between 23:00 h and 6:00 h, simulations of sleep onset occurring at the 
usual time (23:00 h; solid line) compared to 12-h delayed sleep onset (11:00 h; dotted line). The 
duration of circadian necessary sleep needed after the delayed sleep (patterned bar) is much 
shorter than the duration of circadian necessary sleep needed after the regular sleep (striped bar). 
(D) As sleep onset is delayed from 23:00 h to 11:00 h, the duration of the predicted circadian 
necessary sleep gradually decreases by ~3.6 h.  
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Figure 4. Sleep-wake patterns aligned with the circadian rhythm increase CSS and reduce 
daytime sleepiness. (A and B) Model simulations of three 6-h sleep episodes across three days 
regardless of sleep onset time (fixed sleep; A) and three sleep episodes with durations adjusted 
according to the circadian phase of sleep onset (circadian sleep; B). Although these two sleep-
wake patterns have the same TST, two circadian insufficient sleeps (denoted as I) occur with the 
fixed sleep (A), but only circadian sufficient sleeps (denoted as S) occur with the circadian sleep 
(B). As a result, time awake in the potential wake region (patterned bars) is longer in the 
circadian sleep simulation (B) than in the fixed sleep simulation (A). (C) Quantification of the 
time awake in the potential wake region. (D and E) Alignment of sleep-wake patterns with the 
circadian rhythm of shift workers having similar TST (6-7 h) from SMC data (D and E; 𝑛𝑛 = 9). 
The group without EDS (ESS≤10; blue dots; 𝑛𝑛 = 5 ) show a much stronger negative 
dependence of sleep duration on the sleep onset time, compared to the group with EDS (ESS>10; 
red dots; 𝑛𝑛 = 4). The number of analyzed main sleep episodes which were the longest sleep 
episodes of each day (noon-to-noon) were 45 (D) and 36 (E), respectively. The line represents 
the least-square fitting line with the slope of 𝛼𝛼. 𝜌𝜌 and P denote the Spearman’s rank correlation 
coefficient and p value of Spearman’s rank correlation test, respectively.  

 

Figure 5. A sleep-wake pattern leading to circadian sufficient sleep reduces daytime 
sleepiness. Due to the alteration among day, evening and night shifts, sleep onset times of shift 
workers dramatically change. If they sleep for the same duration regardless of their sleep onset 
time, they frequently sleep less than the circadian necessary sleep, which is determined by their 
circadian rhythm and homeostatic sleep pressure, i.e., they have circadian insufficient sleep (top 
panels). Circadian insufficient sleep can be prevented if they actively change their sleep duration 
so their sleep-wake patterns match their natural sleep-wake cycle (bottom panels). As a result, 
they spend more time awake in the potential wake region when they feel less sleepy. In contrast, 
with circadian insufficient sleep, workers are awake in the sleep region, which requires wake 
effort and increases daytime sleepiness (top right). Note that the circadian insufficient sleep 
reduces the duration of the potential wake region as well. 
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