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ABSTRACT10

Despite recent works have investigated functional and effective cortical networks in animal models, the
dynamical information transfer among functional modules underneath cognitive control is still largely
unknown. Here we addressed the issue by using transfer entropy and graph theory methods on neural
activities recorded from a multielectrode (96 recording sites) array in the dorsal premotor cortex of rhesus
monkeys. We focused our analysis on the decision time of a stop-signal (countermanding) task. When
comparing trials with successful inhibition to those with generated movement we found evidence of
heterogeneous interacting modules described by 4 main classes, hierarchically organized. Interestingly,
the hierarchical organization resulted different in the two type of trials. Our results suggest that motor
decisions are based on the local re-organization of the premotor cortical network.

11

Introduction12

The brain is a complex system formed by different interconnected modules. The definition of a module13

depends on the scale of analysis. At the small scale modules are single neurons, at the large scale great-14

specialized brain areas. In between, at the mesoscale level, modules are aggregates of neurons (populations)15

of different dimensions (columns; specialized sub-regions; etc). In the last fifty years, neuroscience has16

tried to describe brain computations by linking neural activities to behaviour. At whatever scale of neural17

activity investigation, crucial is the understanding of how different modules interact and how information18

is shared and processed among parts. In this context, the neurophysiological approach to brain functions19

with recording microelectrodes provided invaluable advances, mainly in animal models1. Indeed, the high20

spatial resolution of the method proved to be suitable for linking neurons activity to behaviour, to describe21

the organization of local microcircuits and, sometimes, of the over standing larger networks2, 3. Most22

of these studies referred to the analysis of single unit (spiking) activity (SUA), others focused more on23

mesoscopic signals as the local field potentials (LFP) indicating the average synaptic input to the explored24

area (for a review see4) and, to a lesser extent, on signals sampling the average spiking activity of discrete25

populations5–7.26

Here, aiming to contribute to the understanding of the role of the dorsal premotor (PMd) cortex in27

arm motor control8–10 we studied the local spiking activity (SA) derived from a multi-electrode array and28

implemented a combined information-theory and topological approach to describe how the collective29

activity of mesoscopically-defined local modules is linked to motor decision-making. Indeed, it has been30

shown that neurons express more their contribution to complex behavioural functions either when observed31
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as coordinated functional ensembles11–19 or described as common responses to the input they receive32

(e.g., the visual stimulus orientation columns20). A paradigmatic example is the interaction between33

fixation and movement neurons in the epochs preceding saccade generation13, 14. In the present work we34

explored how information is managed among local modules in PMd for reaching control and how this35

network is arranged during either movement execution or cancellation. How different neuronal actors36

contribute to motor decisions is in fact still largely discussed, especially for brain centres involved in37

reaching control10, 21. We observed that decision-making in PMd is linked to modules of information38

management that segregate into different classes, organize hierarchically and change in relation to the39

behavioural outcome. Moreover, with topological approaches, we found that the PMd network explored40

different configurations depending on the behavioural decision. Indeed, during movement generation,41

compared to movement inhibition, information transmission among modules was more efficient requiring42

fewer steps. This demonstrates that information among population of neurons is processed differently43

during the two motor behaviours explored and suggests a new perspective on the view of how the local44

computation evolves in motor areas during action decision-making.45

Results46

We investigated, at the mesoscopic scale, the information transfer and directed connectivity patterns among47

discrete populations of neurons during the motor decision phases of arm movements. To this aim we48

extracted a measure of the local spiking activity (SA) from each electrode of a microelectrode array (up to49

96 channels) in the PMd of two male Rhesus monkeys while they performed a countermanding reaching50

task. This task (Fig. 1) required either to move (Go trials; 67%) the arm toward a peripheral target or to51

cancel the movement (Stop trials; 33%) in case of appearance of a Stop signal. The two types of trials52

were randomly presented. During Go trials, after the disappearance of the central target (Go signal) the53

monkeys were instructed to reach the peripheral target to obtain the reward. In Stop trials, after the Go54

signal, the central target reappeared (Stop signal) after a variable delay, called SSD (Stop signal delay).55

In these trials the monkeys were required to refrain from moving to earn the reward (correct Stop trials).56

If the monkey were unable to stop, the trials were classified as wrong Stop trials, and no reward was57

provided. Because the SSDs were varied according to a staircase procedure based on the performance,58

correct Stop trials constituted approximately 50% of Stop trials (see Table 1). This task allows to estimate59

behaviorally the time window during which the decision to move (or to refrain) is taken. This time window60

is commonly referred as the stop signal reaction time (SSRT; see Table 1 for the values observed in the61

present study). For the analysis of the SA, among animals and recording sessions, we used a fixed epoch62

duration (T = 400 ms). This epoch (see Figure 1; grey bar) was built on the estimated duration of the63

SSRT for each session plus a variable portion of time before the Stop signal appearance (see Material and64

Methods for details) which is irrelevant for the comparison since nothing different occur in Go trials and65

Stop trials during the time before the Stop signal presentation (see figure 2).66

Neural Recordings can be grouped in classes providing different contribution to the net-67

work information dynamics68

We investigated a total of 21 recording sessions (12 for monkey P and 9 for monkey C). For each session69

we derived a measure of the average local spiking activity (SA; see Material and Methods), from all70

neurons firing in close proximity of the tip of each electrode. From now on we refer for simplicity to these71

discrete neuronal populations as modules.72

Fig 2 shows, for each recording electrode of one example session, the SAs of both Go trials (green)73

and Stop trials (red) in the above referred epoch T. Most SAs display a clear difference between correct74
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Figure 1. Sequence of behavioural event characterizing the task. Go and Stop trials were randomly
intermixed during each session. The epoch (T) of neural analysis is shown as a grey bar. For Go trials, the
SSRT marks the time, before movement execution, that would have corresponded to the presentation of
the Stop signal. For correct Stop trials SSRT marks the time, after the Stop signal presentation, that would
have corresponded to the movement execution. RT, reaction time; SSD, stop signal delay; SSRT, stop
signal reaction time.

Stop trial and Go trials after the Stop signal (vertical red line), i.e., during the session-specific SSRT,75

reflecting the active participation of PMd in the decision to generate or inhibit reaching movements.76

Several features are observable. For example, the time of divergence between the two activities for the77

different channels was highly variable. Moreover, in some cases (e.g., channels 25 and 43) the observed78

pattern was completely opposite (more intense activity in Stop trials than in Go trials). A similar overall79

picture was evident in all recorded sessions. In short, the various modules seem to contribute to the control80

exerted on the movement to be performed by PMd in a very heterogeneous way. Of relevance, from81

these considerations nothing can be inferred about the information transfer and the functional relationship82

between different modules.83

To investigate directed information transfer between the network modules we used Transfer Entropy84

(TE), a well-established model-free information theoretic method22. In a given epoch TE can detect85

asymmetric information flows among the modules, and hence it allows defining modules acting as drivers86

(or sources) or targets of information transfer (see Materials and Methods for further details). To evaluate87

whether the different behavioural conditions of the task were characterized by different local information88

dynamics we computed TE between trial-averaged time series (i.e., in the epoch T) of SA separately for89

Go and correct Stop trials.90

We found that some of the modules were drivers in both Go and Stop conditions (Common_drivers);91

others were drivers in one behavioural condition only (Go_drivers and Stop_drivers); others were never92

drivers and just targets of information flow (Targets) (see Table 2; see Materials and methods for further93
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Figure 2. Neuronal modulation in the two behavioural conditions for all channels of a typical recording
session. Green traces show the average activity during Go trials aligned to Movement onset (rightmost
part of the plot). Red traces show the average activity during correct Stop trials aligned to the Stop signal
presentation (red vertical line). The epoch between the stop signal and the movement onset is the session
SSRT.
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Behavioural Results
Monkey P

S RT GoRT GoRT Go RTWrRTWrRTWr SSDSSDSSD SSRTSSRTSSRT Pinhibit p-value
1 590 ms 559 ms 273 ms 317 ms 0.52 p < 0.05
2 584 ms 564 ms 277 ms 307 ms 0.50 p < 0.05
3 575 ms 503 ms 293 ms 282 ms 0.69 p < 0.05
4 618 ms 592 ms 335 ms 283 ms 0.52 p < 0.01
5 868 ms 549 ms 675 ms 193 ms 0.58 p < 0.01
6 572 ms 540 ms 293 ms 279 ms 0.50 p < 0.05
7 643 ms 622 ms 382 ms 261 ms 0.51 p < 0.05
8 600 ms 568 ms 340 ms 260 ms 0.48 p < 0.01
9 656 ms 641 ms 445 ms 211 ms 0.37 p < 0.01
10 788 ms 753 ms 528 ms 260 ms 0.54 p < 0.01
11 674 ms 619 ms 418 ms 256 ms 0.56 p < 0.01
12 765 ms 721 ms 504 ms 261 ms 0.51 p < 0.01

Monkey C

1 598 ms 523 ms 322 ms 276 ms 0.57 p < 0.01
2 539 ms 460 ms 382 ms 157 ms 0.65 p < 0.05
3 561 ms 522 ms 318 ms 243 ms 0.58 p < 0.01
4 673 ms 625 ms 424 ms 249 ms 0.60 p < 0.05
5 636 ms 608 ms 396 ms 240 ms 0.55 p < 0.05
6 575 ms 533 ms 292 ms 283 ms 0.42 p < 0.01
7 667 ms 620 ms 383 ms 284 ms 0.60 p < 0.05
8 688 ms 672 ms 413 ms 275 ms 0.43 p < 0.05
9 688 ms 657 ms 402 ms 286 ms 0.60 p < 0.01

Table 1. Behavioural results. S, index of the recording session. RT Go, mean reaction time of Go trials.
RTWr, mean reaction time of wrong-stop trials. SSD, mean SSD of Stop trials. SSRT , Stop Signal
Reaction Time. Pinhibit inhibition probability. The p-values result from the independence
(Kolmogorov-Smirnov test between RT Go and RTWr).

details). Figure 3 shows, for illustrative purpose only, a schematic of a network organized as observed.94

The presence of different classes straightforwardly showed that the intrinsic composition of the PMd95

information network is heterogeneous, with some of the modules operating as drivers only in relation96

to a specific behavioral outcome (moving vs withholding). This hinted that the network configuration97

underlying information transmission changes according to the specific decision and behavioural output.98

Neuronal activity classes are hierarchically organized. Common_drivers act as main99

hubs for information transmission within PMd. Go/Stop_drivers act as hubs only in rela-100

tion to specific behavioural conditions101

To better understand the role of the identified classes (i.e, Common, Go, Stop drivers and Targets) in the102

PMd network we investigated the topology of information transmission for each recording session and103

behavioural condition. In this framework each entry (module) of the TE matrix is interpreted as a node of104
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Classes Composition
Monkey P N = 96

Class µ±SDµ±SDµ±SD
Go_drivers 6.46±2.90
Stop_drivers 13.71±3.22
Common_drivers 8.62±3.60
Targets 67.20±4.88

Monkey C N = 79
Class µ±SDµ±SDµ±SD
Go_drivers 6.78±3.93
Stop_drivers 9.56±3.78
Common_drivers 7.00±2.06
Targets 55.70±5.29

Table 2. Classes composition. For each monkey the composition of classes averaged over recording
sessions is reported. Composition is expressed as the average number of nodes (µ) belonging to each
class. SD, standard deviation. N, the number of channels available.

Figure 3. Schematic representation of a network organized with three different classes of drivers nodes
(Common_drivers, black; Go_drivers green; Stop_drivers red) and targets (grey nodes). The role of the
Go_drivers and Stop_drivers changes in relation to the condition (Go trials vs Stop trials).

the network, and each link (or connection) is the information exchanged between nodes (see Materials105

and methods for further details). To quantify the topology of information transmissions we resorted to106

different graph-based measures.107

We first computed the vertex degree (VD), i.e. the number of connections per module. A high value of108

the VD indicates that the module is connected with many others. The opposite holds for a low value of109

VD. Thanks to the asymmetry of TE, which defines drivers and targets, for each module it is possible to110

distinguish between the information directed towards other modules (V Dout) and the information incoming111
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from other modules (V Din). We examined the V Dout and the V Din distributions for each recording112

session of both monkeys and we observed that only V Dout distributions were fat-tailed (see supplementary113

Figure S1). The high values of V Dout associated to the tails indicate modules with a number of outwards114

connections that greatly exceed the average value (see Materials and Methods). These modules are network115

hubs23. The VD values, together with the direction of information flow detected by TE, allow better116

defining a hierarchy of information transmission among modules. Indeed, given a driver and a target the117

driver is always located hierarchically above the target (see Figure 8 in the Materials and Methods section)118

. Moreover, the existence of hubs means that a few modules determine the state of many others, and hence119

the global configuration of the network. Fig 4 shows the topology of PMd network in both behavioural120

conditions for an example session of Monkey P (examples from other sessions for both monkeys are121

shown in supplementary Figure S2). Each module is assigned to a class as previously obtained from122

the analysis of the TE distributions and coloured accordingly. The size of the dots here used to identify123

each module (node) reflects its V Dout value, i.e. the number of modules on which it acts as a driver. The124

arrow for each connection indicates the direction (in/out) for the information path. In Go trials (top) the125

topology documented a more centralized (in terms of V Dout) organization (star-like topology) compared126

to the Stop trials (bottom), confirming previous observations18. Indeed, in a recent study on correlation127

networks during the same task we showed that the presence of a star-like topology in the PMd network128

is the hallmark of the incoming movement. Here, by adding the insights provided by the TE analysis,129

the emerging picture is of a network changing not only in the overall organization but also in the role of130

the components. To this extent, Fig 4 shows that Stop_drivers emerge as important nodes in information131

spreading in Stop trials only.132

Figure 5 (top panels) shows, for all sessions, that the Common_drivers exhibited the highest values of133

V Dout (See Table 3 for the corresponding statistics) compared to other classes in both Go and correct Stop134

trials, thus resulting as the principal information-spreaders hubs across different behavioural conditions.135

Therefore, Common_drivers are located at the highest hierarchical level in the network as they regulate136

information transfer whatever decision, moving or stopping, is taken (see also next paragraph). Conversely,137

Go_drivers and Stop_drivers displayed a different role (different V Dout values) in Go and Stop trials,138

suggesting that the hierarchical organization of the network changes in relation to the motor decision139

process. Indeed, Stop_drivers are never hubs in Go trials and Go_drivers are never hubs in Stop trials.140

As a further measure of the organization of the PMd network we used betweenness centrality24, 25 (BC).141

BC quantifies the influence that a given node has over the flow of information between other nodes.142

Therefore, it gives a measure of how a node controls communications in a network. BC is computed as143

the fraction of shortest paths between all nodes in the network that pass through a given node. Since we144

are dealing with an information network, we used BC to quantify the capability of each node to mediate145

and route the information traffic. An high BC value indicates that a node strongly mediates information146

flow because it lies on a considerable fraction of shortest paths. Hence, nodes with high BC values are147

topological central nodes. As reported in Fig 5 (panel A, bottom) and in Table 3, we found higher BC148

values during correct Stop trials compared to Go trials meaning that during correct Stop trials information149

traverses an higher number of shortest paths. This implies that a shift toward a less direct (and hence less150

centralized in terms of V Dout) communication between nodes occurs during Stop trials only; information151

is detoured through more shortest paths resulting in a more distributed and widespread transmission. An152

intuition can be gained by noticing the arrangement of the graphs during correct Stop trials which results153

more “expanded” than the optimal star-like configuration of Go trials (see Figure 4). Analogously to154

what found during the analysis of V Dout , Go_drivers and Stop_drivers (green and red dots in Fig 4)155

displayed a different role (different BC values) in Go and correct Stop trials respectively, confirming156

the specificity of these classes in relation to the behavioural conditions. The values of BC found for the157
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Stop_drivers Go_drivers Common_drivers Targets

Go trials

Stop trials

Figure 4. Information network of Go and Stop trials for data in Figure 2. Each node is coded
accordingly to the corresponding class (see legend in the lower part of the figure). The size of the nodes is
scaled according to the corresponding V Dout , thus bigger nodes are the information-spreaders hubs (see
text for details).

Common_drivers (black dots in Fig.4) during both behavioural conditions corroborate what was found158

via the V Dout analysis: in the PMd information network they manage and distribute the information flow.159

Moreover, during movement inhibition the actors that collaborate the most with the Common_drivers in160

rerouting and reverberating communications are the Stop_drivers.161

162

To have a compact view of the overall differences between the V Dout and BC measures across163

behavioural conditions we computed a summarising index for both topological measures named central-164

ization index C24, 25. C is the total average difference between the highest value of the centrality measure165

inspected (V Dout and BC in our case) and the values assumed by all the other nodes. High values of C166

indicate that nodes with high centralities with respect to the other nodes in the network exist. C is an167

easy and intuitive way to compare the overall organization of networks in terms of centrality measures168

(see Materials and methods). We computed C for both measures for each recording session and then169

we averaged over sessions. Panel A of Figure 6 reports the average centralization indexes compared170
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between behavioural conditions for both animals (results from each sessions are reported in panel A of171

supplementary figure S3). As expected, C of V Dout (Cvd) decreases from Go to correct Stop trials while172

the opposite holds for C of BC (Cbc). This confirms, at the overall level, how information processing is173

based on different topologies during the two behavioural conditions.174

175

We then calculated the total information TEtotal processed during Go trials and correct Stop trials176

(Figure 6, panel B and supplementary figure S3 panel B). We found that during correct stop trials less177

information was processed compared to Go trials. This means that the overall changes in the topological178

arrangement of the the PMd network correspond to overall changes in the amount of information exchanged.179

More specifically, the increase in BC during correct Stop trials is accompanied by a reduction in the total180

amount of information elaborated.181

To sum up, we demonstrated with the used graph measures that classes are hierarchically organized in182

PMd during movement planning and suppression and that information is processed differently and to a183

lesser extent during correct stop trials compared to Go trials. Results revealed the Common_drivers as the184

most topological central nodes in the network with the Go_drivers and the Stop_drivers playing a crucial185

supporting role in the processing of information during movement planning and inhibition respectively.186

Different interactions among neuronal classes characterize behavioural conditions187

To summarize the interactions among classes we computed the average amount of information exchanged188

between the four classes during both behavioural conditions. To this end, we constructed a 4x4 matrix189

(I) whose generic entry is given by equation 7. We then represented the matrix I as a network in which190

each node is now a class. This makes possible to have a compact picture of the differences between191

Go and correct Stop trials in terms of interactions between classes. We calculated I (see Material and192

Methods for details) for both behavioural conditions of each recording session and we then averaged193

over sessions; results are shown in Figure 7 (see also Table 4). The Common_drivers were confirmed194

to be part of the high order class in the network since they transmit to other classes without receiving.195

Indeed, even when the Go_drivers and Stop_drivers emit information on their own, they receive from the196

Common_drivers. This means that the first ones are hierarchically located at a lower level. Moreover, the197

extent of communication of the Common_drivers with the Targets is significantly greater than that of the198

Go_drivers and Stop_drivers (see Table 4). This implies that the Common_drivers determine the global199

state of the network with Go_drivers and Stop_drivers playing a supporting role. It is worth noticing that200

the specificity of Go_drivers and Stop_drivers is confirmed by the direction of their interactions during201

behavioural conditions. In fact, during Go trials the Go_drivers transmit to the Stop_drivers helping202

the Common_drivers in the control while the opposite happens during correct Stop trials. The amount203

of information that the Common_drivers distribute in the network diminishes from Go to correct Stop204

trials. This complement and helps to better understand what said in the previous section: patterns of205

information transfer change from Go to correct Stop trials, with the network undergoing a less direct206

configuration during the latter due to an increased number of shortest paths between the nodes. Network207

interactions are consistent across recording sessions for both monkeys (see Table 4). Common_drivers are208

always hierarchically above the other classes and orchestrate communication: they transmit information to209

other classes in both behavioural conditions without receiving information from the other classes of the210

analysed PMd network. Moreover, during Go trials Go_drivers participate transmitting to the Targets as211

the Stop_drivers do during correct Stop trials.212
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Figure 5. Measures for topology of information transmission. Top panels: V Dout values compared
across behavioural conditions for all recording session. The Common class (black points) shows the
highest values of V Dout compared to other classes in both behavioural conditions (for both monkeys, all
adjusted p-values Qs < 0.01). Go_drivers and Stop_drivers show the second highest V Dout values during
Go (for both monkeys all Qs < 0.01) and correct Stop (for both monkeys all Qs < 0.01) trials respectively.
Lower panels: BC values compared across behavioural conditions for all recording session (here scaled
for simplicity to the maximum value of each session so to have values in the range [0,1]). Go_drivers and
Stop_drivers classes have, together with the Common, the highest values of BC during Go and correct
stop trials respectively (for both monkeys all Qs < 0.01). The Stop_driver class is the one with the
greatest increase (∆Stop−Go ) in BC passing from Go to correct Stop trials (for both monkeys all
Qs < 0.01). Colours reflect the neuronal classes as in Figure 4. Means and standard errors are indicated
by the diamonds and related lines. Statistics is based on the adjusted p-value (Q) obtained from
Kolmogorov Smirnoff tests and false discovery rate (FDR) correction. See Table 3 for the details.

Discussion213

In this work we investigated the patterns of information transfer in a localized cortical network (the PMd )214

directly involved in movement decision-making. We used a combined Transfer Entropy and graph-based215

approach to analyse simultaneously recorded SAs (from up to 96 channels). Our results contribute to216

move forward the knowledge on the neural basis of action decision-making at different levels.217
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Figure 6. Overall network comparison between behavioural conditions. Panel A The overall
centralization index C for both V Dout (Cvd) and BC (Cbc) measures averaged over recording sessions and
compared between behavioural conditions for both monkeys. C gives an overall topological comparison
of the information network compared between behavioural conditions. Panel B Total information
processed averaged over recording sessions compared between behavioural conditions. Cyan: Go trials.
Orange: correct Stop trials. Error bars are given by the standard error of the mean.

Figure 7. Network representation of interactions between classes in the two behavioural
conditions: Colours codes for the classes are the same of the previous figures. Uncertainties are obtained
via error propagation (see materials and methods).
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A topological approach to the organization and spreading of local information in a decision-218

making task219

The first level of advancement is methodological: we employed a graph-based approach combined with220

information theoretic measures (specifically multivariate Transfer Entropy (TE)) to investigate neuronal221

interactions underlying motor control. Although TE is growing in popularity in modern neuroscience its222

application to invasive electrophysiological data has been so far very limited and restricted to either single223

neurons or in vitro26–28 and in silico studies29. Shimono and Beggs26 used it at the single neuron level to224

investigate the structure at different scale of rodent somatosensory cortex26, 30. Timme and colleagues31
225

recorded the activity of hundreds of neurons in cortico-hippocampal slice cultures and used TE to study the226

information transfer changes therein. An early contribution to this research topic is from Gerhard et al32.227

that inspected the topology of spike trains recordings from the visual system of a rhesus monkey during a228

fixation task. However, the authors used a different approach to measure directed connectivity. Another229

contribution comes from the work of Honey33, that investigated a large-scale interregional anatomical230

network of the macaque cortex trough transfer entropy. An attempt to study voluntary action control231

through analysis of directed connectivity was made by Jahfari and colleagues34 but on human MRI data.232

Hence, to the best of our knowledge, this report is one of the very few studies that uses graph theory to233

analyse the information transfer network of a specific cortical area at the mesoscale level in vivo and234

during a behavioural task. The level of description here obtained is more detailed compared to previous235

works. Indeed, we were able to specify how the decision on whether to move or to stop is implemented236

in PMd at the population level and who are the (key) players that manage information transmission.237

Notably, in our framework neither any a priori assumption nor a specific neural modelling technique238

was needed. Our completely data-driven approach, in addition to complement the most recent models239

for motor generation and suppression35, 36, permits to overcome their main limitation which resides in240

the requirement of many biophysical parameters to be tweaked and tuned before fitting with acceptable241

accuracy the experimental data. Although is still not largely used in behavioural neurophysiological242

studies at the small and mesoscale, a graph-based conceptualization of neural interactions, united with243

information theoretic measures, can be very profitable also compared to other common approaches based244

on analysis of covariance between neurons or mesoscopic signals7, 37–40 and should be exploited more. In245

fact, these methods are not straightforward in distinguishing the specific contributions of single neurons246

(or discrete populations of neurons) to the topology of network dynamics, which is indeed the strength of247

our strategy. On one hand this range of methods allows for a fine temporal description of neural variability248

but on the other, due to their nature, are neither capable to describe the information flow between neuronal249

actors nor to provide quantitative insights on the topology of network connections and their hierarchical250

organization. Without this all spectrum of details the computational strategy underlying motor control251

(and neural circuitry computation in general) would be yet elusive. Recently, some authors have have252

started to follow the joint information theory-complex networks approach but for now, to the best of our253

knowledge, only on cortico-hippocampal31, somatosensory cortex slice cultures26 and anesthesiological41
254

data. It is known that to fully understand the neural mechanisms behind motor control future research255

should focus on cortico-cortical and cortico-subcortical interactions through simultaneous recordings. In256

this scenario a topological information-based approach would be unquestionably necessary to gain an257

overall view and elicit detailed insights.258

A race with more than two horses is in act in PMd when movements are successfully259

suppressed260

The second level of advancement concerns the novelty of our results compared to other studies, especially261

those that focused on the possible interaction among different classes of neurons during motor decision. We262
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found, in the characterized PMd network, that neuronal activities could be organized around four different263

classes and that they actively participate, even with different roles, both in movements execution and264

cancellation. This constitutes a step forward in the conceptualization of the neural processes at the base of265

movement generation since all the widely accepted models for inhibitory control of movements35, 36, 42–45
266

are deduced from the analysis of single unit firing rates and are based on the interaction of only two modules267

(or class of neurons) often reported as Go and Stop units. We instead demonstrated that information is268

hierarchically transferred between more than two actors with the Common class nodes acting as network269

hubs. This reflects the existence of a high-order complexity in functional communications and organization270

at the population level, even in small portions of the cortex, during behavioural control regardless of271

which the nature of neurons in each class might be (i.e. excitatory or inhibitory neurons etc.. ). Indeed,272

based only on the information emitted by each local module we managed to isolate both condition-specific273

and nonspecific neuronal classes. It is worth stressing that we drew our conclusion on the heterogeneity274

of neuronal classes in a completely data-driven and model-free fashion, and this strengthens the results.275

Additionally, we showed the details of how this transfer occurs at the population level and to what276

extent it depends on behavioural conditions. Our picture integrates the current view because besides277

specific classes involved in the generation (Go_drivers) and inhibition (Stop_drivers) of movements, it278

establishes the existence of a high order class (Common_drivers) not proposed in other works. This279

highlights, for the first time at the mesoscale resolution, the existence of a fine-grained organization of280

neural assemblies at the population level that handle intra-area information flow. It is worth pointing281

out that usual methods of studying neural activity profiles are not sufficient to infer all aspects of such282

architecture. The Common_drivers are higher in hierarchy with respect to the others for two reasons.283

The first is because they transmit information to the whole network without receiving from inside the284

same network. From the information theoretic point of view this indeed means that the state of the other285

classes can be better predicted by the state of the Common compared to that of the other classes. Thus,286

the state of the whole local network depends on the state of the Common_drivers. The second one is287

topological, being the Common_drivers the most widespread hubs across behavioural conditions. The288

found subdivision in classes, the presence of hubs and topological central nodes deputed to the rerouting289

of communications reveal that the cortical information dynamics behind motor control is extremely rich290

and cannot be entirely explained by the current proposed models. The found topology also implies that291

the presence of high-degree nodes is a constituent feature of neural processing in a cortical network292

directly involved in cognitive control, as is the PMd. This is consistent with our previous study18 in293

which we showed how the functional PMd network organization differs between movement generation294

and inhibition in terms of hierarchy and centrality of nodes. It is also in agreement with other works that295

found fat-tailed degree distributions in silico46, in cortical and hippocampal in vitro networks26, 47–50, in296

vivo51 and structural networks33. We found that the arrangement of the PMd information network depends297

on the behavioural condition, passing from a centralized star-like state during movement planning to a298

different one during movement inhibition characterized by high values of Betweenness Centrality and299

a minor transfer of information. We interpret this reorganization as the execution in the local network300

of a command originating from other regions. Indeed, as known, the PMd is part of a larger network301

surbserving motor control based on frontal, parietal, subcortical and spinal structures. Is reasonable to302

think that during Go trials the hubs serve to convey the command to move to other (and possibly lower)303

cortical, subcortical, and spinal circuits that will eventually promote muscle activation. In this picture, the304

state observed during correct stop trials could reflect the PMd collective reaction to the incoming inhibitory305

thalamic input that prevents the execution of the programmed movement. In this scenario the volition to306

inhibit is locally implemented as ‘the attenuation of the movement state’, which seems convenient ad easy307

to implement at the network level detouring information flow through an higher number of shortest paths308
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between nodes and decreasing the amount of information involved. Future studies will be necessary to309

investigate to whom the hubs project to.310

One weakness of this study is that we cannot account for the information dynamic between PMd and311

other structures of the reaching network. Therefore, additional research will be needed to unambiguously312

clarify these interactions. Lo et al.36 also introduced a certain degree of hierarchical organization in the313

form of a top-down control regulating the activation of the Go and Stop unit. However, as also stated in314

Schall et al.44, the control unit embodied in their model resembled an external homunculs endowed with315

the ability to tune the parameters to appropriately obtain the desired results. This marks a considerable316

difference with our report, in which, since our approach is completely data-driven, we did not need to317

adjust any external modelling unit to obtain the results.318

Conversely, we used it conceptually to contextualize our results in a wider circuitry frame. Lastly, our319

findings clearly show that hierarchical control is not only external but is also implemented locally by a320

specific neuronal class (the Common_drivers) over the others. Through the years, much evidence has321

been brought to support the idea that the brain is hierarchically organized both globally and locally on322

a spatial18, 52–63 (for a detailed review see Hilgetag et al., 202064) and temporal scale65–70. As far as we323

know, this is the first work that deeply investigates the local hierarchy of a single cortical area known to324

have a crucial role in the motor system. These conclusions suggest that the collective network organization325

found in this work represents the neural implementation for the voluntary motor control at the PMd level.326

Materials and methods327

Subjects328

Two male rhesus macaque monkeys (Macaca mulatta, Monkeys P and C), weighing 9 and 9.5 kg,329

respectively, were used. Animal care, housing, surgical procedures and experiments conformed to330

European (Directive 86/609/ECC and 2010/63/UE) and Italian (D.L. 116/92 and D.L. 26/2014) laws and331

were approved by the Italian Ministry of Health. Monkeys were pair-housed with cage enrichment. They332

were fed daily with standard primate chow that was supplemented with nuts and fresh fruits if necessary.333

During recording days, the monkeys received their daily water supply during the experiments.334

Apparatus and task335

The monkeys were seated in front of a black isoluminant background (< 0.1cd/m2) of a 17-inch336

touchscreen monitor (LCD, 800 x 600 resolution), inside a darkened, acoustic-insulated room. A non-337

commercial software package, CORTEX (http://www.nimh.gov.it), was used to control the presentation338

of the stimuli and the behavioural responses. Fig. 1 shows the scheme of the general task: a reaching339

countermanding task (Mirabella et al., 2011). Each trial started with the appearance of a central target340

(CT) (red circle, diameter 1.9 cm). The monkeys had to reach and hold the CT. After a variable holding341

time (400–900 ms, 100-ms increments) a peripheral target (PT) (red circle, diameter 1.9 cm) appeared342

randomly in one of two possible locations (right/left) and the CT disappeared (Go signal). In no-stop343

trials, after the Go signal the subjects had to reach and hold the PT for a variable time (400-800 ms, 100ms344

increments) to receive juice. Reaction times (RTs) were defined as the time between the presentation of the345

Go signal and the onset of the hand movement. In Stop signal trials, the sequence of events was the same346

until the Go signal. Then, after a variable delay (Stop signal delay, SSD), the CT reappeared (Stop signal)347

and the monkeys had to hold the CT until the end of the trial (800–1000 ms) to receive the reward (correct348

stop trial). Conversely, removing the hand after the Stop signal constituted a wrong response (wrong stop349

trial). The same amount of juice was delivered for correct stop and correct no-stop trials. The intertrial350

interval was set to 800 ms. Stop trials represented the 25% of all trials in each recording session. To351
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establish the duration of the SSDs, a staircase tracking procedure was employed. If the monkey succeeded352

in withholding the response, the SSD increased by one step (100 ms) in the subsequent Stop signal trial.353

Conversely, if the subject failed, the SSD decreased by one step.354

Behavioural considerations355

In the countermanding task is of crucial importance the identification of the neuronal signature of the356

movement execution and its time of occurrence. The task makes possible to calculate a behavioural357

measure that it is broadly considered an index of efficiency in movement suppression: the stop signal358

reaction time or SSRT. To estimate SSRT the race model71 is the accepted paradigm. This model describes359

the behaviour in the stop trials as the result of two stochastic processes racing toward a threshold: the360

GO process triggered by the onset of the Go signal, which duration is represented by the RT, and the361

STOP process triggered by the onset of the Stop signal, which duration must be calculated. When the GO362

process wins the race the movement is generated (wrong Stop trials), alternatively it is withheld (correct363

Stop trials). The race model allows to estimate the SSRT by considering the duration of the GO process,364

the probability to respond, and the SSDs. However, to make the race model applicable to study response365

inhibition, a central assumption must be satisfied: the GO process in the stop trials must be the same366

as in the go trials (independence assumption). Indeed, the RTs that are employed to estimate the SSRT367

are obtained from the Go trials distributions. To broadly validate this assumption, wrong Stop trials RTs368

must result shorter than the correct Go trials RT71 (see Table 1). To estimate the SSRT we employed the369

integration method because it has been proven to be the most reliable72. It assumes that the finishing time370

of the Stop process corresponds to the nth go RT, where n results from the multiplication of the ordered371

Go RTs distribution by the overall probability of responding p(respond). The SSRT is then obtained by372

subtracting the average SSD from the nth Go RT. The SSRT can also be considered the lead time that is373

required to inhibit a movement, or, simply, the time that precedes the start of a movement when a Stop374

signal, if presented, halts the generation of the same movement approximately 50% of the time. If the375

Stop signal is presented after this time, it will be less effective, because the neuronal phenomena that lead376

to the movement generation will have already started. If the Stop signal is presented well before this time,377

it will be more effective in halting the movement. Consequently, the neuronal activity that is related to378

movement generation must occur before movement onset around the time that is defined by the SSRT.379

The aim of our study was to compare conditions in which a movement was planned and then generated380

(Go trials) to those in which a movement was planned and then inhibited (correct Stop trials). To correctly381

compare the two behavioural conditions, a time window T equivalent for both trial types must be defined.382

Assuming that a time tgo ms before movement onset is chosen and an SSRT of tssrt ms is estimated, T in383

correct Stop trials is given by T = [− (tgo− t ssrt),+ t ssrt ] ms with respect to the Stop signal presentation.384

Notice that T accounts for any time difference with respect to the SSRT trough the term (tgo− t ssrt).385

Behavioural parameters for the recording sessions of the two monkeys analyzed in this study are386

reported in Table 1.387

Extraction and processing of neuronal data388

A multielectrode array (Blackrock Microsystems, Salt Lake City) with 96 electrodes (spacing 0.4 mm) was389

surgically implanted in the left dorsal premotor cortex (PMd; arcuate sulcus and pre-central dimple used390

as references after opening of the dura) to acquire unfiltered electric field potentials (UFP; i.e., the raw391

signal), sampled at 24.4 kHz (Tucker Davis Technologies, Alachua, FL). As a measure of neuronal activity392

at the population level, SA was extracted offline from the raw signal, as in Mattia et al.7, by computing the393

time-varying power spectra P(ω , t) from the short-time Fourier transform of the signal in 5-ms sliding394

windows. Relative spectra R(ω , t) were then obtained normalizing P(ω , t) by their average Pref (ω) across395
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a fixed window (30 minutes) for the entire recording. Thus, the average R(ω , t) across the ω/2π band396

[0.2,1.5] kHz represent the spectral estimated SAs. As better detailed in Mattia et al.7, such estimate relies397

on two hypotheses. The first is that high ω components of the raw signal result from the convolution of398

firing rates ν(t) of neurons that are close to the electrode tip with a stereotypical single-unit waveform.399

The Fourier transform K(ω) of such an unknown waveform is canceled out in R(ω , t), which is therefore400

a good approximation of the ratio of firing rate spectra |ν(ω ,t)|2 /|ν(ω ,t)|ref
2. The second hypothesis is401

that high ω power |ν(ω ,t)|2 is proportional to the firing rate ν(t) itself73, such that our SA estimate is402

proportional to ν(t). As a last step, logarithmically scaled SAs were smoothed by a moving average (40403

ms sliding window, 5ms step).404

Quantifying information dynamic with Transfer Entropy405

We first analysed the single-trials activity profiles of each recording site on each recording session for
both animals. To remove noise and outliers from our data, we excluded from the analysis the trials for
which the SA showed peaks with an amplitude that exceeded the average of the activity by 2 standard
deviations in the epoch of interest and for over 80% of the channels. This ensures that artifacts caused by
non-physiological oscillations are excluded from the analysis. To examine the local information dynamics
in the PMd, we then computed a trial-average time series for each of the SAs recorded by the electrodes of
the array for each behavioural condition of each recording session. We then constructed the information
transfer network using multivariate Transfer Entropy (TE). The choice is due to the fact that TE is indicated
(especially in its multivariate formulations) as more accurate compared to other metrics and is known to
capture non-linear interaction in the system dynamic without assuming any particular model. Moreover,
this measure is of growing interest in neuroscience and there is a thriving literature on it74–78. For its
computation we used the Matlab MUTE toolbox79.
Given an ensemble of M time series, the multivariate information transfer from a driver time series X to a
target time series Y (see Figure 8), conditioned to the remaining Z k=1,..,M−2 time series, can be quantified
taking into account the present values of the target and the past values of both the driver and the Z74, 79, 80

through:

T EX→Y | Z = H(Yn | Y−n ,Z−n )− H(Yn | X−n ,Y−n ,Z−n ) , (1)

where Yn is the vector that represent the present state n of Y, X−n = [Xn−1,Xn−2, ...], Y−n = [Yn−1,Yn−2, ...]
and Z−n = [Zn−1,Zn−2, ...] are the vectors that represent the past of X, Y and Z respectively. The vertical bar
stands for conditional probability, e.g. H(Yn | Y−n ,Z−n ) is the entropy of the present state of Y conditioned
to the knowledge of the past of Y and to the past of the remaining Z. H is the Shannon entropy81, which in
the case of Y is given by:

H(Yn) =−∑
n

P(Yn) logP(Yn) , (2)

where P indicates the probability density. Hence, using equation 2 expression 1 becomes

T EX→Y | Z =−∑
n

P(Yn,Y−n ,Z−n ) log
P(Yn | X−n ,Y−n ,Z−n )

P(Yn | Y−n ,Z−n )
(3)

In this formulation TE grows if the past of the driver increases the information about the present of target406

more than the past of target itself and more than any other series contained in Z. Since the past of the407

driver is used to predict the present of the target, TE is not symmetric (i.e. T EX → Y 6= T EY → X ) and408

defines a direction in the information transfer. A crucial issue when estimating TE is the approximation409
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of the vectors representing the past of the time series, a procedure known as embedding. The optimal410

embedding would be the one that include only the components of X−n , Y−n and Z−n that are most informative411

in describing Yn. Montalto et al.79 described in details different procedures for embedding and to evaluate412

the probability distribution functions needed to compute the entropy terms. We opted for a non-uniform413

embedding scheme82 paired with the computation of H based on kernels estimators1. In few words the414

embedding method we chose iteratively selects components of the systems past based on a criterion415

for maximum relevance and minimum redundancy. In this context, maximum relevance means most416

significant in the sense of predictive information. Non-uniform embedding selects from the past of417

X, Y and Z only the components that are the most informative for the present of the target variable Y418

progressively pruning non informative terms. The maximum number of past values, or maximum lag l, to419

consider for the pruning is fixed at the beginning of the procedure. Cycling through the components of420

the past up to l, the statistical significance is then progressively assessed through the comparison with an421

null distribution built from the empirical values via a randomization procedure79. The component of the422

past of X,Y and Z are thus selected as statistical significant if they are significant above a desired level α .423

In our case the null distribution was obtained by 100 random shuffling of empirical values and we fixed424

α = 0.01. Non-uniform embedding represents a convenient and more reliable74 alternative to the common425

used approach known as uniform embedding; this would indeed select the past values X−n , Y−n and Z−n426

a priori and separately for each time series79. The probability density P needed for the computations427

of H was then calculated using kernel functions which weight the distance to the reference point to any428

other point in the time series and then average across all points. Such approach computes probabilities429

exploiting a local exploring of the state space and, importantly, has been proven to be more robust against430

unreliable estimations74. Therefore, if at least one component from the past is selected by the non-uniform431

embedding procedure, the resulting T EX→Y | Z is positive and statistically significant. When instead none432

of the components of the past provide statically significant information about the target the T EX→Y | Z is433

exactly 0 and assumed non significant79. To avoid any further bias in the selection of the past values, we434

initially fixed l=50 ms, but, as expected, only a recent past was selected by the procedure, in line with435

similar studies26, 31. Indeed, for each SA time series, a past no older than 10ms for each n of equation 2436

was ever selected by the optimal embedding procedure.437

Graph theoretical measures438

In our context the time series were the SAs recorded by the electrodes of the array. We computed439

T EX → Y | Z (and T EY→X | Z) with Z k=1,..,M−2, for each pair of (X,Y) in the epochs defined in Section 1 so440

to obtain a T E matrix2 for each behavioural condition (Go trials and correct Stop trials) for both monkeys.441

Since the purpose of this study was to investigate the topology of information processing within the PMd442

cortical network during motor planning and inhibition, we interpreted the asymmetric TE matrix as the443

adjacency matrix of a directed weighted network, in which the nodes are the single modules (channels)444

and the weighted edges are the T EX → Y | Z (and T EY → X | Z) with Z k=1,..,M−2. To simplify the picture445

we considered only the off-diagonal elements of the matrix thus excluding self-loops from the networks.446

Figure 8 reports a sketch of the construction of the local TE-based information network. As an initial447

skimming of the contribution of each recording site to the exchange of information in the network we448

analyzed the empirical TE distributions. We found a mean µ ∼ 10−2 for the TE distributions for all449

recording sessions of both behavioural conditions for both animals. Subsequently, we grouped channels450

1For the complete description of the embedding methods and estimators for computation of H, which is beyond the scope of
this study, see the works of Faes et al.80, 82, 83 and references therein.

296x96 for all recording sessions for Monkey P; for some recording sessions of Monkey C damaged channels were removed
from the analysis and therefore a 79x79 matrix was obtained.
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Figure 8. Sketch of the construction of the local TE-based network given the ensemble of the SA
time series. Panel A: key steps for the computation of the information transfer. For each couple (X,Y) of
the ensemble of M time series, T EX→Y | Z quantifies the information transfer from a driver X to a target Y
conditioned to the remaining Z time series, with Z k=1,..,M−2 (the same holds for each (Y,X) couple and
T EY→X | Z). If T EX →Y | Z 6= 0 the past of the driver X−n gives more knowledge about the present Yn of the
target than the past of the target itself and the remaining Z time series, i.e. give statistical significant
contribution to the prediction of the present of the target. This defines a hierarchy of information
transmission in which the driver is above the target. In this sketch the past of the driver comprises 3 time
steps backwards with respect to the reference point and thus X−n = [Xn−1,Xn−2,Xn−3]. Panel B: an
asymmetric transfer matrix MxM can be built computing the terms T EX → Y | Z and T EY →X | Z for each X
and Y of the ensemble. We take the TE matrix to be the adjacency matrix of a directed weighted graph in
which the nodes are the channels and the weighted edges are the TE values (for simplicity diagonal
elements are taken to be 0 and thus self-loops are excluded).

according to the trial type in which they significantly exchanged information with respect to the others.451

To this end we selected from the empirical TE distribution the values > µ + 2σ for each behavioural452

condition (with σ standard deviation). This selection identified the neuronal classes. As an example453

if node i drives node j with a TE value > µ +2σ (i.e. there is a strong link directed from i to j) in Go454

18/29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.435381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435381
http://creativecommons.org/licenses/by-nc-nd/4.0/


trials but not in correct Stop trials, i would belong to the Go_drivers. Interestingly we identified two455

peculiar classes: nodes that emitted significant amount of information during both behavioural conditions456

(Common_drivers) and nodes that never emitted information in any behavioral condition (Targets). In our457

framework the TE values represented the strength of the connections between network nodes and hence458

the above classes are defined based of how much and during which behavioural condition nodes spread459

information trough the local PMd network.460

461

To properly inspect the contribution of each node we needed a set of measures from graph theory. The462

first was Vertex Degree (VD). Vertex degree is the number of links to a node i:463

V D(i) =
N

∑
j=1

aij , (4)

464

where aij is the generic entry of the adjacency matrix and N is the number of nodes. In directed465

networks one can distinguish between in-degree (the number on inward links) and out-degree (the number466

of outward links). We computed the probability distribution of both vertex degrees (i.e. the in/out degree467

distribution) for each behavioural condition of each recording sessions for both animals. If the variance of468

the degree distribution is significantly larger than its mean, tails in the distribution arise and network hubs469

are identified (see Figure S1). Hubs are thus nodes that significantly exceeds the average degree of the470

network23.471

472

We further studied the topology of the PMd information network by computing the Betweenness
Centrality24, 25 (BC) of each node. For each node, BC measure the proportion of shortest paths between
other couple of nodes s and t that pass through it and is defined as24:

BC(i) = ∑
s 6=v6=t

σ st(i)
σ st

, (5)

, where σ st(i) is the number of shortest paths between s and t that pass through i and σ st the the number473

of shortest paths between s and t. High BC scores indicate that a node lies on a considerable fraction of474

shortest paths connecting pairs of vertices in the graph. Thus, such a node is considered a topological475

central node since it plays a crucial role in passing and spreading information trough the network. In476

this study we used a normalized version of BC by dividing expression 5 by the normalization factor for477

directed graph (N−1)(N−2) which takes into account the number of ordered pairs of nodes used for478

calculation (with N number of nodes). Then, for each recording sessions, we further scaled the so obtained479

BC value by its maximum value across behavioural conditions so that BC spanned the [0,1] interval.480

As an overall measure of network comparison we used the centralization index C. Given a graph measure,481

C is the total average difference between the maximum of that measure and the values taken by all other482

nodes in the network. I.e., the centralization index of V Dout reads:483

Cvd =
1

N−1

N

∑
i=1

[Max(V Dout)−V Dout
i] , (6)

where V Di
out is the vertex out degree of node i, Max(V Dout) is the maximum V Dout value for the examined484

graph and N is the number of nodes. The same holds for BC. We computed C for both V Di
out and BC485
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for each recording session and each behavioural condition for both animals and then averaged over sessions.486

487

In order to compute the total magnitude of information exchanged between the neuronal classes we
constructed the following interaction measure I:

Iij = ρ

M

∑
i

M

∑
j

∑
(m,n)

T E Ci
n→Cj

n , (7)

where C is the neuronal class, M is the number of the classes (M=4) and m and n run over the all possible488

combinations of nodes within each class. ρ =
dim (Ci

n→Cj
m)

dim (Cj)
is a normalization factor that accounts for the489

heterogeneous number of nodes within each of the classes. Therefore, our Iij is a normalized node strength490

computed on the graph formed by the 4 classes (i.e. in a weighted graph the strength of a node is the sum491

of the weights of the links connected to the node). The higher are the number of nodes a class transmits492

information to, the higher is I. Hence, the values and the directions of I values reflect the position in the493

hierarchy of the network communications for that class. All the interactions described by the empirical494

TE matrix were thus enclosed in a 4x4 matrix that represents a network of interactions in which now495

each node is a neuronal class. We computed I for each recording session and each behavioural condition496

and then we averaged over sessions for both animals. The uncertainty in estimating each element Iij for497

each recording session was given by the standard error. Thus, the sessions-averaged element Iij (Figure 7498

and Table 4) is estimated with an error obtained via the error propagation formula for the average of n499

measures.500

A null model501

To properly assess the statistical significance of the results obtained via the graph theoretical analysis502

we defined a null model. As extensively detailed in a recent work84, the choice of a suitable null model503

remains a thorny issue in network and complex systems science. One common practice when analysing504

real-world networks such the one inspected in the present work, is try to identify properties that deviate505

from the null hypothesis being likely that the deviations themselves encode information about the network506

functions. In this study we drew our conclusions about the PMd information network in a completely507

data-driven fashion directly from neural activity, which thus constituted our only constraint. Therefore,508

we tested whether the results were not attributable to the distribution of SA values. To this end we509

generated, for each behavioural condition and recording session, a synthetic pool of N time series with510

same length of the empirical ones (with N number of channels available for the corresponding animal511

and recording session) by random sampling from the empirical SA distribution. We then computed the512

TE matrix for each synthetic pool. This situation is the most general since assumptions of any kind513

are made on the connectivity patterns and the weight distributions of the synthetic networks. We then514

compared the empirical graph measures with the ones obtained on the ensemble of 500 randomizations515

(see supplementary materials and supplementary figure S4 and S5).516
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V DOutV DOutV DOut

Monkey P
Go trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.005 Q < 0.001 Q < 0.001

Stop trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.001 Q < 0.01 Q < 0.001

∆Stop−Go

Go_drivers Stop_drivers Common_drivers Targets
−98% +1370% −18% −4%

Q < 0.001 Q < 0.001 Q > 0.25 Q > 0.25
Monkey C

Go trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.01 Q < 0.001 Q < 0.001

Stop trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.001 Q < 0.01 Q < 0.001

∆Stop−Go

Go_drivers Stop_drivers Common_drivers Targets
−97% +9828% −29% −950%

Q < 0.001 Q < 0.001 Q > 0.25 Q > 0.25
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BCBCBC

Monkey P
Go trials Go_drivers Stop_drivers Targets
Common_drivers Q > 0.05 Q < 0.001 Q < 0.001
Stop trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.001 Q < 0.001 Q < 0.001

∆Stop−Go

Go_drivers Stop_drivers Common_drivers Targets
−89% +888% +157% +183%

Q < 0.001 Q < 0.001 Q < 0.001 Q < 0.001
Monkey C

Go trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.001 Q < 0.001 Q < 0.001

Stop trials Go_drivers Stop_drivers Targets
Common_drivers Q < 0.001 Q > 0.05 Q < 0.001

∆Stop−Go

Go_drivers Stop_drivers Common_drivers Targets
−95% +5180% +654% +800%

Q < 0.001 Q < 0.001 Q < 0.001 Q > 0.25

Table 3. Graph metrics details.
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I matrix details
Monkey P

Go trials Go_drivers Stop_drivers Common_drivers Targets
Go_drivers 0 1.3±0.1 0 17.5±0.3
Stop_drivers 0 0 0 0
Common_drivers 3.7±0.1 7±0.2 0 42.3±0.4
Targets 0 0 0 0

Stop trials Go_drivers Stop_drivers Common_drivers Targets
Go_drivers 0 0 0 0
Stop_drivers 2.6±0.2 0 0 17.5±0.6
Common_drivers 2.3±0.2 4.7±0.4 0 25.4±0.6
Targets 0 0 0 0

Monkey C
Go trials Go_drivers Stop_drivers Common_drivers Targets
Go_drivers 0 1.1±0.1 0.3±0.003 21±0.5
Stop_drivers 0 0 0 0
Common_drivers 3.4±0.07 10.7±0.2 0 45.3±0.6
Targets 0 0 0 0

Stop trials Go_drivers Stop_drivers Common_drivers Targets
Go_drivers 0 0 0 0
Stop_drivers 1.9±0.2 0 0 17±0.6
Common_drivers 2.9±0.2 1.4±0.2 0 23.4±0.5
Targets 0 0 0 0

Table 4. I matrix details.
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