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ABSTRACT 

When it comes to the co-expressed gene module detection, its typical challenges consist of overlap between identified 
modules and local co-expression in a subset of biological samples. Recent studies have reported that the decomposition 
methods are the most appropriate for solving these challenges. In this study, we represent an R tool, termed overlapping 
co-expressed gene module (oCEM), which possesses those methods with a wholly automatic analysis framework to 
help non-technical users to easily perform complicated statistical analyses and then gain robust results. We also develop 
a novel auxiliary statistical approach to select the optimal number of principal components using a permutation 
procedure. Two example datasets are used, related to human breast cancer and mouse metabolic syndrome, to enable 
the illustration of the straightforward use of the tool. Computational experiment results show that oCEM outperforms 
state-of-the-art techniques in the ability to additionally detect biologically relevant modules. The R scripts used in the 
study, including all information on the tool and its usage are made publicly available at 
https://github.com/huynguyen250896/oCEM. 
 
INTRODUCTION 
The introduction of genome-wide gene expression profiling technologies observed so far has turned the biological 
interpretation of large gene expression compendia using module detection methods to be a crucial pillar [1-3]. Here, a 
module itself is a set of genes which are similarly functioned and jointly expressed. Co-expressed modules do not only 
help to globally and objectively interpret gene expression data [4, 5], but it is also used to discover regulatory 
relationships between putative target genes and transcription factors [6-8]. Also, it is useful to study the origin [9] and 
development [10] of complex diseases caused by many factors. 
 The nature of module detection is the use of unsupervised clustering approaches and algorithms. Those 
methods are advanced undoubtedly, but the selection of a certain clustering method for sample- and gene-clustering 
tasks is separate, in which the latter task is often more complicated. Indeed, users should predetermine the following 
limitations before applying clustering methods to gene expression. Firstly, not all of clustering methods have the ability 
to tackle the problem of overlap between modules. Whereas clustering patients into biologically distinct subgroups is 
our ultimate goal, the way to group genes into functional modules need to be more careful since genes often do not 
work alone; e.g, previous studies have reported that at least five genes work in concert [11] and that their interaction is 
associated with multiple pathways [12]. Secondly, clustering methods often ignore local co-expression effects which 
only appear in a subset of all biological samples and instead are interested in co-expression among all samples. This 
results in loss of meaningful information due to highly context-specific transcriptional regulation [13]. Thirdly, clustering 
potentially misses the regulatory relationships between genes. As the interpretation of the target expression change is 
based partly on the change in transcription factor expression [14], this information included may help to improve the 
ability of module identification. Among existing clustering methods, decomposition methods [15] and biclustering [16] 
are said to possibly handle the first two restrictions, whereas the last restriction may be solved well by direct network 
inference [14] and iterative network inference [17]. These obviously affect the selection of which clustering method in 
the context of gene expression; however, it is rarely examined sufficiently, leading to a typical example is the tool 
weighted gene co-expression network analysis (WGCNA) [18] with a hierarchical agglomerative clustering [19].  

Wouter Saelens et al [20] have conducted a holistic comparison of module detection methods for gene 
expression data and realized that the decomposition methods, including independent component analysis (ICA) [21-
23], principal component analysis (PCA) [24], and independent principal component analysis (IPCA) [25], are the best. 
In this study, we have proposed an R tool, named oCEM, which integrates these methods in the hope that it could be a 
potential alternative to rectify the limitations above. In particular, we develop a state-of-the-art statistical method, called 
optimizeCOM, to specify the optimal number of components in advance required by them. Then, the function 
overlapCEM available in oCEM helps to implement the module detection and analysis in an automatic manner. These 
help non-technical users to easily perform complicated statistical analyses and gain robust results in a surprisingly rapid 
way. We have also demonstrated a better performance of oCEM with other high-tech methods. 
 
MATERIAL AND METHODS 
Overview of oCEM 
Automatic framework of oCEM 
Figure 1 shows the automatic framework for module detection and analysis included in oCEM. Gene expression matrix 
first suffered from the two pre-processing steps as excluding outlier individuals and normalization prior to being input of 
oCEM. The result of normalization was the distribution of each gene expression was centered and standardized across 
samples. The user now put the data to oCEM, and it printed automatically out co-expressed gene modules (A module 
was determined from a particular component by using one of the optional post-processing steps), corresponding hub-
genes in each module, and analysis result of associations between each module and each clinical feature of choice 
(e.g., tumor stages, glycemic index, weight,…). Note that oCEM decomposed the expression matrix into the product of 
two or more sub-matrices by only using one of the two decomposition methods, including ICA (the fastICA algorithm) 
and IPCA (the ipca algorithm). oCEM did not include PCA because of the following reasons: (i) PCA assumes that gene 
expression follows a Gaussian distribution; however, many recent studies have demonstrated that microarray gene 
expression measurements follow instead a non-Gaussian distribution [26-29], (ii) The idea behind PCA is to decompose 
a big matrix into the product of several sub-matrices, and then retain the first few components which have maximum 
amount of variance. Mathematically, this helps to do dimension reduction, noise reduction, but the highest variance may 
be inappropriate to the biological reality [30, 31]. 
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 Since the output of the decomposition methods generally consisted of two parts, the components for genes and 
the components for samples, we, in this study, distinguished the two by the term of signatures and patterns, respectively 
(Supplementary Methods and FigureS1). When it came to the first matrix product (vertical rectangle in FigureS1), oCEM 
described the characteristic of different signatures by, between them, a set of genes of which the overlap was allowed. 
In contrast, for the second matrix product (horizontal rectangle in FigureS1), oCEM characterized each component by 
its expression patterns in biological samples. 
 

 
Figure 1. Automatic analysis framework of oCEM. Gene expression data first underwent the two pre-processing 
steps: removal of outlier samples and normalization. Then, the user could refer to the recommendation of oCEM 
regarding which decomposition method should be selected and how many component numbers were optimal by using 
the function optimizeCOM. Next, the processed data were inputted into the function overlapCEM, rendering co-
expressed gene modules (i.e., Signatures with their own kurtosis ≥ 3) and Patterns. Kurtosis statistically describes the 
“tailedness” of the distribution relative to a normal distribution. Finally, corresponding hub-genes in each module and 
the association between each module and each clinical feature of choice were identified. 
 
optimizeCOM algorithm 
As the user used oCEM to investigate co-expressed modules, the first step involved deciding how many principal 
components should be. To support the user to possibly make a good decision, we developed a R function called 
optimizeCOM. The idea behind this function was based on random permutations adapted from [32], aimed not only to 
help the user to know which method should be selected, but also to specify the optimal number of principal components 
to extract by ICA or IPCA (detailed in Supplementary Method and FigureS2).  
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Keep components with non-Gaussian distribution 
oCEM equipped with ICA and IPCA required the distributions of the signatures across genes must be as non-Gaussian 
as possible; ideally, they should be heavy-tailed normal distributions. Due to this requirement, the kurtosis was recruited, 
which statistically describes the “tailedness” of the distribution [22], and only kept signatures whose kurtosis value ≥ 3. 
 
Detection of co-expressed gene modules 
It was evident that a few genes at the tails of a heavy-tailed distribution would be the most important elements in a 
particular signature, and conversely, the influence of the majority of genes became more and more weak, or even was 
over, in that signature when they lay at the center of the distribution [22, 23]. Based on this, oCEM provided the users 
with three optional post-processing steps attached with ICA and IPCA (two for ICA and one for IPCA) to detect co-
expressed gene modules. 

For the first option of the post-processing step (“ICA-FDR” assigned to the method argument of the function 
overlapCEM), oCEM did the extraction of non-Gaussian signatures by ICA (the fastICA algorithm was configured using 
parallel extraction method and the default measure of non-Gaussianity logcosh approximation of negentropy with 𝛼  = 1), 
then the fdrtool R tool [33] modeled those signatures as a two-distribution mixture (null and alternative). The null 
(Gaussian) distribution was fitted around the median of the signature distribution. At last, a user-defined probability 
threshold (e.g., 0.1, 0.01, 0.001, …), called tail area-based false discovery rate (FDR), was chosen to distribute genes 
to modules on the condition that a gene whose FDR lesser than the threshold at a signature was assigned to that 
signature (module). Here we suggested the selection of the sufficiently stringent threshold of 0.001 if appropriate for 
robustness. 

The second option (“ICA-Zscore” assigned to the method argument of the function overlapCEM) was similar to 
the first one, but oCEM first did z-score transformation for genes in each signature. A gene belonged to a module if the 
absolute of its z-score was greater than a user-defined standard deviation threshold (e.g., 0.5 σ,1 σ, 1.5 σ,…). We 
suggested choosing the sufficiently strict threshold of 3 σ on either side from the zero mean, which picks only out a few 
genes in the tails of the distributions, at any time as possible.  

The last option (“IPCA-FDR” assigned to the method argument of the function overlapCEM) was similar to the 
first one, but here oCEM used IPCA (the ipca algorithm was configured using deflation extraction method and the default 
measure of non-Gaussianity logcosh approximation of negentropy with 𝛼  = 1) instead of ICA. This algorithm was more 
robust to noise.  

Genes at both extremes of the distribution were considered as hub-genes. The Pearson’s correlations of each 
resulting co-expressed module to each clinical feature of interest were then calculated and reported in R. 

 
Performance validation of oCEM 
Gene expression data 
We used two example data, human breast cancer [34] and mouse metabolic syndrome [35], to illustrate the 
straightforward use of oCEM as well as be convenient for comparing its ability with other tools. In particular, the first 
case study, downloaded from the cBioPortal for Cancer Genomics (http://www.cbioportal.org) [36, 37], was the 
METABRIC breast cancer cohort in the United Kingdom and Canada. The gene expression data were generated using 
the Illumina Human v3 microarray for 1,904 samples. The second case study, related to mouse metabolic syndrome 
(obesity, insulin resistance, and dyslipidemia), was liver gene expressions from 134 female mice including 3600 
physiologically relevant genes. The data were employed by the authors of WGCNA [18] to indicate how to use this tool.  
 
Comparison of oCEM with WGCNA and its improved version iWGCNA 
We used the two expression data above to validate the performance of oCEM with WGCNA and an improved version 
of WGCNA proposed by us [38], temporarily called improved WGCNA (iWGCNA) in this study. For WGCNA, we applied 
it to the gene expression data using the blockwiseModules function (v1.69). All tuning parameters were left as default. 
For iWGCNA, its improvement was that we added an additional step to the gene clustering process, the determination 
of the optimal cluster agglomeration method for each particular case. All other tuning parameters were set to their default 
value, except for the selection of the soft-thresholding value [18]. 
 To compare the power of them, we estimated the pairwise Pearson’s correlation coefficients, r, between module 
eigengenes (MEs, characterized by its first principal component) of resulting modules given by WGCNA (wME) and 
iWGCNA (iME) versus patterns (i.e., sample components) given by oCEM. This helped us to determine which modules 
could be missed by WGCNA and iWGCNA. Then, g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) (ver 
e102_eg49_p15_7a9b4d6; accessed on 20 Feb. 2021) [39] verified biological processes and KEGG pathways related 

to those missed modules. Biological processes and KEGG pathways with adjusted P-values  0.05 (G:SCS multiple 
testing correction method [39], two-tailed) were considered to be statistically significant. 
 
RESULTS 
Human breast cancer 
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Figure 2. Identification and analysis of functional modules by oCEM. (a) Venn diagram shows the overlap of the 
31 driver genes among the three functional modules (oM1, oM2, and oM3). (b) Associations of each module with each 
of three clinical features of interest. Abbreviation: lymph, the number of lymph nodes; npi, Nottingham prognostic index; 
stage, tumor stages of all the breast cancer patients; wM, iM, and oM, resulting modules generated by WGCNA, 
iWGCNA, and oCEM. 
 
In our previous study [38], the breast cancer data were used to detect 31 validated breast-cancer-associated genes, 
and we then clustered those genes to functional modules using iWGCNA. Here, we revisited the results to be convenient 
for the comparison. Due to the small number of genes, WGCNA failed to identify any co-expressions across the 1904 
breast cancer patients (the 31 genes were in wM0 or called a gray module), while iWGCNA and oCEM indicated two 
(iM1 and iM2 respective to turquoise and blue modules) and three modules (oM1, oM2, and oM3), respectively. These 
implied that the ability of iWGCNA and oCEM was better than WGCNA in the co-expressed gene module identification. 
Figure 2a indicates that oCEM discovered the three co-expressed modules including a corresponding set of genes of 
which the overlap was allowed. The correlation analyses of the three identified modules were performed automatically 
by oCEM (Figure 2b). As a result, oM1 showed a significant negative association with the Nottingham prognostic index 
only. In particular, oM3 was positively significantly correlated with all three clinical features, including the number of 
lymph nodes, Nottingham prognostic index, and tumor stages of the breast cancer patients. Besides, oCEM also 
reported the top 10 hub-genes in each of these modules, including KMT2C, BAP1, PTEN, NF1, RUNX1, ZFP36L1, 
CDKN1B, BRCA2, MAP3K1, and PIK3CA in oM1; CDH1, PIK3R1, GATA3, CDKN2A, TBX3, SMAD4, KRAS, RB1, 
MEN1, and RUNX1 in oM2; and KRAS, GPS2, SF3B1, AGTR2, RB1, NCOR1, SMAD4, ERBB3, FOXO3, and NF1 in 
oM3. 
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Figure 3. Comparison of identified modules by oCEM with those by WGCNA and iWGNCA. (a) the pairwise 
Pearson’s correlation coefficients were computed between wM0 versus oM1, oM2, and oM3. (b) the pairwise Pearson’s 
correlation coefficients were computed between iM1 and iM2 versus oM1, oM2, and oM3. Abbreviation: wM, iM, and 
oM, resulting modules generated by WGCNA, iWGCNA, and oCEM. 
 
 We further investigated the power of the three methods by estimating the pairwise Pearson’s correlation 
coefficients between the one and two modules given by WGCNA and iWGCNA, respectively, versus the three modules 
given by oCEM as described in the Material and Methods section above. As expected, one wME (100.0%) and one iME 
(50.0%) respectively showed r > 0.4 with at least one oCEM pattern (i.e., patient components), whereas only 33.3% of 
oCEM patterns correlated to at least one ME obtained by both WGCNA and iWGCNA with the same intensity (Figure 
3a,b and Supplementary TableS1). Collectively, both WGCNA and iWGCNA potentially missed two modules oM2 and 
oM3 (r < 0.4). We functionally enriched the two and realized that they possessed an overlapping set of genes significantly 
associated with regulation of gene expression and development processes, and biological pathways related to cancer 
in general and breast cancer in particular (Supplementary TableS2), suggesting that oCEM was most likely to identify 
biologically relevant modules that were not represented by WGCNA or iWGCNA modules. 
 
Mouse metabolic syndrome 
Similarly, we again applied the three tools to 2281 gene expressions in liver of the 134 female mice. As a result, WGCNA, 
iWGCNA, and oCEM detected 17, 12, and 18 modules, respectively. In this turn, four out of 17 wMEs (23.5%) and four 
out of 12 iMEs (33.3%) respectively yielded r > 0.8 with at least one oCEM pattern (i.e., mouse components). In contrast, 
those numbers for oCEM were three out of 18 oCEM patterns (16.7%) and four out of 18 oCEM patterns (22.2%) related 
to at least one wME and one iME with the same intensity, in which WGCNA and iWGCNA could ignore 15 and 14 
important oCEM modules (r < 0.8), respectively (Supplementary TableS3). We analyzed enrichment on those missed 
modules, rendering all of them associated significantly with relevant metabolic processes and pathways. More details 
of the pre-processing procedures, analysis processes, and comparisons were shown in the Supplementary Materials. 
 
DISCUSSION  
Co-expressed gene module identification and sample clustering rely mostly on unsupervised clustering methods, 
resulting in the development of new tools or new analysis frameworks [18, 38, 40, 41]. However, module detection is 
unique due to necessity of ensuring biological reality in the context of gene expression, such as overlap and local co-
expression. In this study, we therefore have presented a new tool, oCEM, for module discovery; especially, it 
differentiates from other advanced methods on the ability to identify different modules which allow having the overlap 
between them, better reflecting biological reality than methods that stratify genes into separate subgroups. The fact that 
oCEM outperforms some state-of-the-art tools, such as WGCNA or iWGCNA, in identifying functional modules of genes. 
Moreover, oCEM is sufficiently flexible to be applied to any organisms, like human, mouse, yeast, etc. In addition, oCEM 
is well able to automatically and easily do the two tasks as identification and analysis of modules. These clearly help to 
support a community of users with diverse backgrounds, such as biologists, bioinformaticians, and bioinformaticists, 
who are interested in this field. 
 When using the decomposition methods, the selection of the optimal number of principal components is vital. 
Here we also introduce optimizeCOM that performs a permutation procedure in the hope that the extracted components 
are generated not-at-random. Based on the two benchmark datasets, including human breast cancer and mouse 
metabolic syndrome, we can realize that most modules indicated by optimizeCOM are highly similar to these indicated 
by WGCNA and iWGCNA, whereas the rest are new modules significantly associated with clinical features as well as 
biological processes and pathways. Although further studies are required, these results imply that optimizeCOM has 
the potential to provide a suggestion having high value of reference before using the decomposition methods. 
 In conclusion, we believe that oCEM tool may be useful, not only to improve module detection, but also to 
discover novel biological insights in complex diseases. 
 

 

 
SOFTWARE AND DATA AVAILABILITY 

R package of oCEM and the raw data used in the study are available on GitHub 
(https://github.com/huynguyen250896/oCEM), respectively. Approval by a local ethics committee was not required, and 
all the data can be immediately downloaded.  

SUPPLEMENTARY DATA 

Supplementary Data are available at NAR online. 
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FIGURES LEGENDS 
Figure 1. Automatic analysis framework of oCEM. Gene expression data first underwent the two pre-processing 
steps: removal of outlier samples and normalization. Then, the user could refer to the recommendation of oCEM 
regarding which decomposition method should be selected and how many component numbers were optimal by using 
the function optimizeCOM. Next, the processed data were inputted into the function overlapCEM, rendering co-
expressed gene modules (i.e., Signatures with their own kurtosis ≥ 3) and Patterns. Kurtosis statistically describes the 
“tailedness” of the distribution relative to a normal distribution. Finally, corresponding hub-genes in each module and 
the association between each module and each clinical feature of choice were identified. 

 
Figure 2. Identification and analysis of functional modules by oCEM. (a) Venn diagram shows the overlap of the 
31 driver genes among the three functional modules (oM1, oM2, and oM3). (b) Associations of each module with each 
of three clinical features of interest. Abbreviation: lymph, the number of lymph nodes; npi, Nottingham prognostic index; 
stage, tumor stages of all the breast cancer patients; wM, iM, and oM, resulting modules generated by WGCNA, 
iWGCNA, and oCEM. 
 
Figure 3. Comparison of identified modules by oCEM with those by WGCNA and iWGNCA. (a) the pairwise 
Pearson’s correlation coefficients were computed between wM0 versus oM1, oM2, and oM3. (b) the pairwise Pearson’s 
correlation coefficients were computed between iM1 and iM2 versus oM1, oM2, and oM3. Abbreviation: wM, iM, and 
oM, resulting modules generated by WGCNA, iWGCNA, and oCEM. 
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