bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435425; this version posted March 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Identity and compatibility of reference genome

resources

Michat Stolarczyk!, Bingjie Xue!, and Nathan C. Sheffield 2345

!Center for Public Health Genomics, University of Virginia

2Department of Public Health Sciences, University of Virginia

3Department of Biomedical Engineering, University of Virginia
“Department of Biochemistry and Molecular Genetics, University of Virginia
D4 Correspondence: nsheffield@virginia.edu

Genome analysis relies on reference data like sequences, feature annotations, and aligner indexes. These
data can be found in many versions from many sources, making it challenging to identify and assess
compatibility among them. For example, how can you determine which indexes are derived from identical
raw sequence files, or which annotations share a compatible coordinate system? Here, we describe a novel
approach to establish identity and compatibility of reference genome resources. We approach this with
three advances: First, we derive unique identifiers for each resource; second, we record parent-child
relationships among resources; and third, we describe recursive identifiers that determine identity as
well as compatibility of coordinate systems and sequence names. These advances facilitate portability,
reproducibility, and re-use of genome reference data. Availability: https://refgenie.databio.org

Introduction

Reference genome assemblies are representations of
a genome (1-5) that are the basis of many prerequi-
sites of genome analysis, such as alignment indexes
(6-9) and feature annotations (10-12). Several tools
under development aid in organizing and sharing such
genome-related data (13-16), including our recent
software called refgenie (17). Refgenie is a genome
resource asset manager that provides two ways to obtain
genome assets: Users may pull pre-built assets from a
remote server, or build equivalent assets locally. This
flexibility increases interoperability of tools that rely on
genome assets; however, it also raises challenges with
identity and compatibility of these assets.

One common challenge is identifier mismatches. Rely-
ing on simple human-readable identifiers such as “hg38”
means two users may refer to different things with the
same identifier. As a case in point, there are many vari-
ations of the human genome that are all referred to in
different analysis as “hg38” or “GRCh38”. This leads to
compatibility issues that incur the wrath of bioinformati-
cians everywhere. A step toward solving this problem is
to use unique identifiers that unambiguously identify a
particular assembly, such as those provided by the NCBI
Assembly database (4); however, this approach relies on
a central authority, and therefore can not apply to cus-
tom genomes or assets.

Another weakness of centralized unique identifiers is
that they are insufficient to confirm identity, which must
also consider the content of the genome. For example,
if someone makes a minor adjustment to reference
data content, but continues referring to it with the
centralized identifier, this can lead to reproducibility

1- Reference genome resource identity - bioRxiv

issues. To ensure that assets from different locations are
identical not only in name, but in content, we require a
more substantial way to uniquely identify and confirm
identity of both assets and genomes. The situation is fur-
ther complicated by assets that are derived from other
assets. For example, a bowtie2 index is derived from a
fasta file; trading around bowtie2 indexes without the
underlying fasta asset can lead to downstream analysis
incompatibilities. To solve this problem requires a way
to record not just the identity of genomes, but the
relationships among assets that are derived from them.

A method that is capable of confirming both the identity
of and the relationships among assets solves these chal-
lenges; but what if we only need to confirm that a coor-
dinate system is compatible? This is a less stringent com-
parison because it does not require identical genomes,
but a more nuanced comparison among them. A com-
mon example is sharing feature annotation data across
related genomes that do not necessarily have identical
sequences, but do have an identical coordinate system.
Establishing compatibility in this sense requires a more
detailed comparison between the assets which cannot be
accomplished with only unique identifiers and relation-
ships. This requires capacity to assess not just identity,
but compatibility between non-identical assets.

Recent advances partially address some of these chal-
lenges. First, refget (16) computes identifiers for a
sequence from the sequence itself, and provides a
lookup database to retrieve the sequence given its
identifier. Refget thus provides a globally unique,
content-derived identifier and retrieval system for raw
sequences. A similar approach is also taken by the Vari-
ant Representation Specification (VRS) for identifying

mailto:nsheffield@virginia.edu
https://refgenie.databio.org
https://doi.org/10.1101/2021.03.15.435425
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435425; this version posted March 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(Jhg38

L. bowtie2-index
hg38.1.bt2 = 64821b2
hg38.2.bt2 = d8cd9st
hg38.3.bt2 =»21c67d1
~B hg38.4.bt2 = 03kd9k4

digest
digest

> =" =4 > 4kf3s9v
sort concat

Fig. 1: Unique asset-derived identifiers. A) Assets built on different systems using the same human-readable identifier may not be identical.
Refgenie requires a way to establish the identity of assets on different servers. B) Refgenie’s unique asset-derived identifiers, such as shown here for
a bowtie2 index, work by calculating a digest of each individual file in the asset, sorting these digests, concatenating them, and then calculating a
final digest, which is the unique identifier for the asset. The files in this example are the 4 bowtie2 Burrows-Wheeler index files for hg38, which is an

arbitrary example asset. Digests are shortened for illustration.

genetic variants (18). The tximeta package (19) simi-
larly identifies transcriptomes based on similar sequence
identifiers. But no existing approach provides a way
to establish identity, relationships, and compatibility
among genomes and arbitrary assets derived from them.

Here, we address each of these issues. Our approach
can guarantee identity, relationships, and compatibility
among reference genome assets, which we have imple-
mented in our refgenie software. Refgenie accomplishes
this with 3 concepts: First, for each asset, it computes
unique asset identifiers that are derived from the assets
themselves; Second, it records which parent assets were
used to create each derived asset. Third, it employs a
genome identifier system that allows it to not only es-
tablish the identity of a genome, but also to quickly com-
pute multiple levels of compatibility between them. To-
gether, these tools improve the interoperability and re-
producibility of analytical pipelines that rely on refer-
ence genome assembly assets.

Results
Identity: Unique asset-derived identifiers

Refgenie asset keys are human-readable, which is
great for humans, but can lead to name collisions; for
instance, how can a user be sure that the bowtie2_index
keyed at one location is the same as another? In a closed
system where all assets are downloaded from a single
server, this is not a problem; however, the refgenie
system is flexible, allowing multiple servers, building
custom assets locally, and human-readable identifiers
that give the user total control. This makes refgenie
flexible and powerful, but also means that identity
cannot be guaranteed by name alone (Fig.1A).

To address this issue, Refgenie requires a unique iden-
tifier for each asset. Critically, these identifiers must be
computable for arbitrary, custom assets rather than cre-
ated by a central authority, so they must be derived from
the assets themselves. Furthermore, refgenie makes no
assumptions about the data types of assets, so the iden-
tifiers must be compatible with any kind of data.

2- Reference genome resource identity - bioR xiv

Refgenie accomplishes this with a simple hashing algo-
rithm: we take all files in the asset folder, calculate the
md5 digest on each file independently, lexographically
sort the digests, and then calculate the md5 digest on the
resulting list (Fig.1B). This is a straightforward method
to derive a digest for a set of arbitrary files and is thus
compatible with any type of asset. This identifier is au-
tomatically computed by the refgenie build process,
thereby assigning a unique identifier to every asset.

The refgenie command-line interface (CLI) allows
users to retrieve this identifier using the id command.
For example, refgenie id hg38/bowtie2_index:tag
would return the unique identifier for the specified
asset. These identifiers establish an automated way to
identify any possible asset, and can also be re-computed
to confirm the true identity of an asset, regardless of
its human-readable identifier. Refgenie relies on these
globally unique and reproducible identifiers to refer to
assets uniquely. This approach establishes universal
identifiers that allow users to confirm asset identity
across systems.

Consistency: Recording asset relationships

One of refgenie’s strengths is derived assets: that is, as-
sets that are easily built from other assets. For exam-
ple, if a user has a hg38/fasta asset, then building a
hg38/bowtie2_index asset requires no further inputs, as
refgenie will automatically use the existing fasta asset to
build the index. This is convenient for the user, but it can
also lead to a potential conflict if a user then tries to pull
an asset for the same genome that was derived from a
different parent. For example, perhaps the user issues
refgenie pull hg38/bwa_index. The critical question
is this: was the fasta file that was used to create the
bwa index on the server identical to the one the user has
tagged as ‘hg38’ locally? If not, the pull should fail. The
only way to guarantee that derived assets have identical
parents is to record the relationships among them (Fig.
2A).

https://doi.org/10.1101/2021.03.15.435425
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435425; this version posted March 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

namespace:hg38
A namespace:hg B] ; =
: asset_name: fasta (eommece)
S asset_digest: 0d28cm2vf0 —1
genome_digest: 4cc2zx2vOf hg38.fa hg38_plus.fa
parent_digest: None ¥ Dpuira desktop Y Dpuira server
asset_name: bowtie2_index
asset_digest: c8cosawgks hg38/fasta hg38/fasta
g:pgr?:ed_i gsi?loldzcgcéév\go D asset_name: fasta N asset_name: fasta
P —cigest asset_digest: 0d28cm2vfo asset_digest: 83njxz7dz

asset_name: bwa_index
asset_digest: de48lkmesa
genome_digest: 4cc2zx2vof

* (®buila

parent_digest: 0d28cm2vf0

: asset_name: ensembl_gtf
: asset_digest: 0d28cm2vf0
. genome_digest: 4cc2zx2v9f
parent_digest: None

asset_name: bowtie2_index
asset_digest: poi2jmwopg

genome_digest: 4cc2zx2vof
parent_digest: 0d28cm2vfO

asset_name: bowtie2_index
asset_digest: dfhwo2m5I3

genome_digest: 4cc2zx2vof
parent_digest: 0d28cm2vf0

b®

B®

parent_digest: None

hg38/bowtie2_index
asset_name: bowtie2_index

asset_digest: d82d4mk9xe .
parent_digest: 0d28cm2vfo ™,

parent_digest: None
\

b :
\\ * bulld

hg38/bwa_index
‘\\ asset_name: bwa_index

asset_digest: e24q9oo08de
parent_digest: 83njxz7dz
.

.

\,

pull % g x
. 0d28cm2vfe # 83njxz7dz
hg38/bwa_index

Fig. 2: Recording relationships ensures compatibility of derived assets. A) Derived assets naturally form a parent-child structure. Refgenie
records parent-child relationships by storing the unique identifier of all parent assets. B) For assets that can be built from other assets, we require a
way to ensure that all parent assets match when using either build or pull to obtain the asset. Derived assets must be derived from the same parent
assets to be compatible. For assets with multiple parents, all identifiers must match.

To solve this problem, refgenie build records not only
the unique asset identifier, but also parent-child relation-
ships. For example, the remote refgenie server entry for
the hg38/bowtie2_index asset retains a pointer to the
hg38/fasta asset that was used to build it (Fig. 2B). You
can think of this as each built asset remembers the unique
identifier (not the human-readable identifier) of any as-
sets used to build it. Most assets have only a single par-
ent, but refgenie allows assets to have multiple parents.
When the pull command is issued, the CLI checks the
parent identifiers against the local ones. If any digests do
not match, refgenie aborts the pull request, preventing
a user from mixing assets that have been derived from
different parents. Without this check, the user could in-
troduce an inconsistency because pulled assets were not
built from the same input as built assets.

To make this procedure complete, refgenie stores the
parent-child relationships and the CLI makes sure that
these relationships are kept intact when users remove,
re-tag, or rename assets. The digest check is fast be-
cause it does not require pulling the parent asset in its
entirety; only checking for its unique identifier. To en-
able this, the refgenie server presents this information
as an API endpoint. If a user pulls a derived asset when
the parent does not exist locally, refgenie will populate
the parent asset digest in the config file. In a sense, the
first stage of pulling a derived asset from an unknown
parent asset “locks” the parent asset, preventing pulling
further assets from other sources that claim to be derived
from the same parent, but are not.

Compatibility: decomposable genome identifiers

Computing unique asset-derived identifiers plus storing
asset relationships together allow us to record and
compare asset identity and assure a consistent lineage
of derived assets. This solves many challenges that re-
quire strictly identical assets. For example, to reproduce

3- Reference genome resource identity - bioR xiv

the result of a bowtie2 alignment requires an identical
bowtie2 index asset. An index built from a fasta file
that is identical in sequence content, but differs in
identifier names or order will yield a different result.
The strict asset-derived identifiers can ensure this level
of reproducibility. Storing the relationships extends this
assurance to derived assets, making it possible to ensure
that they share identical parents.

However, many analyses require less stringent compar-
ison: simple compatibility between assets that are not
necessarily identical. For instance, a motif enrichment
analysis is strictly tied to a specific sequence, but the or-
der of the original sequences may not be relevant for the
results to be comparable. As a result, using a fasta asset
with identical sequence but different order would not
be a problem. Some analysis require even less strict re-
quirements. For example, say analysis annotate_regions
reads an aligned bam file, and annotates it using fea-
ture annotations on the hg38 coordinate system. This
analysis requires the reads to share the coordinate sys-
tem of the annotation, but it does not require a spe-
cific reference assembly sequence at all. In this case, we
would like to confirm that the given bowtie2_index as-
set is compatible with the feature annotation coordinate
system. To fulfill this requires only that it shares a coor-
dinate system, not that the exact sequence matches. In
short, sometimes we do not require strict identity, but
a more detailed comparison that may ignore order, se-
quence names, or other attributes. We therefore seek to
distinguish between the comparison of is compatible with
vs is identical to.

A system that relies only on unique identifiers cannot
make this fine-grained of a comparison because it re-
quires directly comparing not just the identifiers, but the
contents of the assets of interest. Since this task must
consider the contents of an asset, it is impossible to come
up with a universal solution that works on any data type

https://doi.org/10.1101/2021.03.15.435425
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435425; this version posted March 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A Sequence ; B Sequence collection C Recursive lookup
digest
>chr1 h9§31
AAACAGGTT >chr —> >
TAGAGTTAC-»6 4821b2 AAACAGGTTTAGAG return return
AATTCT TTACAATTCT =»64821b2 /v >chr1
key >chr2 ohr1>6482162," e
value CATTCAGTCAAARA chr2>d8cd9sf, >chr2
ATTAAAAATG. .. —d8cd98f . d? 40d98? chr3>21067d1-" . ATTARARATG: -+
database >chr3 ’ < - request >ccAhcr‘gGT‘1‘CTTCTGT
CACTGTTCTTCTCT, 5 c67d1 request level 2 Zazazccera...
AAACAGGTT AAAATCCCTA. level 1
64821b3? o ¥ chr1>64821b2,chr2>d8cd98f,chr3>21c67d1 o
request gm return Flag Indication
digest 4d1dcd98 1 CONTENT ALL A IN B
2 CONTENT ALL B IN A
D Sequence collection with 4 LENGTHS_ALL_A IN B
coordinate system chr1 519 8 LENGTHS ALL B IN A
chr1>64821b2,chr2>d8cd98f,chr3>21c67d1 + chr2 753 16 NAMES ALL A IN B
chr3 938 32 NAMES _ALL B IN A
¥ o 64 CONTENT A ORDER
128 CONTENT B ORDER
chr1>519>64821b2,chr2>753>d8cd98f,chr3>938>21c67d1 256 CONTENT_ANY_ SHARED
¥ 512 LENGTHS_ANY SHARED
1024 NAMES_ANY SHARED

digest 94m48dj2

Fig. 3: Decomposible recursive unique identifiers. A) The refget protocol uniquely identifies and retrieves DNA sequences. First, a sequence is
hashed to yield a digest, which is used as a unique identifier to store the sequence in a database. A request using the unique identifier returns the
original sequences. Refget digests uniquely identify a DNA sequence and provide a way to retrieve the sequence using the unique identifier B) A
sequence collection digest is made by first computing refget digests for each sequence, concatenating them, and computing a digest on the result. C)
Sequence collection digests can be used to retrieve the sequence collection recursively. In the first step, the string of digests is returned; each sequence
digest can then be used to retrieve its sequence, finally yielding the sequence collection. D) By adding the sequence lengths to the digest string, a new
string and digest can be made that allows retrieving sequence names, lengths, and digests. E) A table of flags provide a way to quickly indicate the

relationship between two sequence collections.

the way our generic asset-derived identifiers do. To es-
tablish compatibility related to genomic features such as
nucleotide sequences, sequence names, genome mem-
bership, order, and length, we must therefore develop
a more specific solution for this particular use case. To
solve this problem, refgenie relies on a novel concept we
refer to as decomposable identifiers.

Sequence collection identifiers

Refgenie’s approach is based on the refget protocol for
identification and retrieval of sequences (16). In re-
fget, DNA sequences are hashed to create a unique iden-
tifier that is stored in a database and can be used to
retrieve the original sequence (Fig. 3A). Refget identi-
fiers are specialized to DNA or protein sequences, and it
adds a critical component of allowing lookup of the un-
derlying data given the identifier. Lookup is not neces-
sary for the identity and provenance objectives described
above; however, it becomes important for the compat-
ibility question, which requires asset content to ask a
more fine-grained comparison question. Nevertheless,
the current refget protocol only partially fulfills refge-
nie’s need because refget only accommodates individ-
ual sequences, and also does not allow for compatibil-
ity comparisons. To answer the compatibility questions,
we devised a new digest procedure that extends the re-
fget protocol in two ways: First, we extend to annotated
sets of sequences; and second, we add the length of the

4- Reference genome resource identity - bioRxiv

sequence as a metadata component to the string to di-
gest. We refer to this as a decomposable identifier be-
cause after a retrieval, the original object is not a simple
sequence, but a tuple that can then be decomposed into
constituent parts.

1. Annotated collections of sequences. We first hash the
sequences themselves, then we concatenate them with
delimited sequence identifiers, and compute the digest
of the resulting string (Fig. 3B). The dual-delimited
string uses one character, here ",", to delimit items
(sequences), and another character, here ">", to
delimit the attributes of the items (names and sequence
digests).

Since one of the attributes of the sequences is itself a di-
gest, the final unique digest is a digest of digests. This
recursive approach accomplishes several goals. First, it
satisfies the goal of creating a checksum that can be used
to confirm identity of collections of sequences (for exam-
ple, fasta files). Second, it also allows the ability to do
more detailed comparison between two collections; for
example, we can check the sequence-level checksums to
see if two fasta files have the same sequences, but in
different order or with different names.

In this toy example, a lookup of digest 4d1dcd98 would
return this string:

chr1>64821b2,chr2>d8cd98f,chr3>21c67d1

https://doi.org/10.1101/2021.03.15.435425
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435425; this version posted March 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

This string allows us to compare the names and content
of this against another sequence collection. For example,
say another lookup returned this string:

chr1>64821b2,chr3>21c67d1, chr2>d8cd98f

In this case, a quick comparison would identify that
these collections have identical sequences and names,
but in different order. In similar way, a quick comparison
could identify if sequence content matches but names do
not, or if one collection is a subset of another, or if two
collections are completely different. These comparisons
are all very efficient because no actual sequences are
compared, only names and digests for each sequence.

The recursion of lookups provides additional power for
comparison (Fig. 3C). A single call to the function ac-
cepts a recursion parameter that allows refgenie to re-
turn the complete fasta file. This allows users to recon-
struct a complete reference assembly given nothing but
its unique digest.

2. Adding sequence lengths for coordinate system iden-
tifiers. The decomposable sequence identifier concept
has solved most of the problems we outlined earlier; we
can now compare sequences for differences in order, se-
quence identifier, membership, etc. However, there is
still one common scenario that this does not accommo-
date: compatibility of coordinate systems. A coordinate
system can be defined as a set of named sequences with
lengths. For example:

chril 519
chr2 753
chr3 938

A set of sequences by definition must have a coordi-
nate system, but a coordinate system does not specify
sequences.

We seek a system that will allow us to confirm that two
assets use the same coordinate system, even if they use
a completely different set of sequences. This question
cannot be easily answered using the sequence collec-
tion digests alone; it requires retrieving the original se-
quences to compute their lengths. Because this compat-
ibility question is a critical and frequent query, instead
of requiring this additional computation, refgenie adds
the lengths into the collection digest string source (Fig.
3D). To do this, we simply prepend the sequence length
to the item string before the final digest. Now, when a
sequence collection digest is used for lookup, we return
3 attributes of each sequence instead of 2: the name,
length, and sequence digest. This addition allows us to
rapidly make compatibility comparisons at the coordi-
nate system level. Given two strings in this format, with-
out needing to process the sequences themselves, we can

5- Reference genome resource identity - bioR xiv

quickly determine if two assemblies share a coordinate
system. Refgenie needs to simply compare the names,
lengths, and sequence digests; if the names and lengths
match, then it is a reasonable to assume the coordinate
systems are compatible. To enable this, refgenie stores
the chromosome names, lengths, and sequence digests
locally for any genome when a fasta asset is built or
pulled. To make it simple to calculate the compatibil-
ity between two sequence collections, we have imple-
mented a compare function, described next.

A component compatibility function

The compare function returns a flag, given two digests,
flag = f(digestA,digestB). The flag returned is a bi-
nary indicator with bits set according to the relation-
ship computed between the two given digests (Fig. 3E).
This flag allows a user to easily test any of the possible
compatibilities between the two digests using a simple
logical operator. For example, to confirm that two se-
quence collections have identical sequence content, we
use: flag&&1. To test if they have identical lengths,
we use flag&&2. This flexible system allows the user
to quickly identify compatibility across the whole spec-
trum, from use cases that require strict identity of iden-
tically named sequences in identical order, to flexible
systems that require only a set of sequences that share
sequence lengths.

Users can invoke the compare function directly from the
command line using the compare command:

refgenie compare genomeA genomeB

Discussion

Reference genomes, indexes, annotations, and other
genome assets are integral to sequencing analysis
projects. Refgenie provides a full-service management
system that includes a convenient method for down-
loading, building, sharing, and using genome-based
resources. As data availability increases, more tools
are needed to provide for identity and compatibility of
analysis. These tools are important piece in improving
reproducibility of genomic analysis. With the updates
described here, the refgenie system has been improved
to provide a new way to establish genome asset identity,
relationships, and compatibility. These improvements
will make it easier to ensure reproducibility and track
provenance of downstream analysis that is based on
refgenie assets.

Being able to identify genomes is a critical task in bioin-
formatics. Here, we introduced a novel approach using
recursive identifiers, which enable a new type of compat-
ibility test that can establish multiple levels of compati-
bility among genome-related assets. This improvement
will make it possible for downstream tools to more eas-
ily check compatibility of reference genome resources,
improving their portability and reusability.

https://doi.org/10.1101/2021.03.15.435425
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435425; this version posted March 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Development of refgenie is continuing, with several new
features planned. Refgenie already handles any user-
provided genome assemblies, such as a custom spike-in
genome or a combined multi-species assembly. But an
area for improvement will be the ability to specify cus-
tom assets. Currently, refgenie can only build a restricted
set of assets, but we have started work on a more flexible
approach with custom recipes so that users can add new
asset types. A second area of rapid development is the
potential to use refgenie to reference cloud resources.
Currently, refgenie is built around retrieving remote as-
sets for local use, but a future update could make it pos-
sible for a local refgenie client to provide cloud paths
to unarchived assets, which could simply using refgenie
in a pure cloud environment. Refgenie has already been
adapted for easy use in Galaxy (20) and Snakemake (21)
workflow systems, and we are interested in continuing
to develop integrations with similar systems to make it
easier for users to develop workflows that make use of
refgenie reference data.

License & availability

Refgenie consists of a series of Python packages that are
all BSD2-licensed. Source code, documentation, and
a list of active server instances can be found at refge-
nie.databio.org.

Competing interests
No competing interests.

Funding

This work was supported by the University of Virginia
School of Medicine.

Author contributions

MS implemented the method and edited the paper. BX
contributed to the implementation. NCS conceived of
the study, contributed to implementation, and wrote the
paper. All authors approved the paper.

Acknowledgments

We thank the Global Alliance for Genomic Health
(GA4GH) Refget working group for helping discussions
on related topics.

References

1. Harrow,J., Frankish,A., Gonzalez,J.M., Tapanari,E.,
Diekhans,M., Kokocinski,F., Aken,B.L., Barrell,D.,
Zadissa,A., Searle,S., et al. (2012) GENCODE:
The reference human genome annotation for the
ENCODE project. Genome Research, 22, 1760-1774.

2. Pruitt,K.D., Tatusova,T., Brown,G.R. and Maglott,D.R.
(2011) NCBI reference sequences (RefSeq): Current

6- Reference genome resource identity - bioR xiv

status, new features and genome annotation policy.
Nucleic Acids Research, 40, D130-D135.

3. Church,D.M., Schneider,V.A., Graves,T., AugerK.,
Cunningham,F., Bouk,N., Chen,H.-C., Agarwala,R.,
McLaren,W.M., Ritchie,G.R.S., et al. (2011) Modern-
izing reference genome assemblies. PLoS Biology, 9,
€1001091.

4. Kitts,P.A., Church,D.M., Thibaud-Nissen,F., Choi,J.,
Hem,V., Sapojnikov,V., Smith,R.G., Tatusova,T., Xi-
ang,C., Zherikov,A., et al. (2015) Assembly: A re-
source for assembled genomes at NCBI. Nucleic Acids
Research, 44, D73-D80.

5. Ruffier M., Kihéri,A., Komorowska,M., Keenan,S.,
Laird,M., Longden,l., Proctor,G., Searle,S.,
Staines,D., Taylor,K., et al (2017) Ensembl
core software resources: Storage and programmatic
access for DNA sequence and genome annotation.
Database, 2017.

6. Sadakane,K. and Shibuya,T. (2001) Indexing huge
genome sequences for solving various problems.
Genome Informatics, 12, 175-183.

7. Hon,W.-K., Sadakane,K. and Sung,W.-K. (2009)
Breaking a time-and-space barrier in constructing
full-text indices. SIAM Journal on Computing, 38,
2162-2178.

8. Li,H. and Durbin,R. (2009) Fast and accurate short
read alignment with burrows-wheeler transform.
Bioinformatics, 25, 1754-60.

9. Langmead,B. and Salzberg,S.L. (2012) Fast gapped-
read alignment with bowtie 2. Nat. Methods, 9, 357-
359.

10. Richa Agarwala,and, Barrett,T., Beck,J., Ben-
son,D.A., Bollin,C., Bolton,E., Bourexis,D., Bris-
ter,J.R., Bryant,S.H., Canese, K., et al (2018)
Database resources of the national center for
biotechnology information. Nucleic Acids Research,

46, D8-D13.

11. Zerbino,D.R., Wilder,S.P.,, Johnson,N., Juette-
mann,T. and Flicek,P.R. (2015) The Ensembl
Regulatory Build. Genome Biology, 16.

12. Sheffield,N.C. and Bock,C. (2016) LOLA: Enrich-
ment analysis for genomic region sets and regulatory
elements in R and bioconductor. Bioinformatics, 32,
587-589.

13. Heeringen,S.J. van (2017) Genomepy: Download
genomes the easy way. The Journal of Open Source
Software, 2, 320.

14. Hart,R.K. and Prli¢,A. (2020) SeqRepo: A system
for managing local collections biological sequences.
PLoS ONE, 10.1101/2020.09.16.299495.

http://refgenie.databio.org
http://refgenie.databio.org
https://doi.org/10.1101/2020.09.16.299495
https://doi.org/10.1101/2021.03.15.435425
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435425; this version posted March 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

15. Cormier,M.J., Belyeu,J.R., Pedersen,B.S., Brown,J.,
Koster,J. and Quinlan,A.R. Go get data (GGD): Sim-
ple, reproducible access to scientific data. bioRxiv,
10.1101/2020.09.10.291377.

16. Yates,A.D., Adams,J., Chaturvedi,S., Davies,R.,
Laird,M., Leinonen,R., Nag,R., Sheffield,N.C.,
Hofmann,O. and Keane,T. (2021) Refget: Stan-
dardised access to reference sequences. bioRxiv,
10.1101/2021.03.11.434800.

17. Stolarczyk,M., Reuter,V.P., Smith,J.P., Magee,N.E.
and Sheffield,N.C. (2020) Refgenie: A reference
genome resource manager. GigaScience, 9.

18. Wagner,A.H., Babb,L., Alterovitz,G., Baudis,M.,
Brush,M., Cameron,D.L., Cline,M., Griffith,M., Grif-
fith,O.L., Hunt,S., et al. (2021) The GA4GH variation
representation specification (VRS): A computational

7- Reference genome resource identity - bioRxiv

framework for the precise representation and feder-
ated identification of molecular variation. bioRxiv,
10.1101/2021.01.15.426843.

19. Love,M.L, Soneson,C., Hickey,P.F., Johnson,L.K.,
Pierce,N.T., Shepherd,L., Morgan,M. and Patro,R.
Tximeta: Reference sequence checksums for prove-
nance identification in RNA-seq. 16, e1007664.

20. VijayKrishna,N., Joshi,J., Coraor,N., Hillman-
Jackson,J., Bouvier,D., Beek,M. van den, Eguinoa,l.,
Coppens,F., Golitsynskiy,S., Stolarczyk,M., et al.
(2020) Expanding the galaxy’s reference data.

bioRxiv, 10.1101/2020.10.09.327114.

21. Koster,J. and Rahmann,S. (2012) Snakemake—-a scal-
able bioinformatics workflow engine. Bioinformatics,
28, 2520-2522.

https://doi.org/10.1101/2020.09.10.291377
https://doi.org/10.1101/2021.03.11.434800
https://doi.org/10.1101/2021.01.15.426843
https://doi.org/10.1101/2020.10.09.327114
https://doi.org/10.1101/2021.03.15.435425
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Identity: Unique asset-derived identifiers
	Consistency: Recording asset relationships
	Compatibility: decomposable genome identifiers
	Sequence collection identifiers
	A component compatibility function

	Discussion
	License & availability
	Competing interests
	Funding
	Author contributions
	Acknowledgments
	References

